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Abstract
Typically data acquired through imaging techniques such as functional magnetic resonance imaging
(fMRI), structural MRI (sMRI), and electroencephalography (EEG) are analyzed separately.
However, fusing information from such complementary modalities promises to provide additional
insight into connectivity across brain networks and changes due to disease. We propose a data fusion
scheme at the feature level using canonical correlation analysis (CCA) to determine inter-subject
covariations across modalities. As we show both with simulation results and application to real data,
multimodal CCA (mCCA) proves to be a flexible and powerful method for discovering associations
among various data types. We demonstrate the versatility of the method with application to two
datasets, an fMRI and EEG, and an fMRI and sMRI dataset, both collected from patients diagnosed
with schizophrenia and healthy controls. CCA results for fMRI and EEG data collected for an auditory
oddball task reveal associations of the temporal and motor areas with the N2 and P3 peaks. For the
application to fMRI and sMRI data collected for an auditory sensorimotor task, CCA results show
an interesting joint relationship between fMRI and gray matter, with patients with schizophrenia
showing more functional activity in motor areas and less activity in temporal areas associated with
less gray matter as compared to healthy controls. Additionally, we compare our scheme with an
independent component analysis based fusion method, joint-ICA that has proven useful for such a
study and note that the two methods provide complementary perspectives on data fusion.

Index Terms
Biomedical signal analysis; canonical correlation analysis; electroencephalography; independent
component analysis; magnetic resonance; multimodal analysis
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I. Introduction
Biomedical imaging studies collect multiple measurements, e.g., functional magnetic
resonance imaging (fMRI),1 structural MRI (sMRI),2 electroencephalography (EEG),3 and
other covariates from the same participant. Each modality records specific facets of structure
or function and provides information that may either be unique or common to other modalities.
Typically, these modalities are studied separately, however, collectively analyzing modalities
promises to piece together different aspects of the brain providing new insights to help detect
and treat diseases; particularly appropriate for a disease like schizophrenia which impacts many
aspects of the brain (structure, networks, function, etc. as shown in [1]–[4]). Techniques for
combined analysis perform either data integration (based on simple co-registration or using
one modality to constrain the other) or data fusion (incorporating interactions among imaging
types) [5], [6]. Unlike data integration methods, which tend to use information from one
modality to improve the other, data fusion techniques incorporate both modalities in a
combined analysis, thus allowing for true interaction between the different data types. Brain
imaging data types, however, are intrinsically dissimilar in nature, making it difficult to analyze
them together without making a number of assumptions, most often unrealistic about the nature
of the data. Instead of entering the entire datasets into a combined analysis, an alternate
approach, which is used in data fusion techniques such as the independent component analysis
(ICA) based joint-ICA (jICA) method [7], is to reduce each modality to a feature corresponding
to a particular activity or structure and then to explore associations across these feature datasets
through variations across individuals [8].

In this paper, we introduce a feature-based fusion scheme based on canonical correlation
analysis (CCA) to identify linear relationships between two modalities. The multimodal CCA
(mCCA) method, we introduce is based on a linear mixing model in which each feature dataset
is decomposed into a set of components (such as spatial areas for fMRI/sMRI or temporal
segments for EEG), which have varying levels of activations for different subjects. A pair of
components, one from each modality, are linked if they modulate similarly across subjects.
Thus, CCA is used to find the transformed coordinate system that maximizes these intersubject
covariations across the two datasets, and based on these covariations, we determine the
associations between the components across modalities. The scheme is flexible as the
connections are based only on the linear mixing model and inter-subject covariances across
modalities and the modulation profiles of components are not constrained to be exactly the
same as in other approaches. The method is also invariant to differences in the range of the
data types and can be used to jointly analyze very diverse data types. Previously, CCA has
been used to identify spatial correlations to decompose fMRI data as in [9] and to analyze fMRI
data from multiple subjects as in [10]; however, using inter-subject covariances for multimodal
data fusion is a novel application of CCA.

