Published online 3 August 2009

Nucleic Acids Research, 2009, Vol. 37, No. 17 5725-5736

doi:10.1093/nar/gkp643

Stimulation of homology-directed gene targeting
at an endogenous human locus by a nicking

endonuclease

Gijsbert P. van Nierop, Antoine A. F. de Vries, Maarten Holkers, Krijn R. Vrijsen

and Manuel A. F. V. Goncalves*

Virus and Stem Cell Biology Laboratory, Department of Molecular Cell Biology, Leiden University Medical Center,

Einthovenweg 20, 2333 ZC Leiden, The Netherlands

Received May 28, 2009; Revised July 17, 2009; Accepted July 19, 2009

ABSTRACT

Homologous recombination (HR) is a highly accur-
ate mechanism of DNA repair that can be exploited
for homology-directed gene targeting. Since in most
cell types HR occurs very infrequently (~107° to
1078), its practical application has been largely
restricted to specific experimental systems that
allow selection of the few cells that become genet-
ically modified. HR-mediated gene targeting has
nonetheless revolutionized genetics by greatly
facilitating the analysis of mammalian gene
function. Recent studies showed that generation of
double-strand DNA breaks at specific loci by
designed endonucleases greatly increases the rate
of homology-directed gene repair. These findings
opened new perspectives for HR-based genome
editing in higher eukaryotes. Here, we demonstrate
by using donor DNA templates together with the
adeno-associated virus (AAV) Rep78 and Rep68
proteins that sequence- and strand-specific cleav-
age at a native, predefined, human locus can also
greatly enhance homology-directed gene targeting.
Our findings argue for the development of other
strategies besides direct induction of double-
strand chromosomal breaks to achieve efficient
and heritable targeted genetic modification of cells
and organisms. Finally, harnessing the cellular HR
pathway through Rep-mediated nicking expands
the range of strategies that make use of AAV
elements to bring about stable genetic modification
of human cells.

INTRODUCTION

Homologous recombination (HR) ensures the high-fidelity
repair of genomes by using homologous DNA sequences
(e.g. sister chromatids) as templates for correction (1).
Under normal conditions, HR is a rare event in most
mammalian cell types. In HeLa and HT-1080 cells it
occurs at frequencies of ~1077 to 10~% (2,3) and 107° to
1077 (3-5), respectively, whereas in human fibroblasts it
has an incidence of ~10~7 (6). Due to these low HR rates,
homology-directed genome editing techniques have heav-
ily depended on the use of stringent cell selection
procedures that are not easily applicable beyond purely
experimental systems. Even so, the exploitation of HR-
mediated gene targeting has greatly impacted biological
research by providing the principles to ‘knock in’ and
‘knock out’ genes (7). The observation that the induction
of site-specific double-strand chromosomal breaks
stimulates homology-directed gene repair (8,9) provided
a rationale for the development of artificial zinc finger
nucleases (ZFNs) (10-13). ZFNs consist of a modular
assembly of zinc finger domains covalently linked to the
nuclease motif of the Type IIS restriction endonuclease
Fokl. The former domains confer specificity to the
double-strand DNA breaks generated by dimers of the
latter. Indeed, ZFNs can cleave predefined sequences
in the genomes of higher eukaryotes and thereby increase
the frequency of HR between donor and recipient
sequences by 3—4 orders of magnitude. These findings
have greatly improved the prospects for the application
of HR-based genome editing methods in clinical and
industrial settings. For instance, efficient gene targeting
at specific loci could be used to rescue genetic disease
phenotypes while avoiding insertional oncogenesis as
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observed in clinical trials deploying y-retrovirus vectors to
treat X-linked severe combined immunodeficiency (14).
Although ZFNs have great potential, the clinical
application of these proteins awaits technical improve-
ments such as the reduction of off-target chromosomal
double-strand breaks and associated cytotoxicity as
well as the control of their activity in target cells (15).
An alternative HR-based gene editing strategy consists
of exploiting the recombinogenic nature of adeno-
associated virus (AAV) vector genomes (16). Several
reports have demonstrated that AAV vectors can be
tailored to introduce precise nucleotide alterations into
the human genome at frequencies approaching 1% when
very high multiplicities of infection are used (i.e. 10°-10°
genome copies per cell). In comparison with other
methods, the AAV vector-mediated HR process seems to
be less dependent on the extent of homology between
donor and target templates. Currently, however, with
this method, each targeted gene conversion event is
accompanied by approximately 10 random DNA
insertions (17).

Historically, single-strand and double-strand DNA
breaks have both been invoked as the initiators of
homology-directed DNA repair in HR models.
However, experimental indications that single-strand
DNA gaps or nicks may constitute, per se, triggers for
HR have only recently been obtained (18). Instrumental
to this conclusion was the deployment of mutant RAG
proteins that preferentially nick instead of cleave their
recombination signal sequences and a reporter gene
expression rescue assay based on plasmids containing
two non-functional but complementary cyan fluorescent
protein gene segments (18).

Here, we investigated whether a bona fide nicking endo-
nuclease could stimulate HR at a predefined native human
locus, and by doing so, could be used for the targeted
chromosomal insertion of a functional transcription
unit. For this purpose, we exploited the ability of the
two largest AAV Rep proteins (i.e. Rep78 and Rep68)
to introduce a single-strand DNA break in a locus on
the long arm of human chromosome 19 designated
AAVSI. Introduction into human cells of these sequence-
and strand-specific endonucleases together with donor
templates consisting of a 4.1-kb humanized Renilla
reniformis green fluorescent protein (hrGFP) transcription
unit flanked by sequences homologous to 44V S greatly
enhanced homology-directed gene addition. These results
demonstrate that a sequence- and strand-specific endo-
nuclease can stimulate targeted insertion of new genetic
information into a predefined human genomic region in
its native chromosomal context.

