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The low-temperature thermal properties of dielectric crystals are
governed by acoustic excitations with large wavelengths that are
well described by plane waves. This is the Debye model, which
rests on the assumption that the medium is an elastic continuum,
holds true for acoustic wavelengths large on the microscopic scale
fixed by the interatomic spacing, and gradually breaks down on
approaching it. Glasses are characterized as well by universal
low-temperature thermal properties that are, however, anomalous
with respect to those of the corresponding crystalline phases.
Related universal anomalies also appear in the low-frequency
vibrational density of states and, despite a longstanding debate,
remain poorly understood. By using molecular dynamics simula-
tions of a model monatomic glass of extremely large size, we show
that in glasses the structural disorder undermines the Debye model
in a subtle way: The elastic continuum approximation for the
acoustic excitations breaks down abruptly on the mesoscopic,
medium-range-order length scale of �10 interatomic spacings,
where it still works well for the corresponding crystalline systems.
On this scale, the sound velocity shows a marked reduction with
respect to the macroscopic value. This reduction turns out to be
closely related to the universal excess over the Debye model
prediction found in glasses at frequencies of �1 THz in the
vibrational density of states or at temperatures of �10 K in the
specific heat.
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G lasses are structurally disordered systems. As common
experience shows, in the macroscopic limit they support

sound waves as corresponding crystalline materials do. In fact,
averaging on a large enough length scale, the details of the
microscopic arrangement become essentially irrelevant. This
holds true for sound waves with long wavelengths of at least
several hundreds of nanometers, corresponding to wavenumbers
q in the 10�2-nm�1 range, as those probed with light scattering
techniques (1). On further increasing q, the effect of the
structural disorder must appear at one point. The much larger q
scale of few nm�1 is also well known because it can be accessed
experimentally with inelastic X-ray (2) and neutron (3) scatter-
ing techniques, and numerically with molecular dynamics sim-
ulations (4–11). These studies typically probe the dynamic
structure factor S(q,�), that is, the space and time Fourier
transform of the density–density correlation function. These
studies clearly indicate the existence in glasses of excitations that
appear in those spectra as very broad peaks whose position as a
function of q is characterized by a sinusoidal-like dispersion
curve. Thus, these excitations strongly recall the acoustic modes
in (poly-)crystalline systems up to roughly one half of the
pseudo-Brillouin zone (12), i.e., down to distances correspond-
ing to the interatomic spacing. For this reason, they are often
dubbed as acoustic-like. However, as their broadening clearly
indicates, they are far from being crystal-like modes and corre-
spond in fact to a complex pattern of atomic motions (6–11).

Unfortunately, experimental and numerical studies leave a
gap between the few-nanometers scale and the hundreds-of-

nanometers scale, which is extremely difficult to access. This
keeps open a number of fundamental questions on the physics of
glasses and, more generally, on the nature of the vibrational
excitations in disordered systems. (i) How does the transition for
the acoustic-like excitations look like between the small-q
Debye-like behavior and the large-q regime? In other words, how
does it happen that reasonably well-defined plane waves trans-
form, on increasing q, into a complex pattern of atomic motions
that mirror the structural disorder? (ii) Similar to crystalline
systems, glasses are characterized by a universal behavior in
some fundamental, low-temperature observables like specific
heat and thermal conductivity (13). In particular, in the �10-K
range the specific heat shows an excess with respect to the T3

Debye-model prediction, and the thermal conductivity shows a
plateau. Despite a longstanding debate (14–27), their origin is
still poorly understood. It is, however, generally accepted that
they are related to the ubiquitous existence at frequencies of �1
THz of an excess of modes in the vibrational density of states,
g(�), over the Debye-model prediction gD(�) � 3�2/�D

3, with �D
the Debye frequency. This excess of modes is best visible in the
reduced density of states, g(�)/�2, where it appears as a broad
feature known as a boson peak (28, 29). Is, then, this universal
behavior in the low-temperature thermal properties or in the
vibrational density of states related to the peculiar nature of the
acoustic-like excitations in the low-frequency range? Or, alter-
natively, do we have to imagine that glasses are characterized by
additional low-frequency modes? (iii) What is the information
content that we can extract from the high-q acoustic-like exci-
tations measured in inelastic scattering experiments or numer-
ical calculations? In which physical properties are these excita-
tions’ crystal-like features (e.g., existence of dispersion curves)
reflected?

