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We show that a large class of finite factors has free entropy di-
mension less than or equal to one. This class includes all prime
factors and many property T factors.

I n the early 1980s, D. Voiculescu (1) developed a noncommu-
tative probability theory over von Neumann algebras, the alge-

bras introduced and studied by F. J. Murray and J. von Neumann
(2–6). von Neumann algebras are quantized measure spaces,
which are the basis for the study of noncommutative analysis
and geometry (7).

A von Neumann algebra is a strong-operator closed self-
adjoint subalgebra of the algebra of all bounded linear transfor-
mations on a Hilbert space. Factors are von Neumann algebras
whose centers consist of scalar multiples of the identity. They
are the building blocks from which all the von Neumann
algebras are constructed.

F. J. Murray and J. von Neumann (2) classified factors by
means of a relative dimension function. Finite factors are those
for which this dimension function has a finite range. For finite
factors, this dimension function gives rise to a unique tracial
state. In general, a von Neumann algebra admitting a faithful
normal trace is said to be finite. Infinite-dimensional finite fac-
tors are called factors of type II1. The trace is the analogue of
classical integration and finite factors are basic noncommutative
measure spaces.

With classical independence replaced by “free independence”
on noncommutative spaces, Voiculescu develops the theory
of free probability. The free central limit theorem states that
the analogous averaging of free independent random variables
obeys a Semicircular Law instead of a Gaussian Law in the
classical case. Voiculescu and others use this theory to answer
several important old questions in the theory of von Neumann
algebras.

Recently, Voiculescu introduced a notion of “free entropy”
(8), an analogue of classical entropy and Fisher’s informa-
tion measure. Associated with free entropy, he defined a free
entropy dimension which, in some sense, measures the “non-
commutative dimension" of a space (or, the minimal number of
generators needed in the case of factors). Free entropy has be-
come a very powerful tool in the study of von Neumann algebras
since its recent introduction (9–11). Of course, some basic ques-
tions concerning free entropy and free entropy dimension have
appeared. For example, it is not yet known whether the free
entropy dimension of a set of generators for a von Neumann al-
gebra depends on the set. Is this dimension an invariant of the
algebra? That is currently the major problem of the theory.
For finite injective (or hyperfinite) von Neumann algebras,
Voiculescu shows that his free entropy dimension is an in-
variant. He also shows that it is an invariant for self-adjoint
operator algebras with a faithful trace (as applied to sets of
algebraic generators). It seems quite plausible that it is an in-
variant for C*-algebras with a faithful trace, as well. For von
Neumann algebras, this becomes somewhat more speculative,
the most severe test involving its application to factors with the
Connes–Jones property T (12).

For some years, now, Voiculescu has set, as a primary ob-
jective for study, the determination of free entropy dimension
for sets of generators in property T factors. He has proved the
first result in ref. 13, showing that some property T factors have

generators with free entropy dimension not exceeding 1. Thus
with respect to free entropy dimension and certain generators,
property T factors behave differently from free group factors.
Of course, the first question to ask after this is whether there
are generators in those same property T factors whose free en-
tropy dimension is greater than 1. We answer that question by
showing that every set of generators of a large class of factors
of type II1, including those considered in ref. 13 and all non-
prime factors (11), have free entropy dimension not exceeding
1 if there is at least one set of generators that satisfies a “cyclic”
commuting relation.

We describe below, briefly, the construction of finite factors by
using regular representations of discrete groups. Then we define
free entropy and free entropy dimension and list some of their
basic properties. Finally, we state our main results and outline
the proofs.

Definitions
There are two main classes of examples of von Neumann alge-
bras introduced by Murray and von Neumann (3, 5). One is ob-
tained from the “group-measure space construction,” the other
is based on the regular representation of a (discrete) group G
(with unit e). The second class is the one needed in this note.

The Hilbert space ( is l2�G�. We assume that G is count-
able so that ( is separable. For each g in G, let Lg denote the
left translation of functions in l2�G� by g−1. Then g→ Lg is a
faithful unitary representation of G on (. Let ,G be the von
Neumann algebra generated by �Lg x g � G�. Similarly, let Rg
be the right translation by g on l2�G� and 2G be the von Neu-
mann algebra generated by �Rg x g � G�. Then the commutant
,′G of ,G is equal to 2G and 2′G = ,G. The function ug that
is 1 at the group element g and 0 elsewhere is a cyclic trace
vector for ,G (and 2G). In general, ,G and 2G are finite von
Neumann algebras. They are factors (of type II1) precisely when
each conjugacy class in G (other than that of e) is infinite. In
this case we say that G is an infinite conjugacy class (i.c.c.) group.

