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Abstract
We consider asymptotic properties of the maximum likelihood and related estimators in a clustered
logistic joinpoint model with an unknown joinpoint. Sufficient conditions are given for the
consistency of confidence bounds produced by the parametric bootstrap; one of the conditions
required is that the true location of the joinpoint is not at one of the observation times. A simulation
study is presented to illustrate the lack of consistency of the bootstrap confidence bounds when the
joinpoint is an observation time. A removal algorithm is presented which corrects this problem, but
at the price of an increased mean square error. Finally, the methods are applied to data on yearly
cancer mortality in the United States for individuals age 65 and over.
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1 Introduction
There are a wide variety of statistical methods for analyzing nonlinear models. If one is
interested only in summarizing the trends in the data and in obtaining a good flexible non-
linear fit, then one may take advantage of many types of spline models existing in the literature
(see [10,11,13,14,20,21,23,36,42] and the references therein). On the other hand, if one’s
interest lies mainly in estimating and making inferences on the location of structural changes
in the underlying model, the model frequently considered is that of a segmented regression in
which the knots (also referred to as joinpoints) are unknown (see, for instance, [15,16,25,26,
27,29,31,37]).

Segmented regression models are popular, for instance, as tools in modeling general disease
trends and originally have been introduced in the context of epidemiological studies of
occupational exposures for modeling threshold limit values in logistic regression models with
a single joinpoint (see [18,41]). Subsequently, various multiple joinpoint algorithms have also
been applied to disease trend models. For instance, Kim et al. [28] suggested a sequential
backward selection algorithm for testing the number of joinpoints in a model that uses the
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least-squares criteria under squared-error loss and a goodness-of-fit measure based on the F-
statistic, and applied the algorithm to model U.S. yearly cancer rates. The algorithm has been
implemented in the free software Joinpoint, version 3.3, (see
http://srab.cancer.gov/joinpoint/) which facilitates fitting and testing the model for Gaussian
and Poisson regressions. Czajkowski et al. [7] compared the above algorithm with a forward
selection algorithm in the logistic joinpoint regression setting with multiple joinpoints where
model parameters were estimated by maximum likelihood and applied the methods to model
longitudinal data on cancer mortality in a cohort of chemical workers. An R package ljr [6]
available at http://www.R-project.org [34] has been developed implementing both the
backward and forward algorithms for the logistic joinpoint model. Many alternative approaches
for selecting the number of change points based on information theory have been also
considered in a variety of contexts (see [8,30,32,40,43] and the references therein).

When working with statistics having complicated distributions such as those encountered in
segmented regression models, the bootstrap and parametric bootstrap are common tools used
for confidence estimation (see, for instance, [4,9,12,22]). In many cases, the bootstrap is
effective, but there are also cases where the bootstrap is not consistent when parameters are on
the boundary of the parameter space. Several examples are discussed in [1]. In this paper, we
are interested in consistency of parametric bootstrap confidence bounds in the context of the
logistic joinpoint regression. In particular, we describe herein a situation in which the
consistency of the bootstrap confidence bounds fails, in the sense that they are not
asymptotically correct. We refer to Section 7.4 of [39] for a general discussion of the bootstrap
confidence bounds. The material in this paper discusses the behavior of the bootstrap for a
segmented regression model; however, see [24] for a detailed discussion of the asymptotic
behavior of the bootstrap for detecting changes in a multiphase linear regression model which
differs from ours in that it does not impose continuity constraints.

The paper is organized as follows. In Section 2, we introduce a clustered logistic joinpoint
model and discuss maximum likelihood estimation of its parameters. The consistency and
asymptotic normality of the maximum likelihood and related estimators are discussed in
Section 3. Section 4 gives sufficient conditions for the consistency of the parametric bootstrap,
illustrates via simulation a situation when the parametric bootstrap is not consistent, and
suggests a removal algorithm to restore consistency for the simulated example. Finally, in
Section 5, the methods proposed are applied to data on yearly cancer mortality in the United
States for individuals age 65 and over.