MATERIALS AND METHODS
DNA constructions

The AAV rep78/68 expression plasmid pGAPDH.
Rep78/68 has been described before (19). The annotated
nucleotide sequences of the expression plasmids
pPGAPDH.Rep68 and pGAPDH.Rep68(Y 156F) encoding
endonuclease-proficient and -deficient versions of Rep68,

respectively, as well as that of the targeting vector
pA1.GFP.A2 can be retrieved through GenBank acces-
sion numbers, GQ380656, GQ380657 and GQ380658,
respectively.

DNA transfections

Eighty thousand human cervical carcinoma (HeLa) cells
(American Type Culture Collection) in wells of 24-well
plates (Greiner Bio-One) were co-transfected with
pA1.GFP.A2 and pGAPDH.Rep78/68 at a molar ratio
of 2:1 or with pA1.GFP.A2 and an ‘empty plasmid’
using ExGen500 (Fermentas). The total amounts of
transfection reagent and plasmid DNA were 2.4 ul and
0.4 pg per well, respectively. Twenty-four hours after trans-
fection, the cells received fresh culture medium [Dulbecco’s
modified Eagle’s medium (DMEM; Invitrogen) plus 10%
fetal bovine serum (FBS; Invitrogen)]. Cultures exposed to
the ‘empty’ plasmid and to the rep78/68 expression vector
contained 69% +7.1 (n=3) and 68.4% +£2.1 (n=3)
hrGFP-positive cells, respectively, as determined by
flow cytometry 48h post-transfection (10000 events
measured per sample). The transfected cells as well as
non-transfected control cells were sub-cultured every 3—4
days for 4 weeks in order to allow the identification,
through direct fluorescence microscopy and flow
cytometry, of stably transduced HeLa cells. Next, the
cells were sorted to establish single-cell clones. Trans-
fection experiments using constructs pGAPDH.Rep68
and pGAPDH.Rep68(Y156F) were performed as those
described above using pGAPDH.Rep78/68.

Cell sorting and clonal expansion

hrGFP-based cell sorting was carried out 4 weeks post-
transfection to permit loss of episomal pAl.GFP.A2
donor templates. Cells were collected in a 1:1 mixture
of DMEM and FBS. The sorted hrGFP-positive cells
were seeded in wells of 96-well plates (Greiner Bio-One)
at a density of 0.3 cells per well in DMEM containing 10%
FBS, 50 uM a-thioglycerol (Sigma-Aldrich) and 20nM
bathocuprione disulphonate (Sigma-Aldrich) to increase
the cloning efficiency (20). Twenty-four randomly picked
clones derived from the Hela cells transfected with
pA1.GFP.A2 and pGAPDH.Rep78/68 and 25 clones
selected at random from the sorted Hela cells that
received pA1.GFP.A2 and the ‘empty vector’ were used
for further analysis.

Flow cytometry

Quantification of hrGFP-positive cells was performed
using a BD LSR II flow cytometer. Data were analyzed
with the aid of BD FACSDiva software version 5.0.1 with
non-transfected HeLa cells serving to set the background
level of the assay at zero events. At least 10000 events
were acquired per sample.

Detection of gene targeting events by Southern
blot analysis

Chromosomal DNA was purified according to a published
method (21). After overnight digestion with Apall



(New England Biolabs), 10pg DNA samples were
resolved in a 0.8% agarose gel in 1x Tris—acetate—
EDTA buffer. Next, the DNA was transferred by capillary
action to an Amersham Hybond-XL membrane (GE
Healthcare) using a standard Southern blot technique.
The 393-bp AAVSI-specific probe was obtained by
PCR amplification of human chromosomal DNA using
0.012U/ul Phusion High-Fidelity DNA polymerase
(Finnzymes), 200uM deoxynucleoside triphosphates
(dNTPs; Fermentas), 1x GC buffer (Finnzymes) plus
0.2uM of primers #633 (5-GGTCCCCAGCATGTCTT
CCTA-3) and #0634 (5-CTCCCGAACCTCAGATCT
CC-3). The resulting DNA fragment was purified after
agarose gel electrophoresis with the aid of the QIAEX 11
gel extraction kit (Qiagen). The 738 bp hrGFP-specific
probe was obtained by digestion of plasmid
pU.CAG.hrGFP (22) with EcoRI and Notl (both from
Fermentas) followed by preparative agarose gel
electrophoresis. Both DNA probes were labeled with
(0-*P)dATP (GE Healthcare) using the HexaLabel
DNA labeling system (Fermentas). Prior to their applica-
tion in hybridization experiments, the radiolabeled probes
were separated from unincorporated dNTPs through size-
exclusion chromatography using Sephadex-50 (GE
Healthcare) columns. The PCR amplifications were
carried out in a DNA Engine Tetrad 2 thermal cycler
(Bio-Rad).

Detection of gene targeting events by PCR

PCR amplifications were performed on chromosomal
DNA purified from hrGFP-positive cell clones derived
from cell populations initially transfected with
pA1.GFP.A2 and either the ‘empty plasmid’ or
pGAPDH.Rep78/68. Cellular DNA extracted from par-
ental non-transfected cells served as negative control.
Samples containing 100ng of genomic DNA were
subjected to PCR with the 44V SI-specific primer #649
(5-AGGCTTGCTCTGCACAACTT-3), together with
primer #651 (5-TTCCTAACCCCAACACTTGC-3)
targeting the human elongation factor 1o (EFIc) promoter
located in pA1.GFP.A2. Fifty microliters PCR mixtures
containing 0.2 uM of each primer, 200 uM dNTPs, 0.6 U
of Phusion High-Fidelity DNA polymerase and HF buffer
(Finnzymes) at a 1x final concentration were placed in a
DNA Engine Tetrad 2 thermal cycler and a touchdown
PCR program was initiated by 1-min incubation at 98°C.
This was followed by 36 cycles consisting of 20s at 98°C,
30s at 72°C with the temperature decreasing 0.5°C per
cycle and 2 min at 72°C. When the PCR program reached
the lower annealing temperature of 54°C, 16 additional
cycles were carried out at this annealing temperature.
The procedure was completed by 5-min incubation at
72°C. To control for the integrity of the genomic DNA,
PCR amplifications with the hypoxanthine phosphoribosyl-
transferase 1 (HPRTI)-specific primers hHPRT.1 and
hHPRT.2 (23) were carried out using the conditions and
cycling parameters specified above. Semi-nested PCR
amplifications were done by using primer #649 and the
EFla promoter-specific primer #186 (5-CTATGTGGC
CAACGCTAAG-3') on 0.004% of the DNA synthesized
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with the aid of oligodeoxyribonucleotides #649 and #651.
A touchdown PCR cycling program was initiated by 45-s
incubation at 98°C. This was followed by 20 cycles
consisting of 25s at 98°C, 30s at 72°C with the tempera-
ture decreasing 0.5°C per cycle and 2min at 72°C. When
the program reached the lower annealing temperature of
62°C, 24 additional cycles were carried out at this
annealing temperature. The procedure was finished by
5-min incubation at 72°C.

