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Abstract
Silica thin films and nanoparticles prepared using sol–gel chemistry are derivatized with active
molecules to generate new functional materials. The mild conditions associated with sol–gel
processing allow for the incorporation of a range of dopants including organic or inorganic dyes,
biomolecules, surfactants, and molecular machines. Silica nanoparticles embedded with inorganic
nanocrystals, and films containing living cells have also been synthesized. Silica templated with
surfactants to create mesostructure contains physically and chemically different regions that can be
selectively derivatized using defined techniques to create dynamic materials. Using two different
techniques, donor–acceptor pairs can be doped into separated regions simultaneously and photo-
induced electron transfer between the molecules can be measured. Mesoporous silica materials are
also useful supports for molecular machines. Machines including snap-tops and nanoimpellers that
are designed to control the release of guest molecules trapped within the pores are described.
Mesoporous silica nanoparticles are promising materials for drug delivery and other biomedical
applications because they are nontoxic and can be taken up by living cells. Through appropriate
design and synthesis, multifunctional mesoporous silica nanoparticles for sophisticated bio-
applications are created.

I. Introduction
Silica glass has been utilized for centuries because of its inertness and transparency. It is
difficult to expand its range of functionality because the high temperatures involved in its
production prohibit incorporation of many types of additives that would impart additional new
properties. This limitation changed since the invention of sol–gel method.1,2 Owing to the mild
conditions of this process it is possible to introduce various organic, inorganic, and bio-
molecules into the silica material. In this article we review new properties and functionalities
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induced by the incorporation of molecular dopants into silica matrices. First, the use of single
dopants to give silica new optical, chemical, and structural properties is discussed. Second,
systems based on multiple dopants, where interaction between these molecules give rise to new
set of properties that are not possessed by any of the components alone, are presented. A novel
type of nanomachine is described. Finally, applications of these types of systems for biological
and medical purposes, especially drug delivery, are illustrated.

II. Properties Induced by Individual Components
New optical properties can be induced in sol–gel silica glass by incorporation of appropriate
molecules such as organic dyes. Dye molecules can also function as probes of the sol–gel
processing. Biomolecules can be stabilized in glass and can provide multiple functions
including action as biosensors. Surfactant molecules can be used to template desired
mesostructures into the glass. Examples of these molecules and the induced functions are
described in this section.

(1) Organic or Inorganic Molecules
One way of creating a new generation of optical materials is based on doping-specific organic
and organometallic molecules in sol–gel-derived matrices.3 The sol–gel process is sufficiently
benign that the molecules encapsulated in the inorganic glass matrix effectively retain their
characteristic solution properties. Using the sol–gel doping approach, a wide variety of
materials with designed optical properties were produced. Initial studies involved the use of
spectroscopic probes to characterize the chemical and physical changes that occur during the
various stages of the sol–gel process.4–8 Some of the more significant properties demonstrated
by dye-doped sol–gel materials are photochromism,9 laser action,10 surface-enhanced Raman
emission, 11 sensing,9,12,13 and a variety of nonlinear optical properties. 14 In addition, dye-
doped silica particles are gaining a wide use as tags in biological systems.15,16 As recent review
papers indicate,14,17 this field continues to generate considerable interest, with particular
emphasis on the technological development of optical communication devices that use sol–
gel-derived inorganic/organic hybrid materials.

(2) Biomolecules
From the research on encapsulating organic and organometallic molecules it was abundantly
clear that the ability to dope sol–gel glasses was not limited to just a few systems. As long as
the dopant was soluble in the aqueous or alcohol-based solvent, it could be incorporated within
the sol–gel matrix and, in most cases, effectively impart its properties to the resulting solid. It
was recognized that an analogous approach would be feasible for biomolecular dopants. Today,
the field of sol–gel immobilization of biomolecules is a very active one.18 The field has grown
dramatically as there is now the ability to routinely use sol–gel methods to encapsulate
biomolecules ranging in size from small proteins of a few nanometers, to whole cells of several
micrometers. The field has diversified, from soluble proteins to membrane-bound proteins,
from sensor applications to new directions such as high-throughput drug screening and energy
storage.