2 Clustered Logistic Joinpoint Model
Suppose that Y1,…, YN are independent Binomial random variables such that Yi is the sum of
mi independent Bernoulli random variables each with probability of success p0i. Denote the
realizations of these random variables as y1,…, yN, respectively, let y = [y1,…, yN]Τ, and let

. Furthermore, let p0i have the functional form

(1)

where

(2)

Gill et al. Page 2

J Stat Plan Inference. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://srab.cancer.gov/joinpoint/
http://www.R-project.org


and t+ = max{t, 0}. Here x1,…, xN are fixed q-dimensional covariates, and the ‘times’ t1 ≤ …
≤ tN are ordered covariates. Also, α0 is the unknown intercept, τ0 is the unknown joinpoint,
β0 is the unknown slope coefficient for ti before τ0, δ0 ≠ 0 is the change in the slope coefficient
after τ0, and γ0 is the unknown q-dimensional vector of coefficients for the fixed covariates.

2.1 Maximum Likelihood Estimation

In this section, the maximum likelihood estimate of is derived. The log-
likelihood function for the sample y1,…, yN is given by

where θ = [α, β, τ, δ, γΤ]Τ and

It is useful to consider the jth super log-likelihood function

(3)

for j = 1,…,N − 1. Note that

and lj is infinitely differentiable with respect to θ, but l is not differentiable at τ = ti for i = 1,
…,N if δ ≠ 0. Letting ϕ(θ) = [α, β, α − δτ, β + δ, γΤ]Τ, we can express (3) as

where and

This is a logistic regression model with the design matrix and the
canonical parameter vector ϕ(θ).
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The function lj is an infinitely differentiable function with respect to ϕ. Differentiating lj with
respect to ϕ, we have

(4)

where with . Setting (4) to zero, dividing by n, and
simplifying, we obtain

(5)

where ui = mi/n. If the matrix  is of full rank, then the solution to (5) is the
unique maximizer of lj since

is positive definite, where W(j)(θ) is a diagonal matrix with diagonal elements

i = 1,…,N and

(6)

For each j = 1,…,N − 1, denote the maximizer of lj as

(7)

Using the invariance property of the method of maximum likelihood (for example, see [33])

where is the solution to (5).

The following algorithm can be used to compute the maximum likelihood estimate (MLE)
θ̂n of θ̂0.

1. For j = 1,…,N −1, compute . If , then compute ; otherwise, the
MLE of τ0 is not in (tj, tj+1) and there is no need to evaluate l at any θ such that τ ∈
(tj, tj+1).

2. For j = 2,…,N − 1, fix τ = tj so that the model is equivalent to logistic regression with
covariates 1, ti, (ti − tj)+, and xi, i = 1,…,N. Then fit a logistic regression model to

obtain respective possible estimates of α0, β0, δ0, and γ0. Denote
the possible estimate of θ0 as
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and compute .

3. The MLE of θ0 is the value of θ which maximizes l(θ) among the values at which we
evaluate l in steps 1 and 2.

See [7] for a detailed description of an algorithm for computing the MLE in the logistic
joinpoint regression model with multiple joinpoints.

3 Asymptotic properties
In this section, the consistency and the asymptotic distribution of the maximum likelihood
estimator are established. Consider the function F(j) : ℝN × ℝ4+q → ℝ4+q such that

where p = [p1,…, pN]Τ and pi ∈ (0, 1) for i = 1,…,N. In particular, we will be interested in
values of k such that

(8)

Throughout this paper, k shall be reserved for values such that (8) holds. If τ0 ∈ (tk, tk+1), then
k is unique. If τ0 = tℓ for some ℓ, then (8) holds for both k = ℓ − 1 and k = ℓ.

Letting p0 = [p01,…, p0N]Τ, the following lemma uses the Implicit Function Theorem (see, for
example, [35]) to express ϕ(θ) as a function of p. Proofs of lemmas and theorems are deferred
to Appendix A.

Lemma 3.1
Suppose that F(k)(p, θ) = 0 and (8) holds. If Z(k) is full rank, then in an open neighborhood
of (p0, θ0), say Bp0, there exists a function g(k) such that g(k)(p) = ϕ(θ) for (p, θ) ∈ Bp0 and the
second partial derivatives of g(k) exist and are continuous.

Implicit differentiation can be used to obtain the explicit form for the partial derivatives of
g(k). Differentiating both sides of F(k)(p, θ) = 0 with respect to pΤ, we obtain

Where is the matrix of partial derivatives of each component of g with respect
to pΤ. If Z(k) is full rank, then we have

Let p̂n = [y1/m1,…, yN/mN]Τ. Lemma 3.1 can be used to show that the maximizer of lk is a
strongly consistent estimator of θ0 for any k such that the model is correctly specified. The
following lemma states this result for the case when each of the mi’s increases linearly, although
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the linearity can be relaxed to deal with differing rates of divergence. Let be as defined by
(7).