Effect of Rep68 dose on HR-mediated gene targeting

To study the effect, in human cell cultures, of different
Rep68 dosages on HR-mediated gene targeting, 8 x 10*
HeLa cells were transfected essentially as specified
above. Controls consisted of mock-transfected HeLa
cells and of HelLa cells transfected with 0.2pg of
pA1.GFP.A2 and either 0.1 ug of ‘empty plasmid’ or
0.1pg of pGAPDH.Rep68(Y156F). In parallel, HelLa
cells were transfected with 0.2 ug of pA1.GFP.A2 mixed
with increasing quantities of pPGAPDH.Rep68 (i.e. 1, 3.3,
10, 33.3 and 100ng). A total amount of 0.3 pg of recom-
binant DNA was transfected in each experimental con-
dition by adding, whenever required, extra ‘empty
plasmid’. At 3 days post-transfection live-cell light micros-
copy was performed to establish similar transfection
efficiencies among the different experimental conditions.
In this analysis, an Olympus IX51 inverse fluorescence
microscope equipped with a ColorView II Peltier-cooled
charge-coupled device camera was deployed. Images were
archived by using analysis software (Soft Imaging
Systems). At 4 days after transfection, genomic DNA
was extracted (21) and 1 pg was incubated overnight at
37°C with Dpnl to selectively digest possible remaining
plasmid input. Next, the genomic DNA was analyzed by
PCR and semi-nested PCR as described above except that
for the PCR the cycling conditions of the semi-nested PCR
were used. To control for the integrity of the genomic
DNA, PCR amplifications with the HPRTI-specific
primers hHPRT.1 and hHPRT.2 (23) were carried out
using the same conditions and cycling parameters.

Molecular characterization of junctions between
exogenous and endogenous DNA

The amplification of left (i.e. telomeric) transgene-host
DNA junctions has been described above. Their centro-
meric (i.e. right) counterparts were amplified following
essentially the same protocol except for the use of primers
#635 (5-GCACTTTGGGTGAATTGTAGG-3) and
#650 (5-GGGAGGTGTGGGAGGTTTT-3) and GC
instead of HF buffer. Prior to nucleotide sequencing ana-
lysis using the 3730x] DNA analyzer and BigDye
Terminator v3.1 cycle sequencing kit (both from Applied
Biosystems), PCR products representing left- and right-
hand AAVSI-transgene junctions were cloned into
plasmids pCR-blunt-II TOPO (Invitrogen) and pletl.2
(Fermentas), respectively, according to the manufacturers’
instructions.
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Statistical analysis

Mean and SEM values were computed using GraphPad
Prism software version 4.03. Student’s -test was used to
compare data sets. P <0.05 was considered significant.

RESULTS
Experimental model and strategy

The AAV rep gene encodes four overlapping non-
structural proteins (dubbed Rep78, Rep68, Rep52 and
Rep40) from a single open reading frame (ORF) by a
combination of alternative promoter usage and splicing.
Biochemically, Rep78 and Rep68 are virtually indistin-
guishable (24). During AAV DNA replication, they cata-
lyze the strand- and site-specific cleavage of viral
replicative intermediates at the so-called terminal reso-
lution site (zrs) to generate a free 3’ hydroxyl group for
DNA chain elongation. Nicking of AAV DNA at the rs is
dependent on the binding of Rep78 and Rep68 to a nearby
Rep-binding element (RBE). A frs and an adjacent, prop-
erly spaced RBE are also present in the human genome at
19q13.3-qter (AAVSI locus). These elements are utilized
for the Rep78/68-dependent insertion of AAV DNA at the
AAVSI locus in human chromosome 19 (25,26).

Here, we exploited the sequence- and strand-specific
endonuclease activities of Rep78/68 to study whether
a single-strand DNA break could serve as an initiator
of HR between added foreign DNA and a predefined
endogenous human /ocus. To serve as donor template
for HR, we generated the targeting construct pAl.
GFP.A2, which contains a human FEF/a promoter-
driven hirGFP expression unit flanked by DNA segments
(‘arms’) homologous to sequences framing the AAV DNA
pre-integration site on human chromosome 19 at
19q13.3-qter (Figure 1A). The presence in pA1.GFP.A2
of a recombinant irGFP gene allowed us to trace, accur-
ately quantify and sort genetically modified cells inde-
pendently of the mechanism by which genetic
modification of the target cells was brought about. The
latter aspect is important because it avoids the exclusive
detection of homology-dependent gene targeting events to
the detriment of non-targeted exogenous DNA insertions
as occurs in commonly used assays based on HR-mediated
rescue of reporter gene expression. Clearly, however, the
occurrence of integration events involving either truncated
reporter genes or reporter genes bearing function-
impairing mutations can be scored by neither of the two
assays.

