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SUMMARY
Additive measurement errors and pooling design are objectively two different issues, which have
been separately and extensively dealt with in the biostatistics literature. However, these topics usually
correspond to problems of reconstructing a summand’s distribution of the biomarker by the
distribution of the convoluted observations. Thus, we associate the two issues into one stated problem.
The integrated approach creates an opportunity to investigate new fields, e.g. a subject of pooling
errors, issues regarding pooled data affected by measurement errors. To be specific, we consider the
stated problem in the context of the receiver operating characteristic (ROC) curves analysis, which
is the well-accepted tool for evaluating the ability of a biomarker to discriminate between two
populations. The present paper considers a wide family of biospecimen distributions. In addition,
applied assumptions, which are related to distribution functions of biomarkers, are mainly
conditioned by the reconstructing problem. We propose and examine maximum likelihood
techniques based on the following data: a biomarker with measurement error; pooled samples; and
pooled samples with measurement error. The obtained methods are illustrated by applications to real
data studies.

Keywords
deconvolution; design of experiments; Fourier inversion; infinitely divisible distribution;
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1. INTRODUCTION
One of the main issues of epidemiological research for the past several decades has been the
relationship between biological markers (biomarkers) and disease risk. Commonly, a
measurement process yields the operating characteristics of biomarkers. However, the high
cost associated with evaluating these biomarkers as well as measurement errors corresponding
to a measurement process can prohibit further epidemiological applications. When, for
example, analysis is restricted by the high cost of assays, following Faraggi et al. [1], we suggest
applying an efficient pooling design for collection of data. In order to allow for the instrument
sensitivity problem corresponding to measurement errors, we formulate models with additive
measurement errors. Obviously, these issues request assumptions on a biomarker distribution,
under which operating characteristics of a biomarker can be evaluated. In this paper, we show
that the distribution assumptions are related to reconstructing problems and can be formulated
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in terms of characteristic functions. To this end, we assume a wide family of biospecimen
distributions. The considered cases associate the measurement errors issue and evaluation
based on pooled data into one stated problem.

The existence of measurement error in exposure data potentially affects any inferences
regarding variability and uncertainty because the distribution representing the observed data
set deviates from the distribution that represents an error-free data set. Methodologies for
improving the characterization of variability and uncertainty with measurement errors in data
are proposed by many biostatistical manuscripts. Thus, the model, which corresponds to
observing a biomarker of interest plus a measurement error, is not in need of extensive
description. However, note that, since values of a biomarker are functionally convolute with
noisy measurement errors, usually distribution functions of measurement errors are assumed
to be known. Moreover, on account of the complexity of extracting biomarker distribution from
observed convoluted data (say deconvolution), practically, normality assumptions related to
biomarker distribution are assumed. Besides, parameters of an error distribution can be
evaluated by applying an auxiliary reliability study of biospecimens (e.g. a cycle of
remeasuring of biospecimens: Schisterman et al. [2]).

Another stated problem dealing with the deconvolution is the exploration based on pooled data.
Without focusing on situations where pooled data is an organic output of a study, we touch on
pooling in the context of the design issue. The concept of pooling design is extensively dealt
with in the statistical literature starting with publications related to cost-efficient testing of
World War II recruits for syphilis. In order to reduce the cost or labor intensiveness of a study,
a pooling strategy may be employed whereby 2 or more (say p) individual specimens are
physically combined into a single ‘pooled’ unit for analysis. Thus, applying pooling design
provides a p-fold decrease in the number of measured assays. Each pooled sample test result
is assumed to be the average of the individual unpooled samples; this is most often the case
because many tests are expressed per unit of volume (e.g. [1,3,4]). Weinberg and Umbach
[5] introduced pooling as a means to estimate odds ratios for case-control studies. Although
pooling design has been widely used in biological and other practice, methods for analysis of
pooled data from such experiments have not been fully and well developed in the literature,
except for certain special cases (e.g. Faraggi et al. [1] considered normal and gamma cases).
This is, perhaps, partly because, for a general distribution of a biomarker, the likelihood
methods based on pooled data may not be feasible since the distribution of the averages involves
convolution of p random variables of a biomarker distribution.