The experiments that have attempted to answer these ques-
tions by accessing the difficult 10�2�1-nm�1 q range lead to
contrasting interpretations. An experiment (30) based on a
tunnel-junction technique reported linear dispersion for the
transverse acoustic excitations in a silica glass up to frequencies
50% smaller than the boson-peak position in that glass (�1
THz). This result indicated that the acoustic excitations are
unaffected in the frequency range relevant for the thermal
properties in the �10-K range and seemed to exclude any
acoustic contribution to the low-temperature anomalies in the
specific heat of glasses (30). Early inelastic X-ray scattering
results (2) seemed to confirm that scenario and showed crystal-
like dispersing, high-frequency, longitudinal acoustic-like exci-
tations with a broadening that increases quadratically with the
frequency. Again, a simple linear dispersion of the longitudinal
acoustic-like modes was observed at frequencies corresponding
to the boson-peak position, thus suggesting a smooth transition
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between the macroscopic and microscopic regime. Recent and
more accurate inelastic X-ray scattering studies have, however,
revealed that the boson peak marks the energy where a quali-
tative change takes place: The longitudinal acoustic-like excita-
tions show, below the boson-peak position, a marked decrease of
the phase velocity (31) and a broadening characterized by a
remarkable fourth-power-law frequency dependence (31–33). A
similar behavior for the broadening of the transverse acoustic
modes had been found in a silica glass at low temperature and
at frequencies below the boson-peak position by using a tunnel-
junction technique (34). Conversely, a recent experiment using
inelastic UV light scattering to measure the longitudinal acoustic
modes in a silica glass at room temperature reported the onset
of this peculiar �4 regime at frequencies one order of magnitude
smaller than the boson-peak position (35): The boson peak
would then not be directly related to this regime. A complex and
sometimes contradictory picture seems, therefore, to come out
of the experiments performed so far.

Classical molecular dynamics simulations have provided a
complementary tool with which to study the vibrational prop-
erties of glasses, starting with the pioneering investigations of
Rahman and coworkers (4). The body of results available until
now supports a scenario where the longitudinal acoustic-like
excitations seem to be largely decoupled from the boson peak:
They show a linear dispersion and a broadening that grows
quadratically with frequency with no special feature in the
frequency region where the boson peak appears (6–11). How-
ever, these studies could not provide a final answer on this issue
because of the fact that the largest wavelengths that could be
studied so far—fixed by the simulation box size and then
ultimately by computer power—were still in the range of a few
tens of interatomic spacings. As a consequence, the correspond-
ing lowest-frequency acoustic-like excitations that were acces-
sible lay too close to the boson-peak position to allow for definite
conclusions in this supposedly crucial frequency range.

We report here on a study of the vibrational dynamics of the
classical Lennard–Jones (LJ) monatomic glass model (4). The
reason of our choice is simple: Despite the fact that this system
easily crystallizes below the melting temperature and thus re-
quires extremely fast and experimentally out-of-reach quenching
rates to prepare a glass starting from the melt, it is the simplest
realization of a structural glass at our disposal. This model thus
provides the very basic ingredients of the vibrational dynamics
of a structural glass that in other systems might be superimposed
to additional, more-complex effects. Specifically, we present
here results for an exceptionally large simulation box containing
up to N � 107 particles and clarify how the acoustic modes look
in the frequency region where the boson peak appears. In
particular, we managed to probe acoustic excitations down to
frequencies one order of magnitude lower than the boson-peak
position. Thanks to this achievement, the study of the q-
dependence of the acoustic excitations allows us to establish that
the boson peak originates from a deformation of the dispersion
curves with respect to the crystal case. This result boils down to
a direct connection between the boson peak and the breakdown
of the Debye-continuum approximation for the acoustic excita-
tions that takes place on a length scale matching that of the
medium-range order of the glass (20, 24, 31).