The AAV Rep78/68 proteins stimulate homology-
directed gene targeting of an entire transcription
unit into AAVSI

HeLa cells were co-transfected with pAl1.GFP.A2 and
either the AAV rep78/68 expression plasmid pGAPDH.
Rep78/68 or an ‘empty’ control vector. Stably transduced
cells present in both target cell populations were identified
following extensive subculturing by virtue of their hrGFP-
specific fluorescence. Forty-four days after transfection,
the frequency of hrGFP-positive cells had stabilized in
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Figure 1. Stable genetic modification of human cells with a targeting
vector containing sequences homologous to the genomic region flanking
the RBE and trs of A4VSI. (A) Schematic representation of the
experimental setup used to test the capacity of a nicking endonuclease
to induce homology-directed gene targeting at a native human /locus.
The episomal donor template pA1.GFP.A2 (12.7kb) contains a 4.1-kb
transcription unit consisting of the EF/a promoter (red box), the
hrGFP ORF (green box) and the simian virus 40 polyadenylation
signal (pink box). This transcription unit is flanked by sequences hom-
ologous to those framing the rrs (vertical thin black line) and RBE
(cyan box) at the chromosomal acceptor site (i.e. the A4VSI locus
on human chromosome 19 at 19ql13.3-qter; thick horizontal yellow
lines). Homology arms 1 and 2 are 2063 and 4381bp in length,
respectively. Black crosses represent crossing-over events between hom-
ologous DNA segments that lead to targeted gene addition. (B) Flow
cytometric quantification of stably transduced human cells. HeLa cells
were co-transfected with pA1.GFP.A2 and an ‘empty’ control vector
(—Rep) or with pAl.GFP.A2 and the AAV serotype 2 rep78/68-
expression construct pGAPDH.Rep78/68 (+ Rep). The overall fre-
quency of genetically modified cells (i.e. irrespective of whether they
were stably transduced via random or via AA4VSI-targeted exogenous
DNA insertion events) was determined at 44 days post-transfection
through hrGFP-based flow cytometric analysis of 100000 events per
sample. Bars represent mean + SEM of three independent experiments.

both types of cell populations. However, the cultures
derived from the pGAPDH.Rep78/68-transfected HelLa
cells contained more stably transduced cells than those
of HeLa cells not exposed to the rep78/68 expression
plasmid (Figure 1B).

We next asked whether stable genetic modification of
cells in each of these experimental groups was brought
about by targeted or by random DNA insertion. To this
end, hrGFP-positive cells from the two different setups
were independently sorted and clonally expanded.
Subsequently, genomic DNA extracted from randomly
selected cell clones (n = 49) was subjected to PCR analysis
using primers #649 and #6351 specific for the AA4VS1 locus
and the FEFIla promoter, respectively (Figure 2A).
Parental, non-transfected HeLa cells served as negative
control. Homology-directed gene targeting at A4AVSI
following transfection of pAl1.GFP.A2 should originate
a 2652bp PCR fragment (Figure 2A). Products with a
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Figure 2. PCR assays to identify cells genetically modified through
homology-directed gene targeting. (A) Overview of the PCR assays
carried out on genomic DNA of stably transduced HeLa cells clonally
expanded from cultures exposed (+ Rep) or not exposed (—Rep) to
pGAPDH.Rep78/68. The AAVSI locus is depicted before and after
HR with the donor template pAl.GFP.A2. HR-mediated transgene
insertion should yield 2.7-kb PCR products using primers #649 and
#651 (horizontal dark blue bar). The specificity of these amplicons
can be confirmed by semi-nested PCR using primers #649 and #186
combined with restriction fragment length analyses of the resulting
2.3-kb DNA species (horizontal brown bars). The numbers above the
brown bars refer to restriction fragment sizes. Open circle, prokaryotic
origin of replication. For an explanation of the other symbols see the
legend of Figure 1. (B) PCR analysis carried out on chromosomal
DNA of parental HeLa cells (HeLa) and of clones derived from
HeLa cells co-transfected with pA1.GFP.Al and pGAPDH.Rep78/68
(+Rep) or with pA1.GFP.A2 and ‘empty plasmid’ (—Rep). The panels
labeled GT display the results of amplification reactions performed
with primers #649 and #651, which are specific for the 44VSI locus
and the EFIla promoter, respectively. PCR amplifications targeting a
1.9-kb segment of the HPRTI were carried out in parallel to ascertain
the integrity of the genomic DNA corresponding to individual HeLa
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size consistent with this process could readily be detected
in 71% (n=24) of PCR samples corresponding to
DNA of cell clones derived from cultures exposed to
pA1.GFP.A2 and pGAPDH.Rep78/68 (Figure 2B,
upper GT panel). Conversely, consistent with the well-
established very low frequency of HR in HeLa cells
(i.e. 1077 to 107®%), the PCR assay performed on DNA
of cell clones established from pAl.GFP.A2-positive
cells that did not receive the AAV rep78/68 expression
plasmid yielded non-specific amplification products
(n = 25) (Figure 2B, lower GT panel). The identity of
the PCR products corresponding to three clones whose
founder cells had been co-transfected with pA1.GFP.A2
and pGAPDH.Rep78/68 was further investigated by semi-
nested PCR wusing the primer pairs #649 and #186
(Figure 2A). Unambiguous detection of specific 2.3-kb
semi-nested PCR products displaying diagnostic restric-
tion patterns after digestion with ApaLl, Paul or Smal
confirmed that these DNA molecules indeed represented
AAVSI-transgene junctions (Figure 2C).