Specific examples of such II1 factors result from choosing for
G any of the free groups Fn on n generators (n � 2), or the
permutation group 5 of integers Z (consisting of those permu-
tations that leave fixed all but a finite subset of Z). Murray and
von Neumann (4) prove that ,Fn and ,5 are not * isomorphic to
each other. A factor is hyperfinite if it is the ultraweak closure of
the ascending union of a family of finite-dimensional self-adjoint
subalgebras. In fact, ,5 is the unique hyperfinite factor of type
II1; it is contained in any factor of type II1. When G = SLn�Z�,
n � 3, ,SLn�Z� is a von Neumann algebra with property T (12) (it
is a factor when n is odd). Property T factors are not isomorphic
to factors arising from free groups or 5 (ref. 14 or 15). The clas-
sification of all von Neumann algebras has been reduced to the
case of factors of type II1 in a certain sense. Some basic prob-
lems concerning the free group factors remain unsolved. Among
them is the one which asks whether the factors arising from free
groups on different number of generators are isomorphic. This
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is one of the motivating questions that led to the development
of free probability theory.

Recall that a W*-probability space is a pair �-; τ� consisting
of a von Neumann algebra - and a faithful normal state τ.
The most important case is when the state is a trace (τ�AB� =
τ�BA�) and, hence, - is a finite von Neumann algebra. Ele-
ments in - are called random variables. With A in -, �A�2
denotes the L2-norm (or trace-norm) of A with respect to τ
(that is, �A�2

2 = τ�A∗A�). A family -ι, ι � I, of von Neu-
mann subalgebras of - are free (or free independent) with re-
spect to the trace τ if τ�A1A2 · · ·An� = 0 whenever Aj � -ιj

,
ι1 6= · · · 6= ιn and τ�Aj� = 0 for 1 � j � n and every n in N. A
family of subsets (or elements) of - are said to be free if the
von Neumann subalgebras they generate are free.

Voiculescu proves the free central limit theorem: Suppose
Aj , j = 1; 2; : : :, are free random variables such that τ�Aj� = 0.
Denote by r2

4 the limit limn→:
1
n

∑n
j=1 τ�A2

j �. Assume further that
supj;k �τ�Ak

j �� + :. Then the distribution of �A1 + · · · +An�/
√
n

converges pointwise to the semicircular law with center at 0 and
radius r. He also generalizes Wigner’s semicircular law for
large random matrices to n-tuples of large random matrices
and proves the asymptotic freeness in limit as the degree of
the matrices tends to infinity. By using techniques developed
in proving these results, he shows that the free group factor
on two generators is isomorphic to the 2 3 2 matrix algebra
with entries in the free group factor on five generators. This is
the first major break through in the study of the isomorphism
problem of free group factors.

Now we describe briefly the definition of free entropy. Let
Mk�C�, or simply Mk, be the k 3 k matrix algebra with entries
in C, and τk be the normalized trace on Mk, i.e., τk = k−1Tr ,
where Tr is the usual trace. Let M sa

k denote the set of all self-
adjoint matrices in Mk and �M sa

k �n denote the (vector-space)
direct sum of n copies of M sa

k . We denote by � �e the eu-
clidean norm on �M sa

k �n given by ��A1; : : : ;An��2
e = Tr�A2

1 +
· · · + A2

n� = kτk�A2
1 + · · · + A2

n�, for �A1; : : : ;An� in �M sa
k �n.

We use � �2 to denote the trace norm induced by τk. Let
3 be Lebesgue measure on �M sa

k �n induced by the euclidean
norm � �e.

Suppose X1; : : : ;Xn are self-adjoint elements in a W*-prob-
ability space �-; τ�. The free entropy of X1; : : : ;Xn, denoted
by χ�X1; : : : ;Xn�, is defined in the following.