The earliest examples of biomolecule encapsulation in sol–gel matrices addressed the issue
whether proteins retained their characteristic reactivity and function when encapsulated in the
sol–gel-derived SiO2 matrix.19–22 These studies demonstrated that it was possible to
encapsulate proteins in sol–gel matrices without altering protein structure. It should be noted,
however, that the sol–gel encapsulation process does not always trap the protein in its native
conformation, as there are instances where intermediate conformations are trapped.23

Additionally, as long as synthesis conditions that avoided protein denaturation were used,
immobilized enzymes retained their catalytic ability, metalloproteins exhibited their metal
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exchange properties, heme proteins displayed redox behavior and ligand binding and
antibodies retained their binding affinity.9,24

An important contribution in these early studies was the development of relatively simple
synthetic procedures that successfully avoid protein denaturation. A two-step approach was
devised in which tetramethoxysilicate was prehydrolyzed, generally without the addition of
alcohol, followed by the addition of buffer to bring the pH to a range where the protein was
stable. 20,25 A benefit of this approach was the ability to produce transparent monoliths, usually
formed in spectroscopy cuvettes, to facilitate in situ monitoring of the spectroscopic properties
of the protein. As the biomolecule immobilization field has continued to grow, there is interest
in developing matrices for biosystems (e.g., phospholipids and whole cells) that cannot tolerate
alcohols. As a result, a number of approaches have emerged in recent years that greatly lower
the alcohol content and generally provide improvements in microstructure control. These
include aqueous synthesis routes based on sodium silicate, 26 and the use of biocompatible
silane precursors containing bound sugar moieties.27

Other important discoveries include enhanced stability of the protein that arises from the
encapsulation process. Trapping the protein in the silica cage effectively suppresses protein
unfolding and avoids denaturation, yet is able to respond to small analyte molecules because
of the inherent porosity of the sol–gel matrix. In addition, the matrix prevents contact with
proteases or microorganisms. 19,28–31 Membrane-bound proteins have been encapsulated
including the transmembrane peptide ion-channel gramicidin A, a ligand-gated ion channel
(nicotinic acetylcholine receptor), and a G-protein coupled receptor (dopamine D2 receptor).
32 The encapsulation of both bacteriorhodopin and F0F1-ATP synthase successfully
demonstrated the use of a photo-induced proton gradient for the biosynthesis of ATP.33 This
work underscores the prospect of using membrane-associated proteins to design
multifunctional biocomposite materials that enable biological modes of power generation and
energy storage.

Biosensors have proven to be an extremely successful direction for sol–gel-encapsulated
biomolecules.34 Despite being trapped in the matrix, biological molecules retain the catalytic,
recognition, and transduction functions that make the resulting sol–gel materials ideal for the
design of sensors over a broad range of areas including medical and health care, environmental
monitoring, industrial processing, food quality, toxic chemicals, and explosives. A great variety
of enzymatic and antibody-based systems have been explored.20,24,34–37 The sol–gel approach
has an advantage of being easily adapted to optical and electro-chemical detection methods.
Finally, it is important to mention that sol–gel-based biosensors have moved beyond the
research stage and commercialization efforts are well underway.

(3) Surfactants to Template Mesostructure
Since its discovery in 1992, mesostructured silicate particles have been a subject of intensive
research due to the large surface areas of the materials and the simplicity in modifying both
the particle and the pore size.38,39 Various organic templates (e.g., cationic surfactants and
triblock copolymers) and pore swelling agents have successfully been used in the particle
synthesis to give a wide range of well-defined pore sizes and mesostructures.40,41 Furthermore,
the versatility of sol–gel chemistry to introduce organic functionalities on the pore walls and
surfaces makes the mesoporous silica suitable as host materials to incorporate guest molecules.
42 Although the original research and applications of these host–guest materials were mainly
used for catalysis purposes, recent progress in synthesizing mesoporous particles of nano-sized
dimensions has developed new potential in the biomedical field.43–45

In addition to powders, mesostructured silica can be prepared as films. Typically the films are
prepared using a method known as Evaporation-Induced Self-Assembly.46 This process
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utilizes a sol containing all of the components needed for the formation of final film: silica
precursor (tetraethoxysilane or tetramethoxysilane), a catalyst (hydrochloric acid), templating
agent (Cetyltrimethylammonium bromide [CTAB], Pluronic, etc.), and solvents (water,
ethanol). The sol is deposited as a thin liquid layer onto a suitable substrate by dip-coating or
spin-coating. The evaporation of the solvent drives the formation of surfactant micelles, which
further assemble into a liquid crystal. At the same time the silica condenses around the micelles.
By choosing a specific composition of the sol, environmental conditions, and the method of
deposition mesostructured films with hexagonal, lamellar, and cubic structures possessing high
degree of long-range order can be produced. The thickness of the final film can vary between
50 and 500 nm. The surfactant molecules can be removed from the pores of the film by
calcination or solvent extraction.