Lemma 3.2
For sufficiently large n0, suppose there exist constants 0 < c1 < c2 such that nc1 ≤ mi ≤ nc2 for

i = 1,…,N when n ≥ n0. If Z(k) is full rank and (8) holds, then .

In this lemma and the following theorems, N is taken to be fixed. This setting is reasonable for
analyzing data retrospectively when there is a large amount of data at each observation time
or in each time-specific cluster of observations (see, for example, [7]). Since N is fixed, few
assumptions are required to achieve consistent estimators. In practice, the assumption that
Z(k) is full rank for values of k such that (8) holds is needed so that the parameters are
identifiable. In other settings in which N is allowed to increase to infinity, additional
assumptions are required on the spacing of the covariates and/or the location of the change-
point parameter to ensure that there is enough data in each part of the input space to estimate
all of the parameters consistently. However, the specific assumptions required depends on the
particular way that N increases. For discussion about typical assumptions for some other
change-point problems, see [2] and [32].

Under the conditions of Lemma 3.2, it is seen that the estimator of θ0 based on k such that the
model is correctly specified is consistent. Next, it must be shown that, for each j such that τ0
∉ [tj, tj+1], the maximum value of lj is less than the maximum value of lk. To prove this, we
introduce the saturated likelihood function s : ℝN → ℝ defined by

(9)

which provides a parameter for each distinct set of observed covariates. Using this concept, it
can be shown that the maximum likelihood estimator (maximizer of l) is strongly consistent.
As before, let θ̂n denote the maximum likelihood estimator of θ0.

Theorem 3.1
Under the conditions of Lemma 3.2 for each k such that (8) holds, it follows that θ̂n → θ0
a.s. as n→∞.

Next, we examine the asymptotic distribution of θ̂n. Since consistency has been established, it

suffices to consider the distribution(s) of with k given by (8).

There are two cases which must be examined. First consider the more complicated one when

τ0 = tℓ for some ℓ. In this case, we must consider the joint behavior of . Denote

by  the (q+4)×(q+4) matrix of partial derivatives of the components of ϕ−1. Let
(0,S) denote the (multivariate) normal distribution with zero mean vector and covariance

matrix S. Also, let ⇒ denote convergence in distribution. The following theorem proves the
asymptotic normality of the joint distribution of these quantities. The proof is given in
Appendix A.
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Theorem 3.2
For sufficient large n, suppose there exist constants 0 < c1 < c2 such that nc1 ≤ mi ≤ nc2. If
τ0 = tℓ for some ℓ and Z(k) is full rank for k = ℓ − 1 and k = ℓ, then

(10)

as n→∞ where and W(k) =
W(k)(θ0) for k = ℓ − 1 and k = ℓ, and U is defined by (6).

The result for the second case where τ0 ∈ (tk, tk+1) for some k is given in Theorem 3.3. The

proof is omitted since it can be proven in a manner similar to Theorem 3.2. Note that 
when n is sufficiently large, as shown in the proof of Theorem 3.1.

Theorem 3.3
For sufficient large n, suppose there exist constants 0 < c1 < c2 such that nc1 ≤ mi ≤ nc2. If
τ0 ∈ (tk, tk+1) for some k and Z(k) is full rank, then

as n → ∞ where , and U is defined by (6).

4 Consistency of Bootstrap Confidence Bounds
Suppose we use the parametric bootstrap to generate Binomial random variables with sizes
mi and probabilities of success p̂0i for i = 1,…,N and b = 1,…, B where B is the number of
bootstrap samples. Set and let  denote the bth bootstrap replication of
θ̂n, with P and P* being the probability measures under θ0 and , respectively.

4.1 Consistency when τ0 ≠ tℓ for any ℓ
We shall consider the consistency of the bootstrap percentile method. For simplicity, we
describe the one-sided interval for a parameter ζ0, but the results extend to two-sided intervals
with proper modifications. Set . Then the bootstrap estimator of the upper
bound of the α-level one-sided percentile confidence interval for ζ0 is . The
following lemma gives sufficient conditions for the consistency of bootstrap confidence
intervals of this form. For a proof, see Theorem 7.9 of [39].