In what follows, we first explain the fusion model and the procedure to perform mCCA. We
present simulation results to demonstrate the capabilities of the approach and then present
results for its application to real data. The first study demonstrates the application of the method
to fuse fMRI and EEG data from participants performing an auditory motor task. We also
demonstrate the fusion method on sMRI data and fMRI data from patients with schizophrenia
and healthy controls carrying out a sensorimotor task. The results demonstrate the promising
performance of the application of mCCA to multimodal fusion. Additionally, we compare the
fusion model and the performance of mCCA with that of jICA, which has been successfully
used to jointly analyze information from a number of data types [11]. We note that the mCCA

1fMRI is a noninvasive brain imaging technique that records neuronal activations by measuring blood-oxygen level changes in the brain.
2sMRI images the morphology of the brain mainly the white matter, gray matter, and cerebrospinal fluid.
3EEG records brain activity by measuring the brain’s electric field through the scalp.
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method relaxes a number of constraints imposed by the jICA method, thus promising to
discover associations across a larger network of areas, as demonstrated in our experiments. We
discuss the advantages and limitations of both methods and observe that they provide
complementary perspectives into the multimodal integration problem.

II. CCA for Data Fusion
In this section, we explain the proposed generative data fusion model and the modeling
assumptions in mCCA.

A. Generative Model for Data Fusion
We develop the following generative model for data fusion. Given two feature datasets X1 and
X2, we seek to decompose them into two sets of components, C1 and C2, and corresponding
modulation profiles (inter-subject variations), A1 and A2. The connection across the two
modalities can be evaluated based on correlations of modulation profiles of one modality with
those of the other. If the modulation profiles are uncorrelated within each modality, each
component can be associated with only one component across modalities. This one-to-one
correspondence aids in the examination of associations across modalities. The generative
model is thus given by

where Xk ∈ ℝN × Vk, Ak ∈ ℝN × D, Ck ∈ ℝD × Vk, Vk is the number of variables in Xk, N is the
number of observations in Xk and D is the min(rank(X1,X2)). The modeling assumptions imply
that the modulation profiles, A1d and A2d (d = 1, …, D) satisfy the following:

(1)

(2)

(3)

B. Canonical Correlation Analysis for Data Fusion
We propose to use CCA, which is a statistical tool for identifying linear relationships between
two sets of variables [12], to determine the inter-subject co-variances. CCA seeks two sets of
transformed variates such that the transformed variates assume maximum correlation across
the two datasets, while the transformed variates within each data set are uncorrelated. Thus,
CCA solves the following maximization problem:

to obtain canonical variates given by
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which satisfy the constraints given in (1)–(3). The solution involves constraining the two terms
in the denominator: PRX1PT and QRX2, QT to be identity and the constrained optimization
problem using Lagrange multipliers turns out to be a generalized eigenvalue solution, where
P and Q are the eigenvectors of the two matrices

where r is vector of eigenvalues or squared canonical correlations, RX1,X2 is the cross-

correlation matrix of X1 and X2 ( ), and RX1 and RX2, are the autocorrelation
matrices of X1 and X2, respectively. Thus, mCCA models the inter-subject covariations as the
canonical covariates obtained by CCA, and based on these covariations, the associated
components can be calculated using least-squares approximations given by

C. Related Work
Recently, there has been increased interest in the use of CCA for feature fusion in various
pattern recognition applications [13]–[17]. In [13], CCA is used to fuse features for handwritten
character recognition. Different kinds of features are extracted from the same handwriting data
samples and CCA is performed on them to obtain two sets of canonical features which are
combined to form a new feature set. This method not only finds a discriminative set of features
but also somewhat eliminates redundant information within the features. In [14], the same idea
is used in a block-based approach where the sample images are divided into two blocks and
canonical features are extracted which are then combined linearly to obtain better
discriminating vectors for recognition. The first two methods discussed above use CCA to
combine features obtained from a single modality whereas the next three methods involve data
from two modalities. A kernel based CCA approach for feature fusion is proposed in [15] for
ear and profile face based multimodal recognition. The kernel CCA approach allows for a
nonlinearly associated ear and face feature. In [16], CCA is used to fuse feature vectors
extracted from face and body cues to form a joint feature and then utilize the multimodal
information to discriminate between affective emotional states. In [17], CCA is used to fuse
features from speech and lip texture/movement to form audiovisual feature synchronization
which aids in speaker identification. Thus, CCA has been used to fuse two sets of features to
obtain a more a discriminative set of features for recognition problems. Our approach differs
from these methods in that it uses CCA to fuse information from two sets of features to discover
the associations across two modalities and to ultimately estimate the sources responsible for
these associations.