III. Placement of Multiple Components to Induce Functionality
The use of surfactant molecules during sol–gel synthesis has led to new techniques for the
incorporation of active molecules to induce functionality in silicate materials. Surfactants can
be used to template mesostructure within the materials. Different regions exist within the
surfactant-templated mesostructure, enabling the simultaneous incorporation of different types
of molecules. Pairs of molecules that are spatially separated from one another can be
simultaneously doped into the mesostructured materials, and the dynamic interplay between
the molecular pairs can be studied. Mesoporous structures can be achieved when the surfactant
is removed following sol–gel synthesis, and molecular machines that take advantage of the
porosity can be attached to the silica surface. One additional use of surfactants is the
solubilization of inorganic nanocrystals so that they can be embedded into the core of silica
nanoparticles, as will be discussed in the upcoming section.

(1) Placement of Objects
By mixing the surfactant template with inorganic nanocrystals, the versatility of
mesostructured silica was extended by embedding additional functional materials at the core
of the particles. Because the process of synthesizing mesoporous silica nanoparticles is done
in aqueous solution, the hydrophobic nanocrystals need to be transferred into the water phase
by coating them with the amphiphilic CTAB molecules.47–50 The hydrophobic interaction
between CTAB surfactants and aliphatic ligands on the surface of the nanocrystals renders the
materials water soluble. Mesoporous silica spheres were formed around the nanocrystals by
mixing the silica source tetraethylorthosilicate (TEOS) with the aqueous solution containing
CTAB-coated nanocrystals, CTAB, and base catalyst.50 The electrostatic interaction between
the hydrolyzed TEOS molecules, the CTAB-coated nanocrystals, and the free surfactant
micelles helped promote the base-catalyzed condensation of TEOS to form the mesostructure.
By using this general procedure, iron oxide,51 gold,52 and silver53 nanocrystals were embedded
at the center of the mesoporous silica.

As an example of the aforementioned procedure, superparamagnetic iron oxide nanocrystals
were incorporated within the mesoporous silica nanoparticles to provide magnetic resonance
(MR) imaging and magnetic manipulation capabilities.51,54–58 Because the morphology of the
iron oxide–mesoporous silica nanoparticles is dependent on the synthetic condition and
temperature of the solution, it was necessary to form the spherical shape at higher temperature,
with vigorous stirring and dilute precursor solution. The transmission electron microscope
images show the dark inorganic nanocrystals at the center of the nanoparticles and also the
mesostructured pores (Fig. 1). The biological applications of these nanoparticles will be
described in Section IV.

Alternatively, metals can be deposited inside or on the surface of the silica particles. Porous
silica material with palladium clusters embedded inside is an example of a potential material
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for hydrogen storage.59 Nanoparticles with thin metal shells (typically gold) around silica core
can absorb or scatter light over a wide spectral range.60,61 Such particles have applications in
imaging and anticancer therapy.

Living organisms, in addition to inanimate objects, have also been incorporated into sol–gel
silica monoliths and films. The earliest studies involved encapsulation of whole yeast cells.
62–66 Synthesizing mesostructured silica containing living cells is a more difficult challenge
because the common surfactants that are used as templating agents kill the cells. The first
example of mesostructured silica and living cells used diacylphosphatidylcholine as the
structure-directing agent and either yeast or bacterial cells.67 The cell surfaces organized
multilayered phospholipid vesicles that interfaced coherently with the silica host. The resulting
structures maintained cell accessibility, addressability, and viability in the absence of buffer
or external fluids. These new materials open the possibility of using the cell’s molecular
recognition, amplification, and signal transduction properties for miniaturized, stand-alone
environmental, or physiological sensors. With the ability of cells to be used in a variety of
additional areas including biosynthesis and cell and tissue growth, the cell encapsulation area
will be an active one in the coming years.