The purpose of the present paper is to develop a general methodology for reasonably efficient
estimation of a biomarker distribution based on data with measurement errors and/or pooled
biospecimens. By utilizing the maximum likelihood technique, which is founded on
characteristic functions, we consider an approach that associates the measurement error and
the pooled data issues into one stated deconvolution problem. Thus, the proposed approach
provides possibilities to investigate new fields related to biospecimen evaluations (e.g. a
methodology for analysis of pooled data with measurement errors). For example, by applying
real data, we can address issues such as whether pooling increases measurement errors, whether
a physical executing of pooled data leads to errors, etc.

We believe that the demonstrated focusing on estimation of the receiver operating characteristic
(ROC) curves will assist in practical applications of the methods developed in the present paper.
An important step in a biomarker’s development is the evaluation of its discriminating ability.
The ROC curves are commonly estimated for this purpose (e.g. [6-10]). The most commonly
used global index of diagnostic accuracy is the area under the ROC curve (e.g. [11]). Values
of the area under the ROC curve close to 1 indicate that the marker has high diagnostic accuracy,
while a value of 0.5 indicates a noninformative marker that does no better than a random (fair)
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coin toss. In the case of normal-distributed data, Schisterman et al. [2] proposed a method to
obtain the adjusted area under the ROC curve with correction for measurement error. Several
authors have proposed pooling as a way to cut costs in the evaluation of biomarkers and have
evaluated ROC curve analysis when dealing with such data (e.g. [1,3,4]). In the context of
estimation of ROC based on data with measurement error and pooling mixtures, we analyze
biomarkers from a distribution family (which includes normal distributions) that satisfy
conditions related to the ability of deconvoluting (reconstructing) the target distribution.

The paper is organized as follows. Section 2 details the formal statement of the problem and
a general methodology of estimation of a biomarker distribution based on convoluted data. We
consider the area under the ROC curve in Section 3. To display several special aspects of the
considered issue (e.g. robustness of the proposed method), Section 4 presents the results of
Monte Carlo simulations. By applying the proposed technique to real pooled data, Section 5
illustrates, ROC curve evaluations. The issue of the measurement error in an actual
epidemiological study is deliberated in Section 6. We exemplify the combined case regarding
real pooled data with measurement errors in Section 7. Section 8 concludes the paper with
several remarks.

2. FORMALIZATION AND METHOD
Let X and Y be measurements of a biomarker of interest, where X and Y are independent random
samples of the disease and healthy populations, respectively. In accordance with the presented
issue, practical constraints force us to weigh up the case with the observed samples in the form
of (Z X, ZY):

(1)

j = 1,..., n, k = 1,..., m, where Xi are independent identically distributed (i.i.d.) random variables
with density function fX, Yi are i.i.d. random variables with density function fY, p and q are the
pool sizes in cases and controls, respectively, εXj, εYk are measurement errors (i.i.d. random
variables, which have density functions fεX and fεY, respectively), and J = 0, 1 is a known
indicator function that corresponds to the presence or absence of measurement error in the
model. Mode (1) represents the mixture of notations related to the pooling design and the effect
of measuring sensitivity (e.g. [2-4]). Thus, for example, the situations with {p = 1, q = 1, J =
1}, {p>1, q>1, J = 0}, and {p>1, q>1, J = 1} coincide with the classical additive measurement
error-stated problem, the pooling model definition, and the combination of pooling and additive
measurement error statements, respectively (the case of { p>1, q>1, J = 1} can also be
interpreted in terms of the presence of pooling errors). And therefore, model (1) generalizes
different sample situations of biomarkers, where data can be collected in pooled sets, which
are subject to additive measurement error.

The discriminating ability of biomarkers is commonly evaluated using the ROC curve, which
is usually obtained by

(2)

where FX and FY are the distribution functions of X1 and Y1, and F-1 is the inverse function of
F (e.g. [9]). To this end, estimation of the distribution functions of X and Y is necessary.
However, estimation based on the sample (ZX, ZY) instead of (X, Y) leads to the problem of
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reconstructing a summand’s distribution by the distribution of their sums plus the measurement
error. Formally, the main focus is then to estimate fX and fY based on estimators of density
functions fZX and fZY of random variables  and , where fZX and fZY are the p+J- and q+J-
folded distributions, respectively, i.e.