III. Comparison With Joint-ICA
Joint-ICA has been successfully used for the fusion analyses of fMRI, EEG, and sMRI data
[7], [18]. Similar to mCCA, jICA examines intersubject covariances of sources to discover
associations between feature datasets from different modalities, however, as we shall see in
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this section, jICA poses a more constrained approach to the data fusion problem. Next, we
briefly describe the jICA model and discuss the similarities and differences between the two
fusion methodologies.

The jICA fusion scheme discovers relationships between modalities by utilizing ICA to identify
sources from each modality that modulate in the same way across subjects. ICA is a popular
data-driven blind source separation technique and has been applied to a number of biomedical
applications such as for fMRI data in [19]. It is based on the generative model, X = AS, where
X is the mixture which is factorized into a mixing matrix A and independent components S.
A number of approaches have been proposed to solve the ICA problem, one of them being the
maximum likelihood estimation technique that finds an approximation of the underlying
sources by using the maximum likelihood estimator of the unmixing matrix W such that S● =
WX. Joint-ICA is an extension of ICA, however, ICA is typically used as a first-level analysis
and is applied directly to the data while jICA is a feature-level analysis. Given two feature
datasets X1 and X2, the first step in the jICA method is to concatenate the datasets along side
each other (Fig. 1) to form XJ and the likelihood is written as

In this formulation, each entry in the vectors uJ and xJ correspond to a random variable, which
is replaced by the observation for each sample n = 1, …, K, …, N as rows of matrices UJ and
XJ. When posed as a maximum likelihood problem, jICA estimates a joint demixing matrix
W such that the likelihood ℒ(W) is maximized. Let the two datasets X1 and X2 have
dimensionality N × V1 and N × V2, then we have

(4)

In Fig. 1, we present the models of mCCA and jICA. There are a number of differences in the
assumptions posed by the two models. Joint-ICA assumes that the sources have a common
modulation profile across subjects whereas mCCA models the modulation profiles as separate.
Inter-subject covariations of multimodal sources provide a dimension of coherence to identify
associations across the modalities, however, assuming these variations to be exactly the same
for different modalities is a very strong constraint. Additionally, the associations across
modalities in mCCA are solely based on inter-subject covariations whereas the associations in
jICA are based on the assumptions of common profiles as well as statistical independence
among the joint sources. While statistical independence may be a reasonable assumption to
detect a network of areas linked by a particular function, the ICA algorithms may not be able
to satisfy both of these constraints at the same time and may end up achieving a tradeoff solution
between the two constraints as we demonstrate in the simulation results. Hence, jICA examines
the common connection between independent networks in both modalities while mCCA allows
for common as well as distinct components and describes the level of connection between the
two modalities. Moreover, the jICA model requires contributions from both modalities to be
similar (V1 ≈ V2), so that one modality does not falsely dominate the other in the estimation of
the joint source. Also, if the two feature datasets to be fused have values with very different
ranges, then the jICA model requires the two datasets to be normalized before being entered
into a joint analysis, as done for sMRI data in [18]. These normalization issues, to ensure equal
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contribution from both modalities, are not encountered in the mCCA model. Furthermore, the
underlying assumption of pJ = p1 = p2 made in jICA as seen in (4), is more reasonable when
fusing information from two datasets that originate from the same modality. Thus, in general
mCCA provides a relatively less constrained solution to the fusion problem; however, ICA
might offer certain advantages as well, as we discuss in the results section.