Optical functionality such as energy transfer68 and electron transfer69 can be achieved in
mesostructured silicates by simultaneously incorporating different types of photo-active
molecules into the material. The different types of molecules can be spatially separated from
one another within the material as a result of the fact that mesostructured thin films and particles
contain three chemically and physically distinct regions that can be selectively derivatized.
70–73 These regions include the silicate framework, the organic region, and ionic interface
region (Table I). The framework, organic region, and ionic interface region can each be
derivatized using different one-pot approaches where a molecule of interest is included in the
initial sol and is designed to assemble into a region during material synthesis. A fourth region
of the material, the exterior surface, can be derivatized postsynthetically either before or after
removal of templating agents.

Mesoporous silica thin films have been used as substrates to study photo-induced electron
transfer between spatially separated donor and acceptor molecules.69 In this study, a methyl
viologen derivatized with a hexadecyl tail was chosen as the electron acceptor, and it was
deliberately placed in the nanostructure using the philicity strategy (Fig. 2). The electroactive
part of the molecule (methyl viologen) was positioned at the ionic interface region as a result
of the association of the hexadecyl tail with the micellar core. Using the bonding strategy, a
silylated derivative of ruthenium-based photoelectron donor was incorporated into the silica
framework. To verify the successful placement of the ruthenium molecule into the silica
framework, emission spectra of the complex in mesostructured and amorphous thin films were
compared. The observed emission maxima were nearly identical for the structured (λmax = 615
nm) and unstructured (λmax = 614 nm) films, indicating that the molecule was incorporated
into the silica region in both cases. To study electron transfer from the Ru donor to the methyl
viologen acceptor, luminescence decay traces and luminescence spectra were collected for the
electron donor in the presence of varying concentrations of the electron acceptor. Electron
transfer was verified by observing a decrease in the luminescence lifetime of the electron donor
as the concentration of the acceptor increased. Because the electron donor and acceptor are
confined to separate regions, electron transfer occurs through tunneling, and the electron
transfer rate decreases exponentially with the donor–acceptor distance.

Luminescence lifetime data for the Ru donor were collected experimentally, and a theoretical
model was used to fit the experimental data in order to calculate a value of k0, the contact
quenching rate, as well as β, the decay constant for the contact quenching rate. A calculated
value of β = 2.5±0.4 Å−1 demonstrated that mesostructured silica is a highly insulating material.
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(2) Molecular Machines that Control Mass Transport through Nanopores
Molecules that undergo large amplitude motions in response to a designed stimulus can be
used to do useful work when they are attached to the exterior surfaces or pore interiors of
mesoporous silicate materials. One primary utility of machines supported on mesoporous
silicates is controlled release applications: the machines are designed to block the nanopores
in one configuration to trap guest molecules, but unblock the nanopores in another
configuration so that the guest molecules can be released on command. Controlled release
systems supported on mesoporous silicate materials include those that rely on the photo-driven
dimerization of coumarin molecules,74,75 reductive cleavage of nanoparticle caps,76,77 the
photoisomerization of azobenzene derivatives,78,79 and also the switching motion of
supramolecular machines called nanovalves.80–87 Nanovalves are machines based on [2]
rotaxanes or [2]pseudorotaxanes; the functionality of these devices results from the switching
motion of a moveable ring component that slides along a tethered stalk in response to light,
83 pH,84 redox,85,86 or competitive binding82 activation. A related motif is found in a different
class of supramolecular controlled-release machines called snap-tops, which can be designed
to respond to different stimuli including enzymes.88

Snap-tops based on [2]rotaxanes can be assembled onto the surface of mesoporous silica
nanoparticles to achieve devices that are capable of encapsulating guest molecules within the
nanopores and releasing them on command. Snap-top systems contain a triethylene glycol
thread encircled by an α-cyclodextrin (CD) macrocycle that is held in place by a cleavable
stopper; when intact, the bulky macrocycle traps guest molecules within the pores, but the
contents can be released upon cleavage of the stopper and dethreading of the CD. The
preparation of snaptops is a step-wise process: beginning with solvent-extracted mesoporous
silica nanoparticles, amine linkers are attached and the amine functionalized material is then
treated with a triethyleneglycol monotosylated monoazide thread to achieve an azide-
terminated surface. The empty nanopores are then loaded with guest molecules by diffusion,
and the particles are then incubated with CD, which threads onto the triethylene glycol stalks
to block the nanopores. Finally, bulky stoppers are chemically attached through Cu(I)-
catalyzed azide–alkyne cycloaddition. Snap-tops have a divergent synthetic design that enables
facile preparation of a wide variety of systems with different modes of activation: the azide
functionality serves as a handle onto which various stoppering units with different reactivities
can be attached. In one study, snap-tops designed to respond to enzymes were prepared on the
surface of mesoporous silica nanoparticles, and their ability to release guest molecules upon
activation by porcine liver esterase (PLE) was demonstrated.88 The operation of the system
was verified using luminescence spectroscopy: rhodamine B (RhB) was loaded into the pores,
and the release of the dye into solution was monitored as a function of time. When an adamantyl
ester stopper was attached, an increase in RhB luminescence was observed following the
addition of PLE, indicating that the guest molecules were successfully released following
cleaveage of the stoppers by PLE. Snap-top systems that were stoppered with adamantyl amide
units showed no release of RhB upon the PLE, a result consistent with enzyme-specific
hydrolysis of the adamantyl ester stoppers (Fig. 3).