Lemma 4.1—Let and . Suppose that

1. supx|Hn (x) − H^B(x)| = op(1)

2. supx|Hn(x) − Ψ(x)| = o(1) for some continuous, strictly increasing and symmetric about
zero distribution Ψ(x)

Then P(ζBP ≤ ζ0) → 1 − α as n → ∞.
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Thus, in order to prove consistency of bootstrap confidence intervals for aΤθ0 where a is a
fixed non-zero (q + 4)-dimensional vector, we need to check conditions (1) and (2). If τ0 ∈
(tk, tk+1), Theorem 3.3 verifies condition (2) of Lemma 4.1. So, for the case when τ0 ∈ (tk,
tk+1), we next verify condition (1) in the following result.

Theorem 4.1—Under the conditions of Theorem 3.3, it follows that

(11)

as n → ∞.

Hence, from the last theorem, we see that the conditions for bootstrap confidence interval
consistency given in Lemma 4.1 hold when τ0 ∈ (tk, tk+1) since (11) implies convergence in
probability. Continuity of Ψ will not hold if τ0 = tℓ for some ℓ as shown by Theorem 3.2.

4.2 Simulation when τ0 = tℓ for some ℓ
To illustrate the behavior of the bootstrap estimates and confidence bounds when τ0 = tℓ for
some ℓ, we perform the following simulation study. Suppose that we have equally-spaced
observation times ti = i for i = 1,…,N = 7, no additional covariates (q = 0), true coefficient
values α0 = β0 = 0 and δ0 = 0.2, and a joinpoint at τ0 = 4 for the model specified by (1) and (2).
For various choices of m1 =…= m7, we simulate R = 1, 000, 000 data sets and compute the
estimate of τ0 and the bootstrap estimate of τ0 for each data set.

One simple way to see that Theorem 4.1 does not hold for this case is to use our simulation to
estimate the proportion of times that τ̂n equals τ0 = 4 and compare this with the proportion of
times that the bootstrap estimate equals τ0. These quantities, denoted by P̂ (τ̂n = 4) and

, as well as empirical estimates of the mean square error and
the bootstrap estimate of this quantity are reported in Table 1 for mi
= 100, 105, 107, and 109 using the contributed R package ljr [6]. Clearly, the bootstrap
underestimates the true probability that τ̂n = 4 as seen in columns 2 and 4 of Table 1 and
overestimates the true MSE of τ̂n as seen in columns 3 and 5.

The estimate P̂(τ̂n = 4) = .2020 when mi = 109 agrees with the theoretical value suggested by
Theorem 3.2. As n → ∞, note that

where

and
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Thus, for large n, we have

this bivariate normal probability can be computed using the contributed R package mvtnorm
[17].

4.3 Removal Algorithm
Herein we discuss a modified estimator of τ0 for which bootstrap consistency holds as a remedy
for the lack of consistency of the parametric bootstrap when τ0 = ti for some i. First, compute
θ̂n. Then remove the observation(s) at the observation time tℓ which is closest to τ̂n and re-fit
the MLE without the observation(s), denoting the result as

If the matrix Z(k), with k defined by (8), is still full rank without the observation(s) and mi
satisifies the condition in Lemma 3.2, then bootstrap consistency holds for this algorithm even
if τ0 = tℓ for some ℓ (since these observations will be removed with probability 1 as n → ∞).

As an illustration of the effect of using this algorithm, we use the same simulated data sets
considered in Section 4.2 and compare the results for the bootstrap based on the method of
maximum likelihood with the bootstrap based on the removal algorithm. Letting τ̂ (.95) and

represent the 95th percentiles of the empirical distributions of τ̂n and , Table 2 computes

the estimated tail probabilities and for the bootstrap
method. Clearly, the bootstrap overestimates the 95th percentile of the distribution of τ̂n − τ0,
but provides a good estimate of even for relatively small sample sizes. However, the
tradeoff for obtaining accurate confidence bounds is the loss of information caused by
discarding part of the data. This also can be seen in Table 2 by observing that the estimates of
the mean square errors for  are higher than those for τ̂n.