For any positive ε and R, and any k;m in N, let 0R�X1; : : : ;Xny
m;k; ε� be the subset of �Msa

k �n consisting of all �A1; : : : ;An� in
�Msa

k �n such that �Aj� � R, 1 � j � n, and

�τk�Aι1
· · ·Aιq

� − τ�Xι1
· · ·Xιq

�� + ε

for all 1 � ι1; : : : ; ιq � n and all q with 0 � q � m. Then

χ�X1; : : : ;Xn�

= sup
R,0

inf
m;ε,0

lim sup
k→:

(
k−2 log3�0R�X1; : : : ;Xnym;k; ε��

+ n
2

logk
)
:

The modified free entropy (or simply, free entropy) χ�X1;
: : : ;Xn x Y1; : : : ; Yp� of X1; : : : ;Xn in the presence of Y1; : : : ;
Yp is given in the following.

Let X1; : : : ;Xn; Y1; : : : ; Yp, n � 1; p � 0, be self-adjoint ran-
dom variables in �-; τ�, 0R�X1; : : : ;Xn x Y1; : : : ; Ypym;k; ε�
be the image of the projection of

0R�X1; : : : ;Xn; Y1; : : : ; Ypym;k; ε�

(defined above) onto its first n components. Then

χ�X1; : : : ;Xn x Y1; : : : ; Yp�

= sup
R,0

inf
m;ε,0

lim sup
k→:

(
k−2 log3�0R�X1; : : : ;Xn x

Y1; : : : ; Ypym;k; ε��

+ n
2

logk
)
:

When Y1; : : : ; Yp are non-self-adjoint elements, χ�X1; : : : ;Xn x
Y1; : : : ; Yp� may be identified with χ�X1; : : : ;Xn x A1; : : : ;Ap;
B1; : : : ; Bp�, where Aj = Yj + Y ∗j and Bj = −i�Yj − Y ∗j � for
each j.

The (modified) free entropy dimension δ�X1; : : : ;Xn x Y1;
: : : ; Yp� is defined by

δ�X1; : : : ;Xn xY1; : : : ; Yp�

= n+ lim sup
ε→0

χ�X1+εS1; : : : ;Xn+εSn xS1; : : : ; Sn; Y1; : : : ; Yp�
� log ε� ;

where �S1; : : : ; Sn� is a free semicircular family and the two sets
�X1; : : : ;Xn; Y1; : : : ; Yp� and �S1; : : : ; Sn� are free.

We list some basic properties of free entropy and free entropy
dimension.

(i) χ�X1; : : : ;Xn� � n
2 log�2πeC2n−1�, where C = τ�X2

1 +
· · · +X2

n�1/2.
(ii) χ�X� = ∫ ∫

log �s − t�dµ�s�dµ�t� + 3
4 + 1

2 log 2π, where
µ is the (measure on the spectrum of X corresponding to the)
distribution of X.

(iii) χ�X1; : : : ;Xn� = χ�X1� + · · · + χ�Xn� when X1; : : : ;Xn

are free.
(iv) δ�S1; : : : ; Sn� = n when S1; : : : ; Sn are free semi-circular

elements. (Note that the free group factor on n generators is
generated by n free semicircular elements.)

Main Results
The assumptions of the following theorem are satisfied when
the algebra - is a tensor product of two factors of type II1, or
the group von Neumann algebra arising from SLn�Z�, n � 3, or
certain amalgamated free product. One of the consequences of
our theorem says that the free group factors are not isomorphic
to any factors that satisfy the assumptions of the theorem.

Main Theorem. Let �-; τ� be a W*-probability space. Sup-
pose - is generated by its subalgebras .1; : : : ;.r , and, for each
.j , 1 � j � r, there is a non-atomic self-adjoint subalgebra !j of
.j such that !j commutes with .j+1 (here we let .r+1 be .1).
Assume that X1;X2; : : : ;Xn are self-adjoint elements in - that
generate - as a von Neumann algebra. Then δ�X1; : : : ;Xn� � 1.

The above theorem is a consequence of the following result
on free entropy.