Results and Discussion
We have calculated both the transverse, ST(q,�), and the
longitudinal, SL(q,�), dynamic structure factors, which yield
information on the transverse and longitudinal acoustic-like
excitations, respectively (see Materials and Methods for details).
It is important to emphasize that although the latter can be
obtained experimentally by using scattering techniques, the
former can only be studied in the frequency range relevant here
by using computer simulations. In what follows, we will use LJ

units. To connect our findings to experiments, we recall that, if
we model argon by using the LJ potential, then the temperature
scale is in units of � � 125.2 K, the length scale in units of � �
3.405 Å, and the time scale is in units of � � 2.11 ps. In Fig. 1,
some representative ST(q,�) spectra are reported, including
those that correspond to the lowest q value we could reach in our
simulation.

For reference, we recall that at the studied number density �̂ �
N/V � 1.015 (V being the simulation box volume), the melting
temperature of the LJ system is Tm � 1, and the glass-transition
temperature Tg � 0.4 (36). For what concerns the glass that we
study, the Debye frequency and wavenumber are �D � 16.2 and
qD � 3.92, respectively; the first sharp diffraction peak is at qm �
7, which corresponds to an average nearest-neighbors distance of
�2-�/qm � 0.9. The spectra reported in Fig. 1 refer, then, to q
values down to �102 times smaller than the border of the
pseudo-Brillouin zone located at �qm /2.

The ST(q,�) spectra are characterized by two symmetric peaks
(Brillouin peaks) in addition to a sharp elastic peak at � � 0. The
Brillouin peaks can be characterized by the position of the
maximum and the broadening. This information has been ob-
tained by fitting a damped harmonic oscillator model to the
spectral region, IB(q,�), around the Brillouin peaks:

IB�q,�� �
�T�q�	T

2 �q�

��2 � 	T
2 �q��2 � �2�T

2 �q�
. [1]

The parameters 	T(q) and �T(q) represent the characteristic
frequency and broadening [full width at half maximum
(FWHM)] of the Brillouin peaks, respectively. The parameter
	T is used to obtain the transverse sound phase velocity, cT(q) �
	T(q)/q, and is reported in Fig. 2A as a function of frequency.
These data show an increase with frequency (positive dispersion)
of the sound velocity for �
0.8 as already reported for the
longitudinal excitations in the same glass (9). It is interesting to
observe that below this frequency, the macroscopic � � 0 sound
velocity limit is not directly recovered; instead, a previously
unnoticed region where the phase velocity decreases with in-
creasing frequency (softening) appears. This is exactly the region
where the boson peak is found in this LJ glass, being the boson
peak position at 	 � 2. The boson peak, then, appears not in a
frequency range where the acoustic-like excitations disperse
linearly (constant phase velocity)—a finding at odds with what
was previously thought (2, 30)—but where they experience a
more-complex dispersion behavior. This finding is important
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Fig. 1. Transverse dynamical structure factors, ST(q,�), for a LJ glass at
number density �̂ � 1.015, temperature T � 10�3 and at the indicated q values,
including the smallest one accessible, by using a simulation box containing
�107 atoms. The Brillouin peaks shift toward higher frequencies and show a
clear broadening on increasing q.
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because it clarifies that the Debye-continuum approximation for
the acoustic excitations breaks down at frequencies comparable
with the boson-peak position, i.e., at frequencies much lower
than previously expected.

Complementary information on this issue can be found in Fig.
2B, where the frequency-dependence of the broadening, �T, of
the transverse acoustic-like excitations is presented. These data
clearly show two different regimes: a �2 regime at high frequen-
cies, as already known from previous studies and associated with
the structural disorder of the glass (7, 9, 10), and a previously
unnoticed �4 regime at low frequencies. The frequency that
marks the change of regime is very close to, although slightly
lower than, the boson-peak position. Moreover, the low-
frequency regime appears in the same range where the softening
of the sound velocity shows up in Fig. 2 A, thus indicating that
these two features must be connected. This finding, however, is
not surprising if one recalls that the Brillouin position and
broadening can be related to the real and imaginary parts,
respectively, of a complex self-energy (25).