(3)

This estimation problem is known as a deconvolution problem (e.g. van Es et al. [12]). Note
that not all distribution functions can be reconstructed.

By centering in the analysis of characteristic function and deconvolution theory, Prokhorov
and Ushakov [13] proposed necessary and sufficient conditions in the probability context on
the distributions of X and Y such that their original distribution function can be reconstructed.
Note that, even if density functions fX and fY can be theoretically reconstructed, the problem
of estimation of fX and fY based on (Z X, ZY) is very complicated. For example, if we define
estimators of fX and fY based on the empirical characteristic functions, then a complex definition
of a p-root should be introduced.

A general class of the suitable distribution functions is a set of infinitely divisible distribution
functions. At this rate, characteristic functions of biomarkers X and Y are uniquely determined
by the characteristic functions of ZX, ZY (e.g. Lukacs [14]). The infinitely divisible distributions
encompass many commonly used distributions such as Normal, Cauchy, Exponential, Gamma,
etc. (e.g. [14]). In the context of the parametric statement of the considered problem, given the
infinitely divisible assumption, characteristic functions can be represented in the Lévy-
Khinchine canonical form as

where μ is a real unknown constant, while K (u) is a nondecreasing, bounded and known (up
to an unknown vector of parameters) function such that at the argument u = -∞ this function
is equal to zero and the integrand in ϕ(t) is defined for u = 0 by continuity to be equal to -t2/2.
Therefore, without loss of generality and for the sake of clarity of exposition, we assume that
random variables X and Y have stable distributions with characteristic functions

(4)

where the unknown parameters α, β, γ, and a are the characteristic exponent, a measure of
skewness, the scale parameter, and the location parameter, respectively.

Definition (4) is quite general and covers many practical distributions (e.g. [15-17]), for
example, the normal, α = 2; the Cauchy, α = 1, and the stable law of characteristic exponent,

 (i.e. changing of values of the parameters can provide a modification of the classical type
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of a density function corresponding to (4)). Although we consider the parametric approach to
describe the characteristic functions, estimation of the unknown parameters by using directly
density functions corresponding to the characteristic functions (4) is difficult; it is complicated
by the fact that their densities are not generally available in closed forms (e.g. [14, p. 106]),
making it difficult to apply conventional estimation methods (e.g. [17, p. 188]). Moreover, the
stated issue leads to the necessity of finding the estimators based on the pooled data, and
therefore, under the deconvolution problem, applying classical parametric methods is a
strongly complex problem.

Since the Fourier inverse approach is a widely accepted method for the analysis of convolution
and deconvolution of probability functions (e.g. [18-23]), we utilize the following well-known
proposition (e.g. [17]).

Proposition 2.1
Let ϕζ(t) = E exp(itζ) be the characteristic function of a random variable ζ, absolutely integrable.
Then the corresponding distribution function Fζ is absolutely continuous, its density function
fζ is bounded and continuous, and

And hence by applying Proposition 2.1, we have the log-likelihood function based on the
observed data

(5)

where Z = ZX, ZY; nZX = n, nZY = m; sZX = p, sZY = q; and ϕεZX = ϕεX, ϕεZY = ϕεZY are the
characteristic functions of εX, εY , respectively. Assuming that the distributions of εX, εY are
known (perhaps, estimated by applying additional samples [2]), the maximum likelihood
estimators are

(6)

where ε is arbitrary small and positive. Then, as is usual for maximum likelihood estimators
(e.g. [24]), estimators (6) are consistent and asymptotically normal as n → ∞ and m → ∞ (see
for details, DuMouchel [15, p. 952]). The asymptotic variances of {α̂, β ̂, γ ̂, â}, which are the
inverses of the Fisher information matrices, are presented in the next section.

By applying (6) to Proposition 2.1, we obtain the estimators of the density functions of the
biomarkers in the form

(7)

Vexler et al. Page 5

Stat Med. Author manuscript; available in PMC 2009 October 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Moreover, if additional conditions E ln(1+|X1|)<∞, E ln(1+|Y1|)<∞ hold, via Theorem 1.2.4 of
Ushakov [17, p. 5], we have the estimated distribution functions

(8)

where Im denotes the imaginary part of a function. Estimators (7) or (8) directly provide an
estimator

(9)

of the ROC curve (2).