A second type of molecular machine called a “nanoimpeller” has been developed for the
photocontrolled transport of molecules through and out of the mesopores.79,89 It was made
possible by immobilizing an active molecule having photoresponsive behaviors such as
azobenzene derivatives to the mesostructured silica framework. Detailed photophysical studies
on cis–trans isomerization of azobenzenes in nanostructured silica have been reported.90,91

The bifunctional strategy68,70,72,73 was used to attach a small azobenzene to the interiors of
the pores templated by surfactant. This method involved the coupling reaction of the
azobenzene with a silane linker, isocyanatopropylethoxysilane followed by cocondensation
with the TEOS silica precursor. 92 In the surfactant-removed form, particles contained
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azobenzenes with one side bonded to the inner pore walls and the other free to undergo
reversible isomerization which creates a large amplitude wagging motion capable of
functioning as nanoimpellers to release pore contents from the particles (Fig. 4).

Photo-driven expulsion of molecules was monitored by luminescence spectroscopy of RhB.
89 The fluorescence intensity of the probe released into water was recorded as a function of
time. No dye was released from unexcited particles. When the particles were irradiated with
413 nm light, a wavelength where both cis and trans isomers have almost the same extinction
coefficient, the dyes were released out of the pores and the increase of fluorescence was
recorded. Based on the successful operation of the impeller in water, use of nanoimpeller-based
silica particles as an on-demand drug delivery system has been demonstrated in living cells,
89 which will be described in the next section.

IV. Bioapplications
Mesoporous silica particles that are <300 nm in diameter are ideal for biomedical applications.
Owing to the versatility of incorporating multiple functionalities to the nanoparticles and the
biocompatibility of silica, these materials have been successfully used as gene transfection
reagents, cell markers, and carriers of molecules.44,93–95 Recent advancements in modifying
the nanoparticles show that they can have dual-imaging functionalities, target-specific cells,
and release anticancer drugs on command.

(1) Uptake of Particles
Several studies have shown that mesostructured silica nanoparticles are able to undergo cellular
uptake without inducing cytotoxicity. 44,45,96 Various factors contribute to the cellular uptake
efficacy of the materials, namely the particle size, the dispersibility in aqueous solution, and
the surface functional groups. When an aqueous suspension of the nanoparticles was added to
the mammalian cells, the uptake of the nanoparticles occurred in a relatively short time. By
using fluorescence microscopy, the mesoporous silica nanoparticles could be observed inside
the cells within 30 min of incubation. The nanoparticles were mainly located in the acidic
organelles such as the lysosomes, which has been observed for other types of nanoparticles as
well.50

(2) Imaging, Targeting, and Drug Delivery
Fluorescent silica nanoparticles have a great potential application for imaging, sensing,
targeting, and detection of molecules and single sells. The silica enhances the fluorescence and
lifetime of the dye molecules encapsulated inside and at the same time provides a surface that
can be easily functionalized with a variety of biomolecules.97–99

Magnetic core nanoparticles can be used for separation and purification of biomolecules, such
as DNA, RNA, and proteins. 98 This can be done by bioconjugation of recognition elements
onto the silica surface of the nanoparticles. The target molecules will interact with the
nanoparticles, which can be preferentially localized by exposure to a magnetic field.