To further substantiate these results through an inde-
pendent method, we deployed Southern blot analyses of
ApaLI-digested genomic DNA extracted from randomly
selected clones originating from pA1.GFP.A2-transfected
HelLa cells that had or had not been exposed to
pGAPDH.Rep78/68. Gene conversion resulting from
HR between pAl.GFP.A2 and endogenous AAVSI
sequences should yield 9.9-kb DNA species while
undisrupted/non-targeted alleles should give rise to
7.1-kb DNA molecules (Figure 3A). Autoradiograms of
Southern blots incubated with the 4A4VSI-specific probe
showed the presence of 9.9-kb DNA fragments consistent
with HR-mediated transgene insertion at AAVSI
(Figure 3B, upper panel, open arrowheads). Importantly,
these DNA species occurred exclusively in chromosomal
DNA of cell clones derived from cultures transfected with
pGAPDH.Rep78/68. In genomic DNA of cell clones
isolated from cultures that received the ‘empty’ control
vector, the 7.1-kb ApaLl fragments (resulting from
unmodified 44VS1 alleles) were the only DNA species
detected (Figure 3B, upper panel, solid arrowhead).
These results are in agreement with those obtained by
PCR analysis (Figure 2). To strengthen the assertion
that the 9.9-kb molecules represent HR-dependent gene
targeting events at AAVSI, the human chromosome
19-specific probe was removed and the stripped membrane
was incubated with a transgene-specific probe. The
hybridization of the 9.9-kb DNA fragments to the new
probe indicates that they are specific and result from

cell clones (see panels marked HPRT1). PCR mixtures containing water
instead of DNA served as a negative control (H,O). The positions and
sizes (in kilo base pairs) of specific PCR products are indicated at the
right. Marker, Gene Ruler DNA Ladder Mix molecular weight marker
(Fermentas). (C) Characterization of the 2.7-kb amplification products
obtained with primers #649 and #651 by semi-nested PCR and restric-
tion enzyme fragment length analyses. A semi-nested PCR using
primers #0649 and #186 was performed on the 2.7-kb amplicons
corresponding to clones 2, 4 and 5. The resulting 2.3-kb PCR products
were subjected to agarose gel electrophoresis after digestion with
ApaLl, Paul or Smal. Und., undigested PCR fragments.
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Figure 3. Investigation of targeted versus random chromosomal insertion of exogenous DNA through restriction mapping and Southern blot
analyses. (A) Diagram of the Southern blot assay performed on ApaLl-digested chromosomal DNA extracted from randomly selected clones of
pA1.GFP.A2-transfected HeLa cells. The ApaLl restriction map of the A4VSI locus is depicted before and after HR with the donor template
pA1.GFP.A2. Non-targeted and targeted human chromosome 19 alleles are expected to give rise to 7.1- and 9.9-kb ApalLl DNA fragments,
respectively, using the AAVSI-specific probe (orange horizontal bar). The 9.9-kb DNA species should also be specifically recognized by the
transgene-specific probe, which spans the entire irGFP ORF (green horizontal bar). Both DNA probes are drawn in relation to their target
sequences. For an explanation of the other symbols see the legend of Figure 1. (B) Southern blots of ApaLI-digested chromosomal DNA of parental
HeLa cells (HeLa) and of clones derived from HeLa cells co-transfected with pA1.GFP.Al and pGAPDH.Rep78/68 (+ Rep) or with pA1.GFP.A2
and ‘empty plasmid’ (—Rep). The open arrowheads point at the 9.9-kb DNA fragments expected to emerge following homology-directed gene
targeting at 44V S1. The open arrows mark higher molecular weight DNA species that are also recognized by both probes indicating insertion of
exogenous DNA at AAVSI loci that underwent local Rep78/68-induced DNA amplification/rearrangement. The 12.7-kb ApaLl-linearized
pA1.GFP.A2 DNA (solid arrowhead in lower panel) served as an internal control for probe binding specificity and removal. The solid arrowhead
in the upper panel points at the 7.1-kb ApaLl fragments derived from unmodified 44 V'S alleles. Marker, Gene Ruler DNA Ladder Mix molecular

weight ladder (Fermentas).

HR-mediated transgene insertion at 4A4V'S1 (Figure 3B,
lower panel, open arrowheads). Of note is also the
co-labeling by both probes of DNA species with higher
molecular weights in lanes containing genomic DNA of
cells expanded from pGAPDH.Rep78/68-transfected
cultures (Figure 3B, open arrows). Possibly, these DNA
fragments represent exogenous DNA insertion events at
AAVSI loci that went through local Rep78/68-induced
DNA amplification/rearrangement [see e.g. ref. (27)]
prior to or concomitant with exogenous gene addition.
These events might have occurred via a homology-
independent pathway such as that at play during locus-
specific wild-type AAV DNA integration (25-27) or
non-homologous end joining or, alternatively, through
homology-directed DNA targeting as found in the other
cells (Figure 3B, open arrowheads). Detailed molecular
analysis of the structural organization of the integrated
exogenous DNA and its flanking sequences will provide
clues as to which mechanism was involved.

The observation that chromosomal DNA extracted
from clones 26, 30 and 32 not only gave rise to high-
molecular-weight ApaLl fragments (>12.7 kb) recognized
by both Southern blot probes but also yielded the 2652 bp
PCR species, suggests the involvement of HR at some
stage during their genetic modification. Furthermore, in
agreement with the aforementioned lack of A4AVSI
disruptions, genomic DNA of cell clones derived from
Rep78/68-negative cells gave rise to transgene-specific
fragments with different sizes (Figure 3B, lower panel).

Importantly, none of these fragments was recognized by
the 44V SI-specific probe confirming that they originate
exclusively from random chromosomal insertion of
exogenous DNA.

The Rep68 protein suffices to induce homology-directed
gene targeting at A4VS1 and its endonucleolytic
activity is fundamental to this process