Proposition. Suppose �-; τ� is a W*-probability space. We
assume that - contains subalgebras .1; : : : ;.r , and, for each
.j , 1 � j � r, there is a Haar unitary element U ′j in .j such that
U ′j commutes with .j+1 (again, .r+1 is .1). Let X1;X2; : : : ;Xn

be self-adjoint elements in -. Suppose there are unitary elements
Vj1; Vj2; : : : ; Vjlj in .j , for j = 1; 2; : : : ; r, lj � N, and polyno-
mials ϕj�x1; x2; : : : ; xl� in C�x1; x2; : : : ; xl�, where l = l1 + l2 +
: : :+ lr , such that

�Xj − ϕj�V11; : : : ; V1l1 ; : : : ; Vr1; : : : ; Vrlr ��2 �
1
2
ω;

j = 1; 2; : : : ; n;
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for some positive number ω. Then

χ�X1; : : : ;Xn x V11; : : : ; Vrlr ; U
′
1; : : : ; U

′
r�

� log�4aC� + n
2

log�nπ� + n log 3+ n
2

+ �n− 1−ω� logω;

where C (� e3π) is a constant and a = max1�j�n �Xj�2 + 1.
In the following, we outline the proof of the proposition. Note

that the free entropy of X1; : : : ;Xn is the limit of the logarithm
of the volume of 0R�X1; · · · ;Xn x · · · yk;m; ε�. We will get a
good upper bound for the volume by showing that the covering
number of 0R�X1; : : : ;Xn x · · · ym;k; ε� (by small balls) is small.
When Xj is approximated by ϕj�V11; : : : ; V1l1 ; : : : ; Vr1; : : : ; Vrlr �,
the elements in 0R�X1; : : : ;Xn x · · · ym;k; ε� are approximated
by ϕj�G11; : : : ;Grlr

� where Gst values are matrices approxi-
mating Vst values in moments. First we reduce the covering
of 0R�X1; : : : ;Xn x · · · ym;k; ε� to the covering on the ranges
of ϕj values, which then depend on the domains of ϕj values.
When passing the commuting relations on U ′j and Vj+1;t values
to their corresponding matricial approximants, we show that the
Gst values lie in a lower dimensional submanifold of Mk�C�l
(l = l1 + · · · ; lr), so the covering number for this submanifold is
small. The following lemmas describe the details of these steps.
Before stating them, we introduce some notation.

Let p be a large prime number, k a large integer such that k
p

is an integer. Let W0 be the matrix
1 0 : : : 0
0 e2πi/p : : : 0
:::

:::
: : :

:::
0 0 : : : e2πi�p−1�/p


in Mp�C�, W1 the matrix

I k
p

0 : : : 0
0 e2πi/pI k

p
: : : 0

:::
:::

: : :
:::

0 0 : : : e2πi�p−1�/pI k
p


in Mk�C� (here I k

p
denotes the identity matrix in Mk

p
and Mk =

Mp ⊗ Mk
p

). Let c0 be the distance between two adjacent pth
roots of unity, i.e., c0 = �1 − e2πi/p�. Clearly, �e2πis/p − e2πit/p� �
c0 � π/p when s; t � Z; s 6= t and 0 � s; t � p − 1. For any
given D , 0, ω , 0; r; l � N, let δr+1 be ω/�8D√l�, define,
successively, δr; : : : ; δ1 by the following equations

δr+1 =
17pδr
π

; : : : ; δ2 =
3pδ1

π
:

That is,

δr+1 =
ω

8D
√
l
; δr =

πω

17p · 8D√l ; : : : ;

δ1 =
πrω

�17p�r−1 · 3p · 8D√l
for the given positive numbers D; l, ω and r.

For the given D; l and ω, δ1 is defined by the above equation.
Then ε0 will be the positive number in 2.2 and 2.3 in ref. 16
determined by this δ1 (here we only use cases when N = 2 in
ref. 16).

We choose an arbitrary ε1 with 0 + ε1 + δ1. Then we have
the following.

Lemma 1. Assume that G1;G2 in Mk�C� satisfy the following

�G1�; �G2� � 1y �W1 −G1�2 � δ1; �G1G2 −G2G1�2 � ε1:

Let

"�W1; δ1� =�G �Mk�C� � �G�2 � 1;

�W1G−GW1�2 � 3δ1�
��W1; δ1; δ2� = �H �Mk�C� � �G−H�2 � δ2;

for some G � "�W1; δ1��:
Then G2 is in "�W1;δ1� and the covering number µ���W1;δ1; δ2�;
2
√

2δ2� for ��W1; δ1; δ2� with balls of radius 2
√

2δ2 satisfies
µ���W1; δ1; δ2�; 2

√
2δ2� � �3/δ2�2k2/p, where the metric on

��W1; δ1; δ2� is given by the normalized trace norm � �2 on
Mk�C�.