5 Example
We now apply the method of clustered logistic joinpoint regression to model yearly cancer
mortality in the United States for individuals age 65 and over during the period 1979–1998.
The data set was obtained from the CDC wonder database [5], and it includes yi – the number
of deaths in the ith observed year due to neoplasms (ICD-9 codes 140–239), mi –the population
during the ith observed year, and ti = 1978.5 + i – the midpoint of the ith observed year. So,
we use the model given by (1) and (2) with q = 0. The observed cancer mortality rates yi/mi
are plotted versus time in Figure 1.

Table 3 gives the parameter estimates for each of the unknown parameters and the fitted
probabilities based on maximum likelihood are illustrated by the solid curve in Figure 1. The
estimated joinpoint τ̂n = 1993.686 supports previous findings which attribute the decrease in
cancer mortality to improvements in prevention, detection, and treatments [19].

Next, we obtain estimated 95% confidence bounds for τ based on the parametric bootstrap.
Using the estimates listed in Table 3 as our model parameters, we generate R = 100000
bootstrap samples and compute the estimate of τ for each sample. Then our estimated
confidence bounds are the 2.5 and 97.5 percentiles of the bootstrap distribution of τ. In this
manner, we obtain the confidence bounds (1993.371, 1993.930).
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Note that the 15th observed year t15 = 1993.5 falls within this interval. Thus, there might be a
problem with consistency of the bootstrap as discussed in Section 4. We can attempt to remedy
this possible bias by repeating our analysis with i = 15 removed from the data set. When the
model is fit without the 15th observation, the estimate of the joinpoint changes slightly to

. The estimated coefficients change very little (see Table 3) and the fitted
probabilities based on the removal algorithm are illustrated by the dashed curve in Figure 1.

The 95% estimated confidence bounds with observation 15 omitted are (1993.318,1993.851).
While it is true that the interval still contains 1993.5, this value is no longer in our data set
since it has been removed, and it seems reasonable to claim that it is unlikely that we are dealing
with a situation where τ0 = tℓ for some ℓ and, thus, the consistency of the bootstrap confidence
bounds is more plausible.

6 Summary and Conclusion
After presenting details necessary for the computation of the maximizer of the super log-
likelihood functions and the MLE of the parameters in the clustered logistic joinpoint model,
we considered the asymptotic properties of these estimators. Sufficient conditions for the
consistency of the MLE were given. Asymptotic normality of the MLE was also shown under
the same conditions as long as the true location of the joinpoint had not been at one of the
observation times. Under this latter proviso we also showed the consistency of the bootstrap
confidence bounds.

However, if the true location of the joinpoint was one of the observation times, then it was
shown that the joint distribution of the maximizers of indices corresponding to the neighboring
intervals was asymptotically normal. A simulation study was performed to illustrate the lack
of consistency of the bootstrap method in generating confidence bounds in this case due to
asymptotic bias. It was also shown that we could remove this bias and obtain consistent
estimates via a removal algorithm at the cost of a higher MSE.

Finally, the model and the methods were used to analyze yearly cancer mortality in the United
States for individuals age 65 and over. The bootstrap confidence interval included one
observation time, so the model was refit without that observation. There is only a slight change
in the resulting fitted model, but the consistency of the bootstrap is more plausible with the
second fit. An R package ljr [6] capable of fitting these models is available in the contributed
packages at http://www.R-project.org [34].

A Proofs
Proof of Lemma 3.1

Since F(k) is infinitely differentiable and F(k)(p0, θ0) = 0, it remains to verify that the

determinant of is not zero in order to apply the Implicit Function
Theorem. Here D = UW(k)(θ0) is a N × N diagonal matrix with diagonal elements di = mip0i(1

− p0i)/n for i = 1,…,N. Since di ∈ (0, 1), has a nonzero determinant if and only if
Z(k) is full rank.

Proof of Lemma 3.2
The strong law of large numbers implies that p̂n → p0 a.s. as n → ∞. For all θ, the left side of
(5) converges to F(k)(p0, θ) a.s. The continuity of F(k) implies that.
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It is clear that θ0 is the unique value of θ such that F(k)(p0, θ) = 0 by the same argument as the
one used to show that the solution to (5) is a unique maximizer of lj when yi/ni is replaced by

pi. Thus, it follows that as n→∞.