A question that arises here is whether the two methods are equivalent if the independence
assumption in jICA is relaxed to decorrelation. There would be a direct relationship between
the CCA scheme and the relaxed jICA scheme if the decorrelation assumption in jICA is
imposed on the profiles. However, in the jICA method employed in this work, the independence
assumption (correspondingly, the decorrelation) is along the feature dimension and hence it is
the joint features that would be maximally independent/uncorrelated whereas in CCA it is the
variation profiles across the subjects that are maximally uncorrelated. Hence, the two methods
used here reveal different characteristics of the datasets based on the assumptions made on the
statistical properties of features and profiles respectively.

IV. Experiments
In this section, we describe the procedure to perform mCCA on two modalities and demonstrate
the use of mCCA with simulated data and actual fMRI, EEG, and sMRI data. We first show
an example of combining fMRI and EEG data, to take advantage of their complementary spatio-
temporal scales: high temporal resolution in EEG and localized spatial information of fMRI.
Next, we present an example in which we combine fMRI and sMRI data to examine
associations between brain structure and function. This is important since brain structure
underlies (and hence impacts) brain function. It is also relevant for studying disease, since
disorders such as schizophrenia and Alzheimer’s disease are well known to exhibit wide spread
functional and structural changes. Finally, we discuss an example using regression to identify
relationships of fMRI and sMRI to subject age. In summary, we show that the mCCA method
provides a powerful and flexible tool to identify interesting associations between modalities
as well as changes in these associations due to disease.

A. Experimental Set Up
The mCCA method involves a number of steps: feature generation, dimension reduction, CCA,
and least-squares estimation of the sources (shown schematically in Fig. 2).

1) Feature Generation—Lower-dimensional features of interest related to specific brain
activity or structure are first extracted from the data [8]. For each subject, a feature vector is
extracted from each modality and entered into the fusion analysis at the group level to detect
associations across modalities. Here, we explain the feature generation process for the three
modalities that we focus on in this paper.

For the fMRI data, we use the software package (SPM2) [20] to preprocess the data (slice
timing correction, motion correction, spatial normalization, smoothing with a 10 × 10 × 10
mm3 Gaussian kernel) and to obtain contrast images related to task as in [18]. ICA is used to
remove ocular artifacts from the EEG data [21] and the data is low pass filtered at 20 Hz. EEG
features, event-related potentials (ERPs) are calculated by averaging epochs of EEG, time-
locked to the event of correct target detection—details are given in [7], from the midline central
position (Cz) because it appeared to be the best single channel to detect both anterior and
posterior sources. We label the ERPs based on their ordinal position following the stimulus
onset (e.g. P3 for the third positive peak or N2 for the second negative peak). Probabilistic
segmentation of gray matter images calculated from the sMRI data using SPM2 are smoothed
with a 10 × 10 × 10 mm3 Gaussian kernel and used as features as in [18].
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2) Dimension Reduction—Typically, the number of variables in the feature datasets is
much larger than the number of observations. Due to the high dimensionality and high noise
levels in the brain imaging data, order selection is critical to avoid over-fitting the data.
Transforming each set of features to a subspace with smaller number of variables helps reduce
any redundancy in the analysis. Dimension reduction is performed on the feature dataset using
singular value decomposition (SVD). SVD of X1 and X2 is given by

where  and  contain the eigenvectors corresponding to the significant eigenvalues in D1

and D2, respectively,  contain the eigenvectors which are treated as noise and hence omitted
from the next steps of the analysis. We perform CCA on the dimension-reduced datasets which
are given by

We assume a noiseless generative model since we perform dimension reduction, i.e., the
assumption in the SVD-based dimension reduction scheme is that small singular values of the
matrix that are discarded correspond to additive noise.