A similar scenario holds for the longitudinal acoustic-like
modes. The longitudinal sound-velocity data (blue squares) are
reported in Fig. 3A and show again a decrease at low frequency,
followed by a positive dispersion for �
0.8. The similarity with
the behavior of the transverse data suggests a common origin for
both. Indeed, the longitudinal and transverse sound velocities in
an isotropic elastic medium are simply related by the expression

cL��� 	 �B���

�
�

4
3

cT
2 ��� , [2]

where � is the mass density and B is the bulk modulus. This
equation simply tells us that in a glass, the shear modulus, G �
�cT

2 , the longitudinal modulus, M � �cL
2 , and the bulk modulus,

B, are related and that only two of them give independent
information. The low-frequency, macroscopic value for the bulk
modulus B(�3 0) � 59 can be obtained from the low-frequency
data for cL(�) and cT(�) and is in good agreement with a
literature value obtained for a slightly different system (24).
Assuming a frequency-independent value for B, we can then
estimate the longitudinal sound velocity by using the transverse
data reported in Fig. 2 A. The results of this calculation are shown
in Fig. 3A (red circles). The good correspondence between the
two sets of longitudinal velocity data derived directly from
SL(q,�) or from ST(q,�) via Eq. 2 strongly supports a scenario
where (i) the bulk modulus is frequency independent, and (ii) the
frequency dependence of the longitudinal sound velocity simply
derives from that of the transverse one. This picture is further
reinforced by the comparison (shown in Fig. 3B) between the
broadening of the longitudinal acoustic-like excitations (blue
squares, left axis) and that of the transverse ones (red circles,
right axis). It is clear here that these two quantities, within error
bars, can be scaled one on top of the other. This finding confirms
that, within the accuracy of our calculation, the frequency
dependence that characterizes the longitudinal acoustic-like
excitations comes into play through the shear component of the
longitudinal response, whereas the bulk component is a mere
spectator. The observation of the �4 regime at low frequency in
the acoustic attenuation for both polarizations is an interesting
result and is predicted by several models (15, 21, 25, 37). The
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Fig. 2. Phase velocity and broadening of the transverse acoustic-like exci-
tations in a LJ glass. Frequency dependence of phase velocity (red circles in A)
and FWHM (red circles in B) of the transverse acoustic-like excitations of the
studied LJ glass. The dashed lines in B emphasize different regimes: ��2 at
high frequencies and ��4 at low frequencies. The transition between the two
regimes appears at the frequency where the phase velocity in A shows a
minimum.
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Fig. 3. Comparison between transverse and longitudinal acoustic-like exci-
tations in a LJ glass. Frequency dependence of phase velocity (blue squares in
A) and broadening (blue squares in B, left axis) of the longitudinal acoustic-
like excitations of the studied LJ glass. These data, similarly to those in Fig. 2,
have been derived by fitting a damped harmonic oscillator model to the
longitudinal dynamic structure factor spectra obtained from molecular dy-
namics. In A, the longitudinal phase velocity data are compared with data
calculated from the corresponding transverse phase velocity (red circles),
assuming a frequency-independent bulk modulus B � 59. Within error bars,
we can conclude that the frequency dependence of the longitudinal phase
velocity directly reflects that of the transverse one. In B, the longitudinal
excitations broadening data are compared with data for the corresponding
transverse excitations (red circles, right axis): The two sets of data can be
convincingly scaled one on top of the other. Within error bars, we can again
conclude that the frequency dependence of the longitudinal data directly
reflects that of the transverse data.
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simplest model can be formulated in terms of Rayleigh scattering
of the acoustic excitations from some kind of structural disorder
(37). To make this argument quantitative, one needs to identify
the scattering units that produce it, a difficult task that has led
to different conclusions (38). Other approaches include a de-
scription of the disorder in terms of a continuum model with
randomly fluctuating transverse elastic constants (25, 26) or of
lattice models with disorder in the elastic constants (17). On this
basis, it is quite puzzling that this strong scattering regime has not
been observed in previous molecular dynamics studies (6–11). It
has, for example, been argued that in contrast to lattice-based
models, this feature would be absent in realistic glasses because
of their intrinsically high level of frustration (large internal
stress) (8). The present results solve the issue, clarifying that a
strong scattering regime is also, in fact, present in realistic
structural glasses in agreement with a number of theoretical (15,
17, 21, 25, 37) and experimental (31–34) results. We believe that
the reason this regime has previously gone unnoticed is related
to the fact that, aside from the obvious cases of too-small
simulation boxes, attention was usually focused on the longitu-
dinal excitations (the only ones experimentally accessible) where
this regime is difficult to study in detail, even with a box as large
as the one used here (see Fig. 3B). The present results in fact
clarify that the signature of strong scattering appears for both
polarizations at the same frequency, which implies that, as the
longitudinal speed of sound is larger than the transverse one (by
a factor 2.3 in the present case), the strong scattering regime
appears for the longitudinal polarization at lower q’s than for the
transverse one; its observation is then definitively less favorable
for the longitudinal polarization. More generally, the present
results clearly show that the macroscopic and microscopic re-
gimes for the acoustic-like excitations are connected by a
cross-over region where the acoustic-like dispersion curves show
a considerable deformation with respect to a simple linear
dependence: The sound velocities decrease with increasing
frequency, thus directly testifying to the existence of an abrupt
breakdown of the Debye approximation in glasses (31). This
finding comes together with the signature of strong scattering for
the acoustic-like excitations, across which reasonably well-
defined plane waves transform into a complex pattern of atomic
vibrations. The connection to the boson peak is also clear: A
softening of the transverse and longitudinal sound velocities
implies an excess in the reduced vibrational density of states
above the Debye level. Because this softening directly appears in
the range where the boson peak is observed or at corresponding
temperatures where the excess in the specific heat universally
appears in glasses (13), we can conclude that these anomalies
must have an acoustic contribution. In the following, we make
this connection quantitative.