Remark
Paulson et al. [16], Heathcote [25], Koutrouvelis [26], and Ushakov [17] proposed estimations
of functions parameters of the stable state laws characteristic founded on the method of
moments and projection methods (the integrated squares error estimator). This idea was applied
to testing problems, for example, by Koutrouvelis and Kellermeier [27]. These methods of
estimation are also applicable at our rate. Since pooling sizes p and q are finite, properties of
these estimators (see Ushakov [17, pp. 188-197]) are preserved in the considered statement of
the problem.

Estimation procedures similar to the ones proposed in this paper have been investigated by
Feuerverger and McDunnough [28] in a different context.

3. ESTIMATION OF THE AREA UNDER THE ROC CURVE
The area under the ROC curve is the most commonly used summary measure of diagnostic
effectiveness ([6-9,11,29], etc.). In fact Bamber [11] showed that the area under the ROC curve
is equal to P{X>Y}, with values close to 1, indicating high diagnostic effectiveness. In the case
of normal and gamma-distributed data, parametric approaches to estimation of the area based
on the observed partial sums have been discussed by several authors (e.g. [1] as well as [3]).
Since we observe samples not from target densities fX and fY but from their multiple
convolutions, obtaining an estimator of the area based on classical parametric methods is a
complex problem. For this reason, most parametric approaches have focused on normal or
gamma densities. Note that a solution of this problem also requires that the densities fX, fY and
fZX, fZY have one-to-one mapping.

We consider two ways of representing the area. Define A ≡ P{X>Y} and then directly we have

(10)

However, if the expectation E ln(1 + |X1 - Y1|)<∞, by Theorem 1.2.4 of Ushakov [17, p. 5], we
obtain a simpler expression

(11)
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Thus, combining (10) with (7) or (11) with (4), (6) yields the estimator Â. Since the maximum
likelihood estimators of the unknown parameters are utilized, we can evaluate the asymptotic
distribution of Â by applying the usual Taylor expansion. Following Kotz et al. [30, p. 122],
we conclude that if the sample sizes n, m satisfy 0< limn+m → ∞ m/(n + m) = ρ<1, then

(12)

where the asymptotic variance  is

where  and  are the Fisher information matrices of the estimators {α̂X, β ̂X, γ ̂X,
a ^X} and {α̂Y, β ̂Y, γ ̂Y, a ^Y}, respectively, i.e.

(In the case of J = 0, Fisher information matrices  and  are fully investigated
by DuMouchel [31].)

4. MONTE CARLO SIMULATION STUDY
4.1. Normally distributed data

To apply the proposed method, the assumption of normal distribution is not necessary.
Obviously, in the case where J = 0 in (1) and measurements of a biomarker are known to be
normally distributed, the technique presented by Faraggi et al. [1] provides a more efficient
estimation of an ROC than the approach based on stable distribution. Here, we perform the
following Monte Carlo simulations. Let us assume that one believes the observations are
normally distributed and chooses the method of [1]. Alternatively, we apply ROC curve
estimation as proposed in Section 2. However, the true diagnostic markers satisfy (1), where

J = 0, , , and i = 1,..., N. We ran 2000 repetitions of the sample { , ,
1≤j, k≤n} at each argument u = -3, -2.55,..., 2.44, 2.89, 3.356 of the distribution functions FX,
FY, and pooling group size p = q = 2, 4, 5 (where n = N/p). Denote the ratios
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where ā is the Monte Carlo expectation of a; estimators F̂X, F̂Y and ,  are defined by (8)
and [1], respectively; and Π is the standard normal distribution function. In this case, Table I
presents the relative efficiency of the proposed estimation in terms of ΔX and ΔY.

Thus, when the information regarding the biomarker distribution is ignored (or called into
doubt), the proposed method provides less efficient estimation of the tails belonging to the
distributions than that based on Faraggi et al.’s [1] approach. In accordance with Table I, this
loss in efficiency asymptotically decreases as N → ∞.