We will use T �W1; δ1; δ2� to denote the set that has the
minimal cardinality of covering balls for ��W1; δ1; δ2� with ra-
dius 2

√
2δ2. So the cardinality of T �W1; δ1; δ2� is bounded by

� 3
δ2
�2k2/p. Denote by T1�W1; δ1; δ2�, the subset of T �W1; δ1; δ2�,

consisting of balls that contain a conjugating matrix U∗W1U
of W1 for some U in 5�k�. We shall enlarge the balls in
T1�W1; δ1; δ2� so that each original ball is contained in the ball
centered at some U∗W1U with radius 8δ2. Then each of the
balls in T1�W1; δ1; δ2� contains the original ball in T �W1; δ1; δ2�
containing U∗W1U . Define, also, T2�W1; δ1; δ2� to be the subset
of T �W1; δ1; δ2� consisting of balls that contain some unitary
matrix. We, again, enlarge the balls in T2�W1; δ1; δ2� the same
way as for T1�W1; δ1; δ2� so that each of its balls is centered
at a unitary matrix with radius 8δ2. We use B�V; a� to denote
the (closed) ball centered at V (in Mk�C�) with radius a (with
respect to the normalized trace norm � �2).

Now, for any given ball in T1�W1; δ1; δ2�, let W2 be its center
and W2 = U∗W1U for some U in 5�k�. Replacing W1; δ1; 3δ1,
and δ2 in the above lemma by W2; 8δ2; 17δ2, and δ3, respectively,
we have the following.

Lemma 2. Assume that G2;G3 in Mk�C� satisfy the following

�G2�; �G3� � 1y �W2 −G2�2 � 8δ2;

�G2G3 −G3G2�2 � ε1; �0 + ε1 � δ1 + 8δ2�:
Let

"�W2; δ2� = �G �Mk�C� � �G�2 � 1;

�W2G−GW2�2 � 17δ2�
��W2; δ2; δ3� = �H �Mk�C� � �G−H�2 � δ3;

for some G � "�W2; δ2��:

Then G3 is in "�W2; δ2� and µ���W2; δ2; δ3�; 2
√

2δ3� �
�3/δ3�2k2/p.

Similarly, we will have corresponding T1�W2; δ2; δ3� and
T2�W2; δ2; δ3� as described preceding Lemma 2. Continuing this
process, we obtain, for each j � 1,

"�Wj; δj�; ��Wj; δj; δj+1�; T �Wj; δj; δj+1�;
and corresponding subsets T1�Wj; δj; δj+1� and T2�Wj; δj; δj+1�
of T �Wj; δj; δj+1� that will satisfy conditions similar to those
of the case when j = 2. In particular, the cardinality of
T �Wj; δj; δj+1� is bounded by � 3

δj
�2k2/p, for j = 1; : : : ; r.

We use ε0, again, to denote min�ε0; δ1; ε1�. Now ε0 satisfies
the assumptions in Lemmas 1 and 2 (in place of ε1).
Lemma 3. Suppose G1; : : : ;Gr; S11; : : : ; S1l1 ; : : : ; Sr1; : : : ; Srlr
are unitary matrices in Mk�C� satisfying the following:
�1� �GjGj+1 −Gj+1Gj�2 � ε0;
�2� �G1 −W1�2 � δ1;
�3� for each j , 1, there is a unitary matrix Uj such that �Gj −

UjW1U
∗
j �2 � δj ;

�4� �Gj+1Sjl − SjlGj+1�2 � ε0 and �G1Srl − SrlG1�2 � ε0;
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�5� there is a unitary matrix Vjl such that �Sjl − Vjl�2 � δ1y
for j = 1; : : : ; r and l = 1; : : : ; lj . Then there is a family of balls
�B�Yjl; 8δj+2�� �for j = 1; : : : ; r − 1� from T2�Wj+1; δj+1; δj+2�
such that �Sjl −Yjl�2 � 8δj+2 and a family of balls �B�Yrl; 8δ2��
from T2�W1; δ1; δ2�, such that �Srl − Yrl�2 � 8δ2.

Since, for each j, 1 � j � r, �Yjl x l = 1; : : : ; lj� are centers
of balls in the set �T2�Wj+1; δj+1; δj+2��, we know that the to-
tal number of choices for �Yjl x j = 1; : : : ; ry l = 1; : : : ; lj� is
bounded by �3/δ2�2k2 l1/p · · · �3/δr+1�2k2 lr /p.