To gain further insight into these molecular dynamics results,
we performed a standard normal-modes analysis of the glass in
its inherent structures, i.e., we have diagonalized the dynamical
matrix calculated in local minima of the potential energy land-
scape and derived eigenvalues and eigenstates. The lowest-
frequency eigenstates of transverse polarization are close to
being plane waves: It is possible to associate them with a leading
q value (24) (see Materials and Methods for details). In Fig. 4A,
we report the corresponding eigenvalues as a function of q
(circles); the reduced vibrational density of states derived from
the complete normal modes analysis is shown in Fig. 4B (circles).

Fig. 4A corresponds to a pseudodispersion curve: It is not
formally a dispersion curve but only an approximate one,
because in a disordered system q is not a good quantum number,
although one can still imagine that it is a reasonable mean to
count the modes of low-enough frequency. This pseudodisper-
sion curve must have a slope for q 3 0 that corresponds to the
transverse velocity. In fact, as shown in Fig. 4A, this slope
corresponds well to the q 3 0 limit of the transverse velocity

(dashed line) derived from Fig. 2. On increasing q, the data in
Fig. 4A show an early departure from linearity and a clear
inflection at � � 2, which is the frequency where the boson peak
appears (Fig. 4B). This inflection has been interpreted in terms
of the failure of the classical Born approximation for the
description of the continuum elasticity in disordered systems
(24) and appears at the same frequency where the molecular
dynamics results for the phase velocities in Fig. 2 and Fig. 3 show
a softening. This finding is not surprising, as the acoustic-like
frequencies can indeed be regarded as average values over a
distribution of eigenvalues related to the broadening of the
Brillouin peaks. In other words, the velocity decrease observed
at frequencies around the boson-peak position in the acoustic-
like excitations of transverse polarization (Fig. 2 A) and—
through the shear component of the longitudinal modulus—in
those of longitudinal polarization (Fig. 3A) directly reflects an
inflection that appears in the q dependence of the low-q trans-
verse eigenvalues.

As far as we can consider q a reasonable quantum number, it
is easy to directly estimate the vibrational density of states
starting with the knowledge of the dispersion curves. In a simple
plane–wave approach,

g���

�2 	
1

qD
3 ��q2

�2


q

��

L

� 2�q2

�2


q

��

T
�

�
3

qD
3 �cT

cD
�3�q2

�2


q

��

T

, [3]

where L and T stand for the longitudinal and transverse polar-
ization, and cD is the Debye velocity. The approximation in Eq.
3 is justified by the fact that the longitudinal contribution to the
total vibrational density of states is small because it scales with
cT