In this simulation study, the AUC is equal to A = P{X>Y}≃0.714. Following (12), the variance
of the estimator Â can be approximated by . In the cases of (N =
300, p = 2), (N = 200, p = 2), and (N = 100, p = 2), ’s were estimated by substituting of

θ(X) and θ(Y) by [α̂X, β ̂X, γ ̂X, a ^X] and [α̂Y, β ̂Y, γ ̂Y, a ^Y], and the Monte Carlo means  (and

variances  were 0.1383 (0.1387), 0.1431 (0.1472), and 0.1474 (0.1685),
respectively. (By Table 1 of [1], we can approximate

 and

 when the unknown parameters are estimated
under executed normal distributional assumptions.) Thus, when pooled data have less than 50
observations (ZX, ZY), application of the asymptotic result (12) can lead to biased estimations
of Ã’s variance.

Note that, when the information regarding normal distributions of X and Y in (1) is accepted,
the special form of the characteristic function (4) leads to the estimation scheme that coincides
with the method of Faraggi et al. [1].

4.2. Robustness
The simulations thus far assumed that the samples followed normal distributions. In order to
illustrate the robustness of our methodology, in a similar manner to the previous paragraph,
we perform the Monte Carlo simulations based on X’s and Y ’s from t-distributions with degrees
of freedom (df) and means 0 and 0.8, respectively. Figure 1 depicts graphs

 and  that are the Monte Carlo expectations of
the estimators of the ROC curve (1 - FY (u), 1 - FX (u)), which u = -3, -2.55 ,..., 2.44, 2.89,
3.356.

In comparing with Table I, for example, when p = 2 and df = 5, ΔX (u) and ΔY (u) are close to
0.989 for u≤-2 and u≥2.4, whereas 0.351≤ΔX (u), ΔY (u)≤0.900 for u ∈ (-2, 2.4). Thus, we can
conclude that the proposed method is more robust than the approach based on normal
distributional assumptions.

5. POOLING STUDY
We exemplify the proposed methodology for the pooling design (i.e. J = 0 in (1)) from a case-
control study of a biomarker of coronary heart disease. The interleukin-6 biomarker of
inflammation has been suggested as having potential discriminatory ability for myocardial
infarction (MI). However, since the cost of a single assay is 74 dollars, examination of its
usefulness has been hindered. Hence, it is reasonable to investigate the effectiveness of pooling.
In this study, the inflammation marker interleukin-6 (measured in mg/dl) was obtained from
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n = 40 cases who recently survived an MI and from m = 40 controls who had a normal rest
electro cardiogram (ECG), were free of symptoms and had no previous cardiovascular
procedures or MIs. In order to evaluate the success of the cost-efficient pooling design, blood
specimens were randomly pooled in groups of p = q = 2 for the cases and the controls separately,
and interleukin-6 was re-measured and treated as the average of the corresponding individual
interleukin-6. The objective of the study is to evaluate, in the context of ROC curve analysis,
the discriminating abilities of the biomarker in identifying patients at high risk of coronary
heart disease. Throughout the section, X and Y represent, respectively, individual
interleukin-6 measurements from a diseased and a healthy subject.

5.1. The unpooled (full) data
Preliminarily note that, empirically, the mean and standard deviation of X and Y are (X̄ = 4.288,
σ‾X = 2.176) and (Ȳ = 1.846, σ‾Y = 1.366), respectively. Consider the problem of finding an
ROC estimator based on the full data in the context of Section 2, where p = q = 1, J = 0, and
the characteristic functions are represented in terms of (4). “R: A Programming Environment
for Data Analysis and Graphics” is utilized, in order to solve the optimization problem (6),

where we define the initial parameters for (α̂X, β ̂X, γ ̂X, âX) and (α̂Y, β ̂Y, γ ̂Y, a ^Y) as (2, 0, ,

X̄) and (2, 0, , Ȳ). (Schematic R codes are mentioned in the Appendix A.) As a result, we
have (α̂X, β ̂X, γ ̂X, a ^X) = (1.990, -0.414, 2.309, 4.288) and (α̂Y, β ̂Y, γ ̂Y, a ^Y) = (1.405, -0.901,
0.629, 2.201). Hence, the estimated density of X is very close to normal and the nonparametric
test results presented in Table II coincide with this fact.