The smaller Rep68 protein contains all the structural
information required for binding to and nicking at RBE
and trs sequences, respectively. Thus, we postulated that
the HR-inducing activity of Rep78/68 discovered above
would be recapitulated by expressing exclusively Rep68.
To test this hypothesis, we generated the expression plas-
mid pGAPDH.Rep68. This construct encodes Rep68
only. Moreover, to establish whether the stimulatory
effect of the large AAV Rep proteins on HR-mediated
gene targeting depends on their nicking activity, expres-
sion plasmid pGAPDH.Rep68(Y156F) was made. This
construct is identical to pGAPDH.Rep68 except for
a point mutation within the rep68 ORF that confers a
nicking-defective phenotype to the encoded protein
[designated Rep68(Y156F)] due to substitution of the
tyrosine residue at amino acid position 156 by phenylalan-
ine (28,29). Both AAV rep68 expression plasmids were
independently co-transfected into Hela cells together
with the targeting vector pA1.GFP.A2 and, as before,
cells stably transduced with pA1.GFP.A2 sequences were
identified by hrGFP-specific flow cytometry following
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Figure 4. Testing the capacity of endonuclease-proficient Rep68 and
endonuclease-deficient Rep68(Y 156F) proteins to stimulate homology-
directed gene targeting at AAVS1. (A) Quantification by flow cytometry
of stably transduced HeLa cells following co-transfection with
pA1.GFP.A2 and pGAPDH.Rep68(Y156F) or with pA1.GFP.A2 and
pGAPDH.Rep68 (Rep68). The frequency of genetically modified cells
was determined at 27 days post-transfection through hrGFP-based flow
cytometric analysis of 10000 events per sample. Bars represent
mean £+ SEM of three independent experiments. (B) Agarose gel electro-
phoresis of PCR products resulting from amplifications carried out on
chromosomal DNA from HeLa cell clone 25 (Figure 2B, upper two
panels) (lane 1), parental HeLa cells (lane 2) and HeLa cell populations
1 month after co-transfection with pA1.GFP.A2 and pGAPDH.Rep68
(lane 3) or with pA1l.GFP.A2 and pGAPDH.Rep68(Y156F) (lane 4).
Lanes M, Gene Ruler DNA Ladder Mix molecular weight marker.
Upper panel, internal control PCR products resulting from
amplifications performed with the human HPRTI-specific primers
hHPRT.1 (#49) and hHPRT.2 (#50). Middle panel, PCR species
obtained after amplifications carried out with oligodeoxyribonucleotides

Nucleic Acids Research, 2009, Vol. 37, No. 17 5731

extensive subculturing. As shown in Figure 4A, the
frequency of stably transduced cells was higher in cell
cultures initially exposed to pGAPDH.Rep68 than in
those transfected with pGAPDH.Rep68(Y156F). Next,
the PCR-based assay illustrated in Figure 2A was
deployed to investigate homology-directed gene targeting
at AAVSI in cells that received either Rep68 or
Rep68(Y156F). Genomic DNA extracted from non-
transfected HeLa cells and from HeLa cell clone 25
(Figure 2B, upper two panels) served as negative and posi-
tive controls, respectively. Specific 2.7-kb PCR products
were only detected in samples of cell populations derived
from cultures initially provided with Rep68 molecules.
These data demonstrate that Rep68 alone can induce
HR-mediated gene targeting at AAVSI and that its
nicking activity is involved in this process (Figure 4B).
The confirmation that the 2.7-kb PCR products resulted
from HR-mediated gene targeting at A4V'S1 was obtained
by the detection of diagnostic 2.3-kb DNA fragments
(Figure 4B) following semi-nested PCR using primers
#649 and #186 (Figure 2A). To determine the amount of
rep68 expression plasmid required to induce detectable
HR-mediated chromosomal gene targeting, we performed
a dose-response experiment in HelLa cells using as read-
out the PCR assay depicted in Figure 2A. The HeLa cells
were transfected with a constant amount of targeting
vector pAl.GFP.A2 mixed with increasing quantities of
pGAPDH.Rep68 ranging from 1 to 100 ng. Light micros-
copy analyzes revealed that transfection efficiencies were
similar for each experimental condition (Figure 5A). The
PCR assay detected AAV Rep68-dependent HR events
at AAVSI in cells exposed to 33.3 and 100ng of
pGAPDH.Rep68 (Figure 5B). Moreover, these events
could not be detected in cells receiving 100ng of
pGAPDH.Rep68(Y156F) confirming that Rep68-
dependent nicking is necessary for the observed stimula-
tion of homology-directed gene targeting at chromosomal
DNA in human cells (Figure 5B).

Chromosomal junctions between endogenous and
exogenous DNA generated by AAV Rep78/68-mediated
HR are accurate

Finally, we asked whether the junctions between AAVS/
and foreign DNA in cells stably transduced through AAV
Rep-induced HR were precise at the nucleotide level. To
this end, we performed PCR amplifications on genomic
DNA from cell clones 4, 7 and 9 with the aid of primer
sets #649 plus #651 and #635 plus #650 to amplify,
respectively, left (i.e. telomeric) and right (i.e. centromeric)
junctions between endogenous and exogenous DNA
(Figure 6A). The resulting diagnostic 2.7- and 5.4-kb
PCR fragments were subsequently cloned and the cloning
products were used to molecularly characterize all 12
AAVSI-foreign DNA junctions. Nucleotide sequence

#649 and #651 (Figure 2A, upper panel). Lower panel, semi-nested PCR
products resulting from PCR reactions using primers #649 and #186
(Figure 2A, upper panel) on 0.004% of the DNA synthesized with the
aid of oligodeoxyribonucleotides #649 and #651. The positions and sizes
(in kilo base pairs) of the various amplicons are indicated by solid
arrows.
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Figure 5. Rep68 dose dependency of HR-mediated gene targeting at AAVSI. (A) Phase-contrast microscopy (upper panel) and hrGFP direct
fluorescence microscopy (lower panel) of HeLa cells that were mock-transfected (mock) and of HeLa cells that were transfected with targeting
vector pA1l.GFP.A2 mixed with ‘empty plasmid’ (—Rep) or mixed with plasmid pGAPDH.Rep68(Y156F) encoding the endonuclease-deficient
version of Rep68 Y156F. In parallel, phase-contrast microscopy (upper panel) and hrGFP direct fluorescence microscopy (lower panel) was carried
out on HeLa cells transfected with pA1.GFP.A2 together with increasing amounts of rep68 expression construct pGAPDH.Rep68 (i.e. 1, 3.3, 10, 33.3
and 100ng). The total amount of transfected recombinant DNA was kept constant by adding, whenever required, extra ‘empty plasmid’.
Micrographs were acquired at 72-h post-transfection. Numerals below the various columns correspond to the deployed amounts (in nanograms)
of the rep68 expression plasmids and of the pAl.GFP.A2 targeting DNA. Original magnification: 100x. (B) Agarose gel electrophoresis of PCR
products resulting from amplifications performed on genomic DNA samples with the aid of primers #649 and #651 plus primers #649 and #186
(upper panel), as diagrammed in Figure 2A. Genomic DNA was isolated at 4 days post-transfection from mock-transfected HeLa cells (mock), from
HeLa cells co-transfected with pAl.GFP.A2 and ‘empty plasmid’ (—Rep), from HeLa cells co-transfected with pAl.GFP.A2 and
pGAPDH.Rep68(Y156F) (Y156F), and from HeLa cells transfected with pA1.GFP.A2 mixed with increasing amounts of pGAPDH.Rep68 (i.c.
1, 3.3, 10, 33.3 and 100 ng) (upper panel). The negative (—) and positive (+) controls were obtained using nuclease-free water and genomic DNA
isolated from HeLa cell clone 25 (Figure 2B, upper two panels) as starting material. Lanes M, Gene Ruler DNA Ladder Mix molecular weight
marker. Agarose gel electrophoresis of PCR species resulting from amplifications performed with the aid of the human HPRTI-specific primers
hHPRT.1 (#49) and hHPRT.2 (#50) (lower panel). These reactions were carried out in parallel and served as an internal control to monitor