3/(2 cL
3 ) � 4%. Clearly, to follow this approach we shall use the

pseudodispersion curve obtained from the normal-modes anal-
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Fig. 4. Results of a normal-modes analysis of a LJ glass in its inherent
structures. (A) q-dependence of the lowest frequency transverse eigenvalues
of the studied LJ glass (circles) together with the function used to empirically
describe it (full line). The initial slope of the curve corresponds to the q3 0
limit of the transverse phase velocity of Fig. 2A (dashed line). Note that here
q is only an approximate quantum number and that it is increasingly difficult
to associate higher-frequency eigenvalues to specific q values. (B) Reduced
density of states of the studied LJ glass (circles) showing the boson peak at � �
2. The macroscopic Debye limit (dashed line) is indicated as well. The reduced
density of states directly obtained from the data in A via Eq. 3 is reported
(full line) up to the maximum frequency where this analysis is appropriate.
The agreement between the two calculations is good—note that there is
no adjustable parameter in this comparison. This implies that the density
of states, up to the boson peak, is well described by the low-q inflection
observed in A.
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ysis because in that case the low-frequency eigenvalues are
reasonably close to being plane waves. To compute Eq. 3, rather
than directly differentiating the dispersion curve, we chose to use
an empirical model to fit the simulation data (full line through
the points in Fig. 4A) and then to differentiate the model
function. The result of this calculation is shown in Fig. 4B (full
line) and, as it can be appreciated, it well describes the boson
peak. It is worth emphasizing that no additional input but the
knowledge of the dispersion curve is required to perform this
calculation. It is then clear that the reduced density of states of
the studied glass, up to the boson peak, originates from a
deformation of the pseudodispersion curve of eigenstates that
can still be approximately described by using plane waves.

The molecular dynamics results presented above also allow us
to calculate the Ioffe–Regel limit for the acoustic-like excita-
tions, defined as the frequency where 	 � �� for both polar-
izations (33). This limit corresponds to the frequency where the
decay time of the acoustic-like excitations first matches half of
the corresponding oscillation period and therefore somehow
marks an extreme upper bound in frequency for the validity of
a plane–waves approach as a starting point from which to
describe the acoustic-like excitations. As shown in Fig. 5, the
present data confirm that the Ioffe–Regel limit for the trans-
verse excitations is located close to the boson-peak position (11,
27). Fig. 5 also shows that the Ioffe–Regel limit is reached at
different frequencies for the longitudinal and transverse excita-
tions and that the longitudinal one shows up at a frequency
higher than the boson-peak position (27). However, it is impor-
tant to emphasize that this last result seems not to be general: In
a simulation study of a silica glass, the Ioffe–Regel cross-over
was found to appear at the same frequency for both polarizations
(7). The connection between the Ioffe–Regel limit for the
transverse excitations and the boson peak (27, 33) is clarified by
the discussion above, which shows that this limit is, in fact,
reached in the frequency range where the continuum approxi-
mation for the acoustic excitations breaks down.

To sum up, the present simulation results shed new light on the
well-known universal anomaly observed in the specific heat of
glasses in the T � 10-K temperature range and related to the
boson peak in the vibrational density of states at frequencies of
�1 THz. We have shown that in glasses, the elastic continuum
approximation for the acoustic-like excitations breaks down
abruptly on the mesoscopic, medium-range-order length scale of
�10 interatomic spacings, where it still works well for the
corresponding crystalline systems. This breakdown is signaled by

a deformation of the pseudodispersion curve and corresponds to
a marked reduction of the sound velocity on the mesoscopic
scale. This breakdown turns out to be closely related to the
aforementioned anomalies in the specific heat and vibrational
density of states, which can be finally traced back onto elastic
properties specific to glasses.

Finally, to put the present results in some perspective and to
connect them to experiments, it is important to emphasize once
more that they refer to a simple, monatomic LJ glass quenched
with a cooling rate out of reach experimentally. Still, we are
convinced that such a simple model system has the great
advantage of clearly grasping fundamental features that, al-
though observed in bits and pieces in many experiments, are
often hidden by a number of additional effects in real glasses.
This, we believe, is the reason why the vibrational properties of
glasses are still a debated issue after several decades of studies
and discussions. For example, the high-frequency vibrational
dynamics of the LJ monatomic glass has been proven to be well
described within the harmonic approximation (6, 9). However,
clearly real glasses are anharmonic systems—in what cases will
anharmonicity start to play a role? Moreover, in contrast to the
investigated model, real glasses are often characterized by the
presence of intramolecular, or optic-like, modes; this issue is, of
course, deliberately and completely disregarded here. All of
these questions will require further studies on more complex
models to be fully addressed.