The estimation procedure (6), (8) leads to the estimators of the distribution functions of X and
Y, which are plotted in graphs (a) and (b) of Figure 2.

On the basis of (9), Figure 2(c) depicts the estimated ROC curve based on the empirical
distribution functions and the proposed estimators based on unpooled data.

According to the literature in Section 3, we calculate the area under the ROC curve using the
Wilcoxon U statistic as about 0.831 ± 0.046. By applying the proposed methodology, the area
is estimated to be 0.818. Therefore, biomarker interleukin-6 has strong discriminating ability
in identifying patients at high risk of coronary heart disease. At the same time, at this rate, the
proposed methodology is reasonable but not so necessary because, for example, nonparametric
techniques can be utilized. The results presented here will be compared with the following
outputs.

5.2. The pooled data
Empirical characteristics based on the pooled data are

 and . In a
similar manner, with p = q = 2, J = 0 in (1), we estimate (based on the pooled sample) the
parameters as (α̂X, β ̂X, γ ̂X, a ^X) = (1.997,-0.038, 2.439, 4.342) and (α̂Y, β ̂Y, γ ̂Y, a ^Y) =
(1.963,-0.410, 0.723, 1.701). Now, the estimated densities of X and Y are both approximately
normal density functions. For example, Table II presents nonparametric tests for normality of
ZY . The estimation procedure (8) yields the estimators of the distribution functions of X and
Y, which are plotted in Figure 2. Accordingly, Figure 2 also depicts the estimated ROC curve
based on the empirical distribution functions and the proposed estimation based on the pooled
data. By (11), we obtain Â = 0.841. In this way, we demonstrate that use of the proposed
methodology and the cost-efficient pooling design provides statistical conclusions similar to
the results based on full data.
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6. STUDY OF MEASUREMENT ERROR
In the context of a practical study, Schisterman et al. [2] proposed model (1) with normally
distributed X and Y, assuming p = q = 1, J = 1. We briefly describe the study as follows. A
thiobarbituric acid reaction substance (TBARS) is a biomarker that measures sub-products of
lipid peroxidation and has been proposed as a discriminating measurement between
cardiovascular disease cases (X) and healthy controls (Y). Blood samples, physical
measurements, and a detailed questionnaire on different behavioral and physiological patterns
were obtained from study participants. The cases are defined as individuals with MI. Due to
skewness of the original data, the transformation (TBARS)-2 was implemented in order to bring
the data distribution closer to normality. Empirical evaluations based on the transformed data
are n = 47, X̄ = 0.411, SD(X) = 0.260, and m = 891, Ȳ = 0.608, SD(Y) = 0.302. In order to
analyze the influence of measurement errors (εX, εY ), additional data were obtained by an extra
sampling. A reliability study was conducted on a convenience sample of 10 participants.
Twelve-hour fasting blood samples were obtained in seven women and three men over a period
of six months. The blood samples were obtained every month on the same day of each female’s
menstrual cycle and every month on the same calendar day for each male. Under the natural
assumption that the distribution functions of εX, εY are equal and normal, from the reliability
study we obtain that εX has zero mean and 0.0567 variance. Without correction for measurement
error, an estimator of A (the area under the ROC curve) based on ZX and ZY is 0.699, with the
estimated 95 per cent confidence interval being (0.616, 0.782). After correcting for the
measurement error, Schisterman et al. [2] obtained the adjusted area estimate to be 0.735, with
the 95 per cent confidence interval being (0.582, 0.888). Noting that the situation in which X
and Y have normal distributions is the special case of the proposed methodology, in a similar
manner to Section 5, we utilize the technique from Sections 2, and 3. We have (α̂X, β ̂X, γ ̂X,
âX) = (1.349, -1.002, 0.013, 0.430) and (α̂Y, β ̂Y, γ ̂Y, âY) = (1.888, -0.103, 0.010, 0.597). By (9),
Figure 3 graphically displays these results, which lead to Â = 0.831, with the estimated
asymptotical 95 per cent confidence interval being (0.664, 0.998).