B. Simulated Data
For brain imaging data, there is no a priori knowledge about the ground truth, i.e., the
underlying components and their modulation profiles across subjects are not known. Hence,
in order to test the performance of mCCA, we generate a simulated fMRI-like set of
components and an ERP-like set of components and mix each set with a different set of
modulation profiles to obtain two sets of mixtures. The modulation profiles are chosen from a
random normal distribution. The profiles are kept orthogonal within each set. Connections
between the two modalities are simulated by generating correlation between profile pairs
formed across modalities as shown in Fig. 3. We simulate five fMRI and five ERP components.
Each simulated fMRI component is a 60 × 60 pixel image, similar to the simulated fMRI
sources in [22]. The image is then reshaped to form a vector by concatenating columns of the
image. The reshaped fMRI images form the rows of C1. The corresponding 200-subject
modulation profiles for the fMRI components are the columns of A1. For the ERP data set, we
use the peaks of the actual ERP time course from the data described in the Section IV-C. Each
ERP component is a 451 time-point segment and the ERP components form the rows of C2
and the corresponding 200-subject modulation profiles form the columns of A2. The two
simulated data sets X1 and X2 are generated by multiplying the simulated profiles with the
simulated components and the performance of mCCA and jICA are tested on these simulated
datasets.

We evaluated the performance of mCCA for a number of different correlations, and here,
present two representative examples to demonstrate its performance. In the first example, the
correlations between the profiles of the five fMRI components and the five ERP components
are chosen as 0.9, 0.7, 0.4, 0.25, and 0, respectively, as shown in Fig. 3. The results are an
average of 20 runs, each with independent realizations of the modulation profiles, which are
chosen randomly from a normal distribution. After the correlations across different modalities
were built into the profiles, each one is normalized to have zero mean and unit variance. The
criteria we use for performance evaluation are the correlations between the true and estimated
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components and profiles as well as the differences between the actual and estimated
correlations.

Figs. 4(c) and (d) show that the profile correlation values are higher for mCCA than for jICA.
Unlike jICA, mCCA estimates a separate set of modulation profiles for both modalities, thus
allowing better estimation of the modulation profiles. In Fig. 4(a) and (b), the component
correlation values of both mCCA and jICA are quite similar for the first three components.
These three components have a considerable amount of correlation between profiles of the two
modalities (0.9, 0.7, and 0.4) and thus, a common profile estimated by jICA, that forms a
tradeoff between the actual separate profiles, suffices to efficiently estimate these components.
However, when the correlation between the two modalities is weak, the common profile departs
further from the ground truth as seen in Fig. 4(c) and (d), in the case of components 4 and 5,
which have correlations of 0.25 and 0, respectively. Consequently, in Fig. 4(a) and (b), we see
that components 4 and 5 as estimated by mCCA are closer to the ground truth than the ones
estimated by jICA. The five correlations estimated by mCCA are found to be exact up to one
decimal place.

In the second simulation case, the correlations are selected to be 0.9, 0.7, 0.27, 0.25, and 0, for
the same set of sources, as in the previous example. In this example, two sources have
correlations that are close to each other (0.27 and .25) and the performance of mCCA degraded
for one of these sources [Fig. 5(a) and (b)], however, the estimation of the modulations profiles
was better than that of jICA [Fig. 5(c) and (d)]. In our experiments on simulated data, we
noticed that when the correlations are close together, the performance of mCCA for estimating
these sources degrades and is similar to that of jICA when these correlations were low;
however, jICA performed better when these sources have higher correlations.

C. fMRI and EEG Dataset
FMRI and EEG data are acquired from 39 subjects (16 patients with schizophrenia and 23
healthy controls) performing an auditory oddball (AOD) task that requires the subjects to press
a button when they detect a particular infrequent sound among three kinds of auditory stimuli.
Two runs of auditory stimuli were presented to each participant by a computer stimuli
presentation system (VAPP: http://www.nilab.psychiatry.ubc.ca/vapp/) via insert earphones
embedded within 30 dB sound attenuating MR compatible headphones. The standard stimulus
was a 500 Hz tone, the target stimulus was a 1000 Hz tone, and the novel stimuli consisted of
non-repeating random digital noises (e.g., tone sweeps, whistles). The target and novel stimuli
each occurred with a probability of 0.10; the non-target stimuli occurred with a probability of
0.80. The stimulus duration was 200 ms with a 1000, 1500, or 2000 ms inter-stimulus interval.
The participants were instructed to respond as quickly and accurately as possible with their
right index finger every time they heard the target stimulus and not to respond to the nontarget
stimuli or the novel stimuli. Further details of the task design and the participants are given in
[23]. Both the fMRI and EEG data are processed into lower dimensional features using feature
generation techniques described in Section IV-A.1 and dimension reduction described in
Section IV-A.2. The fMRI feature selected in this case, is the contrast image associated with
the target stimulus (infrequent sound). For this dataset, the reduced dimension for both features
is chosen empirically as 12.