Some of the key ideas of the proof of the proposition are
similar to those used in the proof of Theorem 2.1 in ref. 11.
First we choose a non-atomic self-adjoint subalgebra !j of .j

(generated by U ′j). Since !j , for 1 � j � r, is non-atomic, there
is a unitary Uj in !j so that its distribution is the same as that
of W1, i.e., τ�Us

j � = τk�W s
1 �; s = 1; 2; : : :.

From Proposition 6.3 in ref. 9, we know that

χ�X1; : : : ;Xn x U ′1; : : : ; U ′r ; V11; : : : ; Vrlr �
� χ�X1; : : : ;Xn x U1; : : : ; Ur; V11; : : : ; Vrlr �:

By the definition of χ�X1; : : : ;Xn x U1; : : : ; Ur; V11; : : : ; Vrlr �,
we know that it is the limit of the logarithm of the volume of

0R�X1; : : : ;Xn x �Uj�rj=1; �Vjt�j=1;:::;ryt=1;:::;lj yk;m; ε�:
Our goal is to estimate the covering numbers of 0R�X1; : : : ;Xn x
�Uj�; �Vjt�yk;m; ε� in the euclidean space �M sa

k �n. First, we
study elements in 0R�X1; : : : ;Xn; �Uj�; �Vjt�yk;m; ε�, then we
project down to its first n components. From ref. 8, we know
that it is enough to choose R so that R , maxj��Xj� + 1�.

Let

�A1; : : : ;An;G
′
1; : : : ;G

′
r ; S
′
11; : : : ; S

′
1l1
; : : : ; S′r1; : : : ; S

′
rlr
�

be an arbitrary element in 0R�X1; : : : ;Xn; �Uj�; �Vjt�yk;m; ε�.
When k;m are large and ε small enough, we have that

�Aj − ϕj�S′11; : : : ; S
′
1l1
; : : : ; S′r1; : : : ; S

′
rlr
��2 �

2
3
ω;

for j = 1; 2; : : : ; n.
Since the Uj values are unitary elements of finite order and

Vjt values are unitary, we may choose unitary matrices Gj (with
the same distribution as that of Uj) and unitary matrices Sjt in
5�k� such that

�Aj − ϕj�S11; : : : ; S1l1 ; : : : ; Sr1; : : : ; Srlr ��2 � ω;

for j = 1; 2; : : : ; n. Moreover, with m large and ε small enough,
we have

�GjGj+1 −Gj+1Gj�2 � ε0; �Gj+1Sjl − SjlGj+1�2 � ε0;

�G1Srl − SrlG1�2 � ε0:

Except for (2) in Lemma 3, Gj values and Sjt values satisfy all
other assumptions. Choose a unitary matrix U in Mk�C� such
that U∗G1U = W1. Thus, with respect to any given δ1 , 0, when
k and m are large enough and ε�� ε0� sufficiently small, U∗GjU
and U∗SjtU satisfy all the assumptions in Lemma 3.3. Taking
conjugation by U on Aj values we also have that

�U∗AjU−ϕj�U∗S11U;:::;U
∗S1l1U;:::;U

∗Sr1U;:::;U
∗SrlrU��2

� ω;

for j = 1; 2; : : : ; n.
By Lemma 3, for each pair �j; t�, 1 � j � r − 1 and

1 � t � lj , there is an element Yjt , the center of a ball in
T2�Wj+1; δj+1; δj+2�, such that

�U∗SjtU − Yjt�2 � 8δj+2;

and an element Yrt (for 1 � t � lr), the center of a ball in
T2�W1; δ1; δ2�, such that

�U∗SrtU − Yrt�2 � 8δ2:

Choose a γ-net �Uα�α�T�k� in 5�k� with respect to the oper-
ator norm such that �T�k�� � �C/γ�k2 for each k in N, where
C is a constant. We choose γ to be ω

2a , where a is given in the
theorem.