Therefore, the correction for measurement error and the use of the proposed method increased
the estimator of the area under the ROC curve and shifted the confidence interval to include
much higher values. Use of the uncorrected results underestimates the effectiveness of TBARS
as a biomarker capable of discriminating between subjects with and without cardiovascular
disease.

7. MIXED STUDY
Let us consider the study that is described in Section 5 with J = 1 in model (1). Assume that
measurement errors εX, εY have identical distribution functions. Therefore, the fulfillment of
the sampling strategy of the study yields observations

where ε, ε’, ε”, and ε”’ are i.i.d. random variables. It is natural to assume that ε, ε’, ε”, and ε”’
have characteristic function ϕ(t; α, β, γ, a), which is defined by (4) with a = 0 (e.g. a distribution
function of ε is a normal with zero mean). Hence, the characteristic function of the observed
i.i.d. random variables
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is ϕT (t; α, β, γ) = exp(-γ|t|α(1 + iβtω(t, α)/|t|)-2γ|t/2|α(1-iβtω(-t/2, α)/|t|)). By virtue of the
proposed method (here,

is shown to be the log likelihood), we estimate the unknown parameters to be α̂=1.925,
β ̂=-0.981, γ ̂ = 0.162 and represent the estimated distribution function of the measurement errors
in Figure 4.

Since T and ε are not identically distributed, in this study, the issue of reconstructing the target
distribution, which is considered in Section 2, is also in effect. In this practical example, we
have considered the pooled data in the context of resampling to evaluate the problem related
to instrument sensitivity. Note that applying the obtained result as in Section 6 to the correction
of the ROC estimation does not provide palpable outcomes (Â = 0.831 is corrected up to 0.842).
However, the example of alternative use of pooling design makes sense in the aspect of
detection of the measurement error.

8. DISCUSSION
The paper demonstrates that the deconvolution issue is a very important field of practical and
theoretical biostatistics. Certainly, considerations of non-normal distributions by way of
reconstructed solutions of the deconvolution problem are reasonable topics. However, it is
necessary to allow for the fact that the class of appropriated distribution functions is bounded
by theoretical conditions related to the ability of reconstructing a target distribution. Due to
this reason, practically, we can consider the family of infinitely divisible distribution functions.

In the present manuscript, we apply the stable distribution functions, which are a valuable
subclass of infinitely divisible distributions. Even in the case of stable distributions, the
proposed maximum likelihood method extends the classical parametric approach, because, in
a sense, the classical type of the target distribution function is also estimated, i.e. for example,
if the α estimated by (6) is close to 2 or 1, we can conclude that the estimated density is
approximately normal or Cauchy, respectively. Besides, the considered density functions are
not generally available in closed analytical forms.

Modern statistical software (e.g. R, S-PLUS) provides simplicity in applying the proposed
methodology to the real data studies.
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APPENDIX A: SCHEMATIC R CODES
Without loss of generality and for the sake of clarity of exposition, we assume J = 0 and that
p is the pool size in (1). The characteristic function (4) of observations Z X (or ZY) can be coded
in the form

fi<-function(t,alpha,beta,gamma,a){

 if (alpha==1) w<-2*log(abs(t)/p)/pi else w<-tan(pi*alpha/2)

 return(exp(1i*a*t-(p^(1-alpha)*gamma*abs(t)˄(alpha))*(1+1i*beta*sign(t)*w))) }

where (alpha,beta,gamma,a) are parameters of the characteristic function of X (or Y)and p is a
known fixed parameter corresponding to the pool size. Following Proposition 2.1, we have the
density function

fs<-function(u,alpha,beta,gamma,a){

 integ1<-function(t) exp(-1i*u*t)*fi(t,alpha,beta,gamma,a)

 integ1R<-function(t) Re(integ1(t))

 integrate(integ1R,-Inf,Inf)[[1]]/(2*pi) }

Assume that L(alpha, beta, gamma, a) is the log likelihood function (5) based on fs at sample
Z. Denote LV<-function(r) -L(r[1],r[2],r[3],r[4])and estimate (alpha, beta,gamma,a) at Estim
$par, where