chromosomal DNA integrity. The positions and sizes (in kilo base pairs) of the amplicons are indicated by solid arrows.

analysis demonstrated the absence of point mutations
and/or microrearrangements (e.g. small deletions and/or
insertions) at both sides of the two homology arms
(Figure 6B). These results together with those of the
PCR (Figure 2) and Southern blot (Figure 3) experiments
firmly establish the capacity of an enzyme with sequence-
and strand-specific endonuclease activity to trigger
homology-directed insertion of a functional expression
unit at a native /ocus in the human genome.

DISCUSSION

We found that a nicking endonuclease can stimulate by
several orders of magnitude homology-directed insertion
of at least 4.1kb of foreign genetic information into
a native human chromosomal /locus. Stable gain-of-
function through homology-directed DNA targeting was
demonstrated by combining flow cytometric, PCR,
Southern blot and DNA sequence analyses. Consistent
with the exceedingly low level of spontaneous HR in mam-
malian cells in general and in HeLa cells in particular, no
targeted gene addition events were detected in
PA1.GFP.A2-transfected HeLa cells in the absence of

the AAV Rep78/68 proteins. Importantly, the HR stimu-
latory effect could be attributed to the single-strand
endonucleolytic activity of these proteins as demonstrated
in experiments deploying Rep68 and its nicking-defective
mutant Rep68(Y 156F). Thus, on the basis of these proof-
of-principle experiments, we propose that protein
engineering strategies for gene targeting purposes are
expanded to include not only enzymes or enzyme
complexes, which induce double-strand DNA breaks,
but also those that simply produce single-strand DNA
lesions. Finally, our results on harnessing the cellular
HR pathway using the Rep78/68 endonucleases increases
the range of AAV-based approaches to bring about stable
genetic modification of human cells (16,17,30,31). A pos-
sible advantage of exploiting the cellular HR machinery
during Rep78/68-mediated targeted gene addition is the
insertion of exogenous DNA devoid of AAV cis-acting
elements. This feature should prevent the integrated
DNA from becoming a target for Rep78/68-induced
rearrangements. In addition, if carefully designed, a
targeting construct containing within its arms of hom-
ology PPPIRI2C (also known as MBSS85) sequences
should, in principle, lead to the reconstitution of this
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Figure 6. Nucleotide sequence analysis of centromeric and telomeric junctions between endogenous and exogenous DNA corresponding to three
independent Rep78/68-induced HR events. (A) Diagrammatic representation of the 4rGFP transcription unit (red, green and pink boxes) inserted at
19q13.3-qter (thick horizontal yellow lines) following homology-directed gene targeting using as donor template pA1.GFP.A2 DNA. Primers used to
amplify the left- and right-hand junctions (dark and light blue half arrows, respectively) are drawn in relation to their recognition sequences. The 2.7-
and 5.4-kb PCR products specific for the telomeric and centromeric junctions are indicated by dark and light blue bars, respectively. (B) Primary
nucleotide sequence data corresponding to transition regions between the homology arms of pA1.GFP.A2 and outward host chromosomal DNA and

between the homology arms of pA1.GFP.A2 and inward transgene DNA.

gene following its Rep78/68-mediated allelic disruption
(see below).

It is possible that Rep78/68-induced HR is caused by
single-strand breaks that evolve into larger and thus more
recombinogenic single-strand gaps. Recent experiments in
the recombination-prone chicken lymphoma cell line
DT40 suggest, at least in the case of immunoglobulin
I gene conversion, that such intermediates can directly
trigger HR (32). As our experiments were performed
with highly proliferating cell populations, it is also pos-
sible that Rep78/68 promotes gene targeting in a chromo-
somal context via host cell DNA replication fork stalling
at single-strand DNA breaks or gaps. Various studies
performed in prokaryotic and yeast systems have
indicated that protein-DNA barriers such as stalled
replisomes can be bypassed by HR-dependent processes
(33). Interestingly, in Saccharomyces cerevisiae, intra-
chromosomal recombination between direct repeats
containing in the intervening sequence a site-specific
nicking endonuclease gene I/ protein (gllp) recognition
site, was not only dependent on g/lp expression (34,35)
but also on cell cycle progression (35). Of note, Rep78/
68 and gllp share several key features including the ability
to cleave double-strand replicative DNA intermediates of
their cognate viruses in a sequence- and strand-specific
manner and the presence of evolutionarily conserved
motifs belonging to a superfamily of rolling circle replica-
tion initiator proteins (36).