Hence there is an α in T�k� such that �U −Uα� � γ. Then

�U∗αAjUα −U∗AjU� � ω; j = 1; : : : ; n:

Let 8 be the map defined in Lemma 1.2 in ref. 11 and D the
constant D�8�. Then we have that

�U∗αAjUα−ϕj�Y11;:::;Yrlr ��e��U∗αAjUα−U∗AjU�e
+�U∗AjU−ϕj�U∗S11U;:::;U

∗S1l1U;:::;

U∗Sr1U;:::;U
∗SrlrU��e

+�ϕj�U∗S11U;:::;U
∗S1l1U;:::;U

∗Sr1U;:::;U
∗SrlrU�

−ϕj�Y11;:::;Yrlr ��e
�2k1/2ω+D

√∑
jt

�U∗SjtU−Yjt�2
e

�2k1/2ω

+Dk1/2
√
l1�8δ3�2+l2�8δ4�2+:::+lr−1�8δr+1�2+lr�8δ2�2

�2k1/2ω+8Dk1/2
√
lδr+1

�3k1/2ω

where l = l1 + l2 + : : :+ łn and δr+1 = ω/�8D
√
l�.

Thus

��U∗αA1Uα; : : : ; U
∗
αAnUα�

− �ϕ1�Y11; : : : ; Yrlr �; : : : ; ϕn�Y11; : : : ; Yrlr ��e
� 3ω

√
nk:

Let B�8�Y11; : : : ; Yrlr �; 3ω
√
nk� be the ball in �M sa

k �n of radius
3ω
√
nk with center �ϕ1�Y11; : : : ; Yrlr �; : : : ; ϕn�Y11; : : : ; Yrlr ��.

Then the volume of B�8�Y11; : : : ; Yrlr �; 3ω
√
nk� is π

1
2 nk

2
0�1 +

1
2nk

2�−1�3ω√nk�nk2 , and

�A1; : : : ;An� � �Uα��n�B�8�Y11; : : : ; Yrlr �; 3ω
√
nk��U∗α��n�;

where �Uα��n� is �Uα; : : : ; Uα� in �Mk�n and 0�·� is the 0-
function.

By counting the number of all such balls �Uα��n�B�8�Y11; : : : ;
Yrlr �; 3ω

√
nk��U∗α��n�, we know that it is bounded by

�T�k��
(

3
δ2

)2k2�lr+1�/p( 3
δ3

)2k2�l1+1�/p
· · ·
(

3
δr+1

)2k2�lr−1+1�/p
:

Thus

3�0R�X1; : : : ;Xn x U1; : : : ; Ur; V11; : : : ; Vrlr ym;k; ε��

� �T�k��
(

3
δ2

)2k2�lr+1�/p( 3
δ3

)2k2�l1+1�/p
· · ·

3

(
3
δr+1

)2k2�lr−1+1�/p
π

1
2 nk

2 · 0
(

1+ 1
2
nk2

)−1

�3ω
√
nk�nk2

�

(
3
δ2

)2k2�l+r�/p(C
γ

)k2

π
1
2 nk

2
0

(
1+ 1

2
nk2

)−1

�3ω
√
nk�nk2
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�

(
2�17p�r−1D

√
l

πr−1ω

)2k2�l+r�/p(2aC
ω

)k2

π
1
2 nk

2

3 0

(
1+ 1

2
nk2

)−1

�3ω
√
nk�nk2

:

Hence

χ�X1; : : : ;Xn x U1; : : : ; Ur; V11; : : : ; Vrlr �
� lim sup

k→:

(
k−2 log3�0R�X1; : : : ;Xn x
G1; : : : ;Gr; V11; : : : ; Vrlr ym;k; ε�� +

n

2
logk

)
�

2�l + r�
p

log
(

2�17p�r−1D
√
l

πr−1ω

)
+ log

(
2aC
ω

)
+ n

2
log�nπ�

+ n log 3+ n logω

+ lim sup
k→:

(
n logk− k−2 log0

(
1+ nk

2

2

))
:

For the given ω;D; l and r, the above inequalities hold for
any p. We may choose p large enough so that

2�l + r�
p

log
(

2�17p�r−1D
√
l

πr−1ω

)
� log 2

(since logp
p
→ 0 when p→ :).

Thus we have

χ�X1; : : : ;Xn x U ′1; : : : ; U ′r ; V11; : : : ; Vrlr �
� log�4aC� + n

2
log�nπ� + n log 3+ n

2
+ �n− 1−ω� logω:

This finishes the proof of the proposition. The proofs of the
three lemmas are straight forward. We omit the details here.
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