The multifunctional iron oxide–mesoporous silica nanoparticles are designed for cancer cell-
specific delivery of hydrophobic anticancer drugs and have dual fluorescence and MR imaging
capability.50 For the imaging functionalities, organic dye molecules were used for fluorescence
imaging purposes and the iron oxide nanocrystals were used for MR imaging applications.
Fluorescent dye molecules were functionalized onto the iron oxide–mesoporous silica
nanoparticles using a co-condensation method.44,93,100 The MR contrast effect of the iron
oxide–mesoporous silica nanoparticles in solution and inside cells was tested using a clinical
MR imaging instrument. Superparamagnetic iron oxides are used as contrast agents in MR
imaging because of their negative enhancement effect on T2-weighted sequences.54,101–104
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As a result, the suspension or the cells containing the iron oxide–mesoporous silica
nanoparticles appeared dark in the T2-weighted MR image. The nanoparticles were used to
store and deliver water-insoluble anticancer drugs into cells.93 The porous materials were filled
with either camptothecin (CPT) or paclitaxel by mixing the nanoparticles in a DMSO solution
containing the drugs. The drug-loaded nanoparticles were then collected by centrifugation to
remove the supernatant and dried under vacuum before resuspending them in water. It was
observed that only small amounts of the stored drug molecules were released in the buffered
aqueous solution. However, once the drug-loaded nanoparticles were dispersed in the organic
solvents, all of the drugs were released from the mesopores. The nanoparticles alone were not
toxic to the cells at the concentrations used in the experiment, but the drug-loaded nanoparticles
caused apoptotic cancer cell death, as shown by Caspse3 cleavage.93 Based on these results,
the nanoparticles can potentially be used as a vehicle to store and deliver anticancer drugs that
are both highly toxic and water-insoluble into different types of cancer cells.

Folic acid was conjugated to the surface of the iron oxide–mesoporous silica nanoparticles in
order to introduce the targeting functionality.105 The effect of folic acid modification on the
cellular uptake of nanoparticles was demonstrated using the PANC-1 cancer cells and the HFF
fibroblasts. Although the use of folic acid as a targeting ligand may have limitations for in
vivo experiments, its use in vitro can be demonstrated as a proof of concept to increase the
uptake and delivery of anticancer drugs into cells. The attachment of folic acid to the drug-
loaded nanoparticles is expected to increase the cellular uptake of nanoparticles and the
delivery of drugs to the PANC-1 cells that overexpress α-folate receptor (Fig. 5). Because the
nanoparticles can enter both PANC-1 and HFF, the cytotoxicity of the drug-loaded
nanoparticles was observed for both cell lines. However, there was a noticeable difference in
the cytotoxicity of folate-modified drug-loaded nanoparticles to PANC-1 cells, which
correlated with the increased particle uptake. On the other hand, the cytotoxicity between the
folate-modified and the unmodified drug-loaded nanoparticles was similar for the HFF because
these cells do not overexpress the receptors.

(3) Nanoimpeller-Functionalized Silica Particles for Photocontrolled Cell Apoptosis
Nanoimpeller-functionalized silica described has been demonstrated to deliver and release
anticancer drugs into living cells under photocontrol.89 The PANC-1 cancer cells were treated
with a suspension of the particles loaded with the anticancer drug CPT. After 3 h of incubation,
the cells were washed with buffer to remove the particles that were not taken up by the cells.
The cells containing the drug-loaded particles were either left in the dark or illuminated for 5
min with a laser light at different wavelengths, and then examined by confocal microscopy.
For the fluorescence imaging, the irradiated cells were double stained with a 1:1 mixture of a
PI and Hoechst 33342 dye to confirm that the cell death resulted from the CPT release. When
the treated cells were irradiated with 413 nm light, a wavelength that produces a continuous
cis/trans isomerization of azobenzenes, the CPT molecules were released out of the particles,
which induced nuclear fragmentation and cell death. In the dark, however, the CPT remained
inside the particles and the cells were not damaged (Fig. 6). No cell apoptosis was observed
also when they were irradiated with 676 nm light, a wavelength that the azobenzenes do not
absorb. A cytotoxicity assay of the particles showed that cell survival decreased about to half
after 10 min of the impeller activation with ~0.1 W/cm2 at 413 nm.

V. Summary
Silicate materials prepared by sol–gel chemistry are versatile frameworks that can be
derivatized with various active molecules ranging from biological entities to molecular
machines. The materials can be synthesized in different forms including bulk monoliths, thin
films, or nanoparticles. Because of the mild conditions associated with the sol–gel process,
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living cells and other biomolecules can be encapsulated within the silica matrix and the
biological activities of the dopants are preserved despite immobilization inside the glass. The
sol–gel process can also be tailored to allow for the incorporation of inorganic nanocrystals at
the core of silica nanoparticles. Silica nanoparticles embedded with superparamagnetic iron
oxide nanocrystals have been prepared, and these materials are useful because they can be
externally manipulated using magnetic fields and can also act as MR imaging contrast agents.