Estim<-optim(par=c(alpha0,beta0,gamma0,a0) ,LV,lower =c(alphal,betal,gammal,al), upper
= c(alphau,betau,gammau,au))

par, lower and upper are initial, lower and upper bound values for the parameters, respectively.
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Figure 1.
Comparison between the ROC curve based on the t-distribution functions of X and Y (curve
—) and the ROC estimators by (9) (- - -) and Faraggi et al. [1] (···).
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Figure 2.
Comparison between the empirical distribution functions of X, Y, the empirical ROC curve
(curves - - - - of the graphs (a)-(c), respectively) and the corresponding model-based estimators
(curves— and - · -), which are based on unpooled and pooled data, respectively.
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Figure 3.
Comparison between the ROC curve based on the empirical distribution functions of Z X and
ZY (- - -) and the adjusted ROC curve estimator (—).
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Figure 4.
Curves — and - - - present the estimated distribution function of measurement errors εj and
the empirical distribution function of observed random variables Tj, respectively.

Vexler et al. Page 17

Stat Med. Author manuscript; available in PMC 2009 October 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Vexler et al. Page 18
Ta

bl
e 

I
Th

e 
ra

tio
s o

f t
he

 M
on

te
 C

ar
lo

 v
ar

ia
nc

es
 re

la
te

d 
to

 th
e 

es
tim

at
or

s o
f F

X(
u)

 a
nd

 F
Y 

(u
)

N
 =

 1
00

, p
 =

 2
N

 =
 1

00
, p

 =
 4

N
 =

 3
00

, p
 =

 2

u
Δ Y

(u
)

Δ X
(u

)
Δ Y

(u
)

Δ X
(u

)
Δ Y

(u
)

Δ X
(u

)

-3
1.

99
9

2.
55

1
1.

97
6

2.
95

5
1.

77
5

1.
90

3

-2
.5

47
1.

63
8

1.
73

3
1.

06
5

1.
15

3
1.

59
1

1.
39

4

-2
.0

93
1.

03
4

1.
12

1
0.

89
1

0.
99

9
1.

08
7

1.
10

7

-1
.6

40
0.

99
0

1.
10

9
0.

99
5

0.
99

8
0.

99
0

1.
00

4

-1
.1

87
1.

07
5

1.
04

4
1.

21
5

1.
19

8
1.

03
9

1.
02

1

-0
.7

33
1.

16
6

1.
20

6
1.

40
7

1.
51

1
1.

16
2

1.
25

1

-0
.2

80
1.

25
5

1.
24

7
1.

60
7

1.
61

2
1.

29
9

1.
31

1

0.
17

3
1.

25
5

1.
27

8
1.

61
4

1.
71

1
1.

25
3

1.
32

1

0.
62

7
1.

16
6

1.
20

9
1.

41
6

1.
54

1
1.

09
9

1.
00

8

1.
08

0
1.

09
0

1.
10

7
1.

12
8

1.
11

9
1.

02
8

1.
01

1

1.
53

3
1.

02
2

1.
11

1
0.

92
3

1.
00

5
1.

00
1

1.
10

2

1.
98

7
1.

02
3

1.
03

5
0.

92
2

1.
01

2
1.

00
7

1.
01

4

2.
44

0
1.

38
5

1.
39

3
1.

35
1

1.
25

5
1.

25
5

1.
19

9

2.
89

3
2.

11
9

2.
42

2
2.

57
1

2.
48

2
1.

78
4

1.
89

8

3.
34

7
2.

68
9

3.
03

9
3.

03
6

2.
95

3
2.

05
3

2.
14

7

Stat Med. Author manuscript; available in PMC 2009 October 14.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Vexler et al. Page 19

Table II
Tests for normality of X and ZY ((a) and (b), respectively)

(a) (b)

Test statistic Value p-value Value p-value

Shapiro-Wilk 0.961368 0.1865 0.951419 0.3891

Kolmogorov-Smirnov 0.105298 >0.1500 0.130382 >0.1500

Cramer-von Mises 0.071906 >0.2500 0.057138 >0.2500

Anderson-Darling 0.461674 0.2489 0.373652 >0.2500
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