Proof of Theorem 3.1

In view of Lemma 3.2, it suffices to show that, with probability 1, if τ0 ∈ [tk,

tk+1] but τ0 ∉ [tj, tj+1] From Lemma 3.2, we have.  Using the continuity of , it

follows that . for i = 1,…,N. Hence, we have as
n→∞.

Let be the set of points considered by the saturated
model and let

be the set of fitted probabilities corresponding to restricting τ ∈ [tk, tk+1]. Clearly k ⊂ 
for all k. Furthermore, p0 ∈ k if τ0 ∈ [tk, tk+1] and p0 ∉ j if τ0 ∉ [tj, tj+1]. Thus,

maxθ∈ j l(θ) < s(p0) and  so that maxθ∈ j l(θ) < maxθ∈ k l(θ) with
probability 1.

Consequently, if k is unique, then τ̂n ∈ (tk, tk+1) a.s. as n → ∞. If k is not unique, then τ̂n ∈

(tℓ−1, tℓ+1) a.s. as n →∞, and we have as n → ∞ by Lemma 3.2.
In either case, it follows that θ̂n → θ0 a.s. as n → ∞.

Proof of Theorem 3.2

Take any a ∈ ℝ2(q+4) and let . Using a multivariate Taylor series expansion,
we obtain

(12)

where is the Hessian matrix of aΤg evaluated at a point p̂n on the segment
connecting p̂n and p0. Note that

(13)
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as n → ∞. Since H(p̂n) is symmetric, we can apply the singular value decomposition to obtain
H(p̂n) = C(p̂n)Λ(p̂n)C(p̂n)Τ where C(·) is orthogonal and Λ(·) is diagonal with entries λ1 ≥ …
≥ λ2(q+4). Note that λ1 is bounded as n → ∞. Thus, (13) implies that

(14)

Hence, (12), (14), and Slutsky’s Theorem (see [3]) imply that

as n → ∞. So, the Cramér-Wold Criterion (see, for example, [38]) implies that

(15)

as n → ∞. Since for k =ℓ−1, ℓ and , a similar argument can be
used to show that (15) implies (10).

Proof of Theorem 4.1
Simple modifications can be made to the arguments given in Theorem 3.2 to show that

as n → ∞, where

As n → ∞, we have p̂n → p0 a.s. and θ̂n → θ0 a.s. so that Sn → S0 a.s. where

Thus, by Slutsky’s Theorem, we have

as n → ∞. Thus for any non zero vector a ∈ Rq+4 with probability one and

have the same weak limit. The triangle inequality and the fact that in this case
the weak convergence is uniform, yield (11).
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Figure 1.
Observed US yearly cancer mortality rates for individuals age 65 and over. The solid line gives
the fitted model based on all of the data. The dashed line gives the fitted model with the 15th
observation (where t15 = 1993.5) removed.
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Table 1

Simulation results for the bootstrap method applied to the MLE.

mi,
i = 1,…, 7

P^(τ^n = τ0) MSÊ (τ̂n) P̂ * (τ̂n
* = τ0) MSÊ *(τ̂n

* )

103 .2007 3.967 × 10−1 .1097 4.779 × 10−1

105 .2023 2.792 × 10−3 .1157 3.545 × 10−3

107 .2020 2.899 × 10−5 .1155 3.698 × 10−5

109 .2020 3.122 × 10−7 .1160 3.972 × 10−7
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Table 2

Comparison of results for the MLE and the estimates based on the removal algorithm.

mi,
i = 1,
…, 7

P̂ * (τ̂n
* − τ̂n ≥ τ̂ (.95))

MSÊ (τ̂n) P̂ * ((τ̂n
−)* − τ̂n

− ≥ τ̂ (.95)
− ) MSÊ −(τ̂n

−)

103 .0625 3.967 × 10−1 .0496 7.910 × 10−1

105 .0670 2.792 × 10−3 .0500 4.738 × 10−3

107 .0676 2.899 × 10−5 .0499 4.730 × 10−5

109 .0676 3.122 × 10−7 .0499 5.061 × 10−7
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Table 3

Parameter estimates in the logistic joinpoint regression model for the US yearly 65+ cancer mortality data.

Parameter Estimate Value Estimate Value

α0 α^n −23.17397 α̂n
− −23.44145

β0 β^n .0093903 β̂n
− .0095251

δ0 δ^n −.0140205 δ̂n
− −.0141553

τ0 τ^n 1993.686 τ̂n
− 1993.595
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