The use of surfactants to template mesostructure within silica thin films and nanoparticles has
opened up a host of applications for sol–gel materials. The mesostructure that is generated
when surfactants are used contains spatially separated regions that are physically and
chemically different from one another. These differences allow different dopant molecules to
be selectively localized in specific locations and multiple types of molecules can be doped into
the material simultaneously. Various strategies exist for deliberately placing dopant molecules
in specific regions of the mesostructure. These strategies have been used to derivatize
mesostructured thin films with different donor and acceptor molecules that exhibit photo-
induced energy or electron transfer capabilities.

Mesoporous silica materials are also useful supports for molecular machines that undergo large
amplitude motions in response to a designed stimulus. The existence of nanopores makes these
materials useful for controlled release applications, where molecular machines can be used to
control the entrances to pore orifices and operate by releasing encapsulated guest molecules
on command. Nano-impellers based on azobenzene derivatives and supramolecular snap-tops
are two examples of controlled release mechanisms that respond to light or enzyme activation,
respectively.

The biological compatibility of silicate materials extends beyond their ability to encapsulate
biomolecules: it has been demonstrated mesoporous silica nanoparticles are nontoxic to cells
and undergo cellular uptake by endocytosis. This type of biological compatibility is one
property that makes mesoporous silica materials popular candidates for drug delivery and other
biomedical applications. While the nanoparticles themselves are nontoxic, they can be loaded
with water-insoluble anticancer drugs and used to deliver the drugs into cells to induce
apoptosis. By making modifications to the nanoparticles, steps can be made to enhance the
sophistication of nanoparticles as drug delivery agents. One such modification involves the
attachment of targeting moieties to the surface of the nanoparticles to enhance their uptake by
cancer cells in relation to that of noncancerous cells. It has also been demonstrated that particles
modified with photoresponsive nanoimpellers can be used to deliver drug molecules to cells
under photocontrol. In general, unmodified silica is a stable, inert, and generally inactive
material. However, it can be derivatized by a range of active molecules to produce an immense
range of interesting and useful functions.
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Fig. 1.
Transmission electron microscope images of iron oxide (left), silver (middle), and gold (right)
nanocrystals embedded within the mesoporous silica nanoparticles.50
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Fig. 2.
Spatial separation of electron transfer pairs is achieved by doping the molecules into different
regions of a mesostructured film. Photo-induced electron transfer from the Ru donor to the
methyl viologen acceptor occurs through tunneling.
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Fig. 3.
Snap-tops attached to the surface of mesoporous silica nanoparticles are able to store guest
molecules within the pores while intact. Guest molecules are released upon selective cleavage
of ester-linked adamantyl stoppers by porcine liver esterase (PLE).
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Fig. 4.
Azobenzene-derivatized mesostructured silica particles loaded with guest molecules and
release of the molecules from the pores by the back-and-forth wagging motion of light-
activated azobenzenes.
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Fig. 5.
Fluorescence microscope images of particle uptake into cells. HFF treated with (a)
nanoparticles or (b) folate-modified nanoparticles. PANC-1 treated with (c) nanoparticles or
(d) folate-modified nanoparticles. Increased uptake of the folate-modified nanoparticles was
observed for the PANC-1 cells (overexpressed folate receptors), but not on the HFF. Red
fluorescence: membrane stained with WGA-Alexa Fluor 594; blue fluorescence: nuclei stained
with DAPI; green fluorescence: nanoparticles. The fluorescence of DAPI is increased by ~20-
fold when it binds to the nucleic acids in the nucleus. WGA-Alexa Fluor 594 binds to the
glycoproteins in the cell membrane.50
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Fig. 6.
Confocal fluorescence microscope images of the PANC-1 cancer cells that were treated with
a suspension of the nanoimpeller-functionalized particles loaded with the camptothecin (CPT),
kept in the dark (left) and 5 min illuminated at 413 nm of a light (right). Photoactivated impellers
released the CPT from the particles inducing cell apoptosis (right) while unexcited machines
did not cause the CPT release and cells were intact (left). Scale bar: 30 μm.
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