Materials and Methods
The present numerical investigation has been performed by using simulation
boxes of different sizes containing up to N �107 atoms, interacting via a LJ
potential with a cutoff rc � 2.5 and periodic boundary conditions. This has
been realized by using the large-scale, massively parallel molecular dynamics
computer simulation code LAMMPS (39). A standard microcanonical, classical
molecular dynamics simulation, carried out at the constant number density
�̂ � 1.015 and at temperature T � 2 in the normal liquid phase is followed by
a fast quench (dT/dt�4 � 102) down to T � 10�3. The quenched glass sample
is relaxed for a time (dependent on the sample size) sufficient to have a
constant total energy. The atomic positions ri(t) and velocities vi(t), have then
been stored for a time (again dependent on the sample size) sufficient to get
the desired resolution function. The time correlation functions required to
obtain the dynamic structure factor SL(q,�) and its analogous function for the
transverse excitations ST(q,�) have been computed as

S��q,�� 	
1

2�N �q
�
�2 	 dt � j��q , t� � j�

† �q ,0�
ei�t, [4]

where � is L or T and

jL�q , t� 	 

i�1

N

�vi� t� � q̂� q̂ eiq�ri�t�, [5]

jT�q , t� 	 

i�1

N

��vi� t� � q̂� q̂ � vi� t�� eiq�ri�t�, [6]

with q̂ � q/�q�.
Addressing the issue of the dependence of the obtained results on the

quenching rate is a difficult task for the studied system because of the fact that
it easily crystallizes. The smallest quenching rate compatible with both the
long simulation times needed to reach the desired resolution and with the
large sizes of the simulation boxes is about five decades smaller (dT/dt � 4 �
10�3) than the one used for this study. We have checked that the molecular
dynamics results reported here are independent of the quenching rate in this
range.

For the glass studied here, a standard normal-modes analysis has been
carried out to derive the vibrational density of states g(�) from the eigenval-
ues of the dynamical matrix calculated in the inherent structures of the glass.
Moreover, the pseudodispersion curve for the transverse eigenvalues of the
system reported in Fig. 4A has been constructed following ref. 24. More in
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Fig. 5. The ratio ��/	 is reported as a function of frequency for both the
transverse (circles) and longitudinal (squares) polarization. The frequency
where this ratio equals one defines the Ioffe–Regel limit. For the transverse
case, this limit falls very close to the boson-peak position, indicated by the
vertical dashed line. The case is different for the longitudinal polarization,
where the Ioffe–Regel limit appears at a frequency �3 times higher than the
boson-peak position.
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detail, for each of the considered simulation boxes, we collected the four
lowest-frequency degenerate eigenvalues obtained from the diagonalization
of the dynamical matrix. These modes correspond to the largest wavelength
standing waves for the simulation box. Because the transverse sound velocity
is �2.3 times smaller than the longitudinal one, these four degenerate eig-
envalues are all of transverse polarization. For example, the first eigenvalue
has a degeneracy of 12 and can be associated to wavevectors of the (�1,0,0)
family; the second eigenvalue has a degeneracy of 24 and can be associated to
the wavevectors of the (�1,�1,0) family, and so on. These eigenvalues are size
dependent; performing this analysis on simulation boxes of larger and larger
size (up to n � 256,000 particles), we then selected transverse eigenvalues with

smaller and smaller q’s. A quite broad range of frequencies and q’s could thus
be explored. This procedure can be expected to lead to reasonable results only
as far as the degeneracy of the eigenvalues shows up clearly enough to
suggest a one-to-one relation to the corresponding values for q, and becomes
less and less reliable on decreasing the box size or on increasing q. In the
present case, we find that the highest q values up to which this analysis is still
reasonable are q � 0.2–0.3, corresponding to � � 2—i.e., basically up to
the boson-peak position—and becomes less and less reliable on further
increasing q.
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