Very recently, Smith ez al. (37) used a site-directed
mutagenesis approach to convert the homing endonucle-
ase I-Anil into an enzyme (designated I-Anil K227M)
that preferentially nicks instead of cleaves its cognate

target site. Using GFP expression rescue assays they
measured gene repair frequencies in 293T cells induced
by I-Anil K227M. Because in vitro experiments showed
that I-Anil K227M also generates double-strand breaks
in a dose-dependent manner (37) and as it is very difficult
to control the intranuclear concentration of an enzyme
following plasmid-driven constitutive overexpression, the
possibility remains that double-strand DNA break forma-
tion contributed to GFP repair. Of note, contrary to cur-
rent nick-inducing forms of RAG (18) and homing
endonucleases (37,38), AAV Rep78/68 proteins strictly
catalyzes the introduction of nicks in double-strand
DNA molecules (39). This feature might be useful in
studies into the mechanism(s) of DNA repair and recom-
bination initiated by single-strand DNA breaks.

Upon nicking at the trs of A4V SI, Rep78/68 initiates
local DNA rearrangements (26,27) that can lead to
duplications of chromosomal DNA sequences (40). It
has been postulated that this is caused by DNA polymer-
ization initiating at the free 3’ hydroxyl group of the
nicked DNA strand. This process is thought to reconsti-
tute the downstream RBE that can subsequently serve
as de novo target for Rep78/68-mediated nicking
(e.g. 40,41). This process may explain the presence of
rearranged AAVSI loci in at least some of the HelLa
cell clones that underwent targeted DNA insertion
(Figure 3B). Consistent with this model, a previous
study has shown that transient expression of rep68 can
lead to canonical Rep78/68-mediated targeted DNA
integration apparently in the absence of AAVSI
rearrangements (42). Random exogenous DNA insertions
in cells that underwent Rep78/68-dependent AAVSI



5734 Nucleic Acids Research, 2009, Vol. 37, No. 17

disruption with or without targeted DNA insertion
could also be identified (Figure 3B, clones 26 and 16,
respectively).

The effects of Rep78/68 on target cells, including
AAVSI rearrangements, warrants further discussion in
light of the potential utility of AAV Rep endonucleases
for the targeted genetic modification of human cells either
through the canonical pathway (30,31,40,41) or through
the HR pathway reported herein. Critically, the AAVS/
locus is located in a gene-rich region and overlaps with the
MBS85 gene (43). A very recent study indicates that
Rep78/68 induces partial duplication of MBSS5 that,
intriguingly, preserves normal MBSS85 transcript levels.
These authors failed to detect functional consequences
to host cells following Rep78/68-dependent wild-type
and recombinant AAV DNA integration (40). However,
it will be important to analyze larger numbers of cells from
different cell types undergoing Rep78/68-induced AAVSI
disruptions and scrutinize in detail the consequences of
monoallelic and, possibly, biallelic MBS85 knock-out.
Moreover, studies on the effects of Rep78/68 on global
karyotypic stability like those carried out for cells exposed
to the bacteriophage P1 Cre recombinase (44) or the
Streptomyces lividans $C31 integrase (45), will need to
be performed. In addition, it is known that AAV Rep78/
68 can induce cell cycle arrest and that constitutive
high-level synthesis of these proteins trigger, especially in
non-transformed cells, cytotoxicity and apoptosis (46).
Finally, although an RBE and a properly spaced trs
occur at AAVSI, the Rep78/68 DNA-binding consensus
is, to some extent, degenerate. As a consequence, Rep78/
68 can bind to other chromosomal sites as well (47) and,
possibly, interfere with the transcriptional activity of local
genes.

Given the above, it will be imperative to limit the dur-
ation of Rep78/68 activity in target cells so that the
aforementioned unwanted side effects are minimized.
Ongoing work in our laboratory is focusing on generating
ligand-responsive Rep68 variants whose activity is
dependent on the clinically applicable synthetic small-
molecule drug 4-hydroxytamoxifen (4-OHT). Preliminary
results deploying functional assays indicate that a new
fusion protein between Rep68 and 4-OHT-responsive
estrogen receptor domains retains drug-dependent bio-
logical activity in human cells.

More generically, but still from an applied research
point of view, using natural and/or engineered site-specific
nicking endonucleases may have advantages over enzymes
or enzyme complexes that directly induce double-strand
DNA cleavage especially if: (i) the complexity of enhanced
gene targeting procedures can be reduced (e.g. the
coordinated action of two different ZFNs is normally
required to generate a specific double-strand DNA
break) and (ii) making site-specific nicks will comprise a
milder process by which to accomplish enhanced gene
targeting (e.g. double-strand chromosomal breaks can be
repaired by error-prone non-homologous end-joining
or induce chromosomal translocations). In this regard,
the very recently reported engineering of nick-inducing
forms of the FokI restriction endonuclease constitutes
an interesting development (48). However, ultimately,

the merit of enzymes that generate single- instead of
double-strand chromosomal DNA breaks will depend, to
a large extent, on whether the former can per se stimulate
HR, i.e. without replication fork-dependent double-strand
chromosome break formation (18,32).

Future research aiming at defining optimal nick-
inducing enzyme levels as well as transgene size
constraints for single-strand DNA break-induced HR
will profit from adopting naked DNA transfection-
independent methods to efficiently introduce donor
templates and endonuclease-encoding genes into both
dividing and quiescent cells. Indeed, viral gene delivery
vehicles, and in particular high-capacity adenovirus
vectors, may constitute a suitable platform to examine
the impact of transgene length and dose, extent of hom-
ology and cell cycle status on nicking endonuclease-
stimulated genome editing. This relates to the fact that
these adenovirus vectors can accommodate up to 37 kb
of foreign DNA and allow for highly efficient cell cycle-
independent gene transfer (49,50).

In conclusion, in this study we demonstrate for the first
time that homology-directed gene targeting at an
endogenous human Jlocus can be triggered by a bona fide
nicking enzyme and expand the number of strategies that
make use of AAV elements to bring about long-term
transgene expression in these cells. Finally, our findings
provide a rationale to devise new approaches for targeted
editing of the genomes of higher eukaryotes.
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