A number of interesting associations are identified by mCCA, three of which have modulation
profiles that are significantly different (α ≤ 0.05) between healthy and schizophrenic treatment
groups. We report the results for these three pairs of components in Fig. 6. The results are
thresholded based on Z-score, that is, the normalized activation levels within each map, to mark
out the activated voxels. Different Z-score thresholds lead to differences in regions identified
as activated areas. In the figure, the slices are axial with the front of the brain at the top of each
slice and the back of the brain at the bottom of each slice. The slices in the figure are arranged
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from left to right, top to bottom: the upper left corner image is the top slice and the bottom
right corner image is the bottom slice.

The first pair of components, having a correlation given by 0.85, has the fMRI map (Fig. 6:
fMRI component 1) showing activations in the temporal lobe (activations enclosed in red
circles) and the middle anterior cingulate region (activations enclosed in red box) and the ERP
(Fig. 6: ERP component 1) showing a maximum peak at around 300 ms (N2) after the stimulus
onset. This is similar to the result obtained in [11] using jICA on a similar dataset. Another
pair of components, having a correlation of 0.66, shows activation in the motor areas
(activations enclosed in purple box) and the bilateral temporal lobe (activations enclosed in
blue box) (Fig. 6: fMRI component 2) which are associated with the N2 peak (Fig. 6: ERP
component 2). The final pair of components of interest shows significant differences between
patients and controls for only the ERP component and not the fMRI component. This finding
is not possible with jICA since it assumes the same profile for both modalities and it is quite
plausible that for this particular component pair, fMRI is not sensitive to the differences in
controls and patients. The association for this pair is obtained as 0.58. The fMRI activation
map (Fig. 6: fMRI component 3) shows temporal lobe areas (activations enclosed in green box)
and the ERP (Fig. 6: ERP component 3) shows the P3A peak (early part of P300) as well as
portions of the N1 and N2 peaks.

D. fMRI and sMRI Dataset
SMRI and fMRI data are acquired from 73 subjects (36 healthy and 37 schizophrenic subjects).
The functional data are acquired while the subjects performed an auditory sensorimotor task
in which they are presented with a pattern of 8 consecutive tones, beginning with the tone of
lowest pitch and the gradually ascending until the tone with the highest pitch is reached. Then
the tone presentation pattern is reversed following a scaled tone presentation, each tone of
subsequently lower pitch. Each tone is of 200 ms duration and the pattern of ascending and
descending tones followed for the duration of 16 sec. The subjects are instructed to press a
button with their right thumb for each presented tone. Details of the experimental set up are
given in [24]. The fMRI data and sMRI data are converted into lower dimensional features
using the preprocessing techniques described in Sections IV-A-1 and IV-A-2. The reduced
dimension for both features was empirically chosen to be 18.

The pair of components corresponding to profiles showing the strongest correlation (r = 0.87)
across the two datasets also demonstrate significant group differences (α ≤ 0.05: tfmri = −4.9167
and tsmri = −4.8048) between patients with schizophrenia and healthy controls (fMRI map,
sMRI map, and scatter plots of the profiles shown in Fig. 7). The fMRI component map shows
that healthy controls have more functional activity in the temporal areas (activations enclosed
in blue box) and less motor activity (activations enclosed in red box) compared to patients with
schizophrenia. The gray matter map shows that healthy controls have more gray matter
compared to the patients in frontal (activations enclosed in purple box) and temporal areas
(activations enclosed in blue box). These results reveal associations between the modalities in
adjacent or close sets of voxels as well as remotely located voxels. This is consistent with many
previous studies showing changes in both brain structure and brain function in frontal and
temporal lobe regions in schizophrenia and is also in agreement with previous studies on fusion
of fMRI and gray matter [2], [18], [25]. We also perform jICA on this dataset using the fusion
ICA toolbox [26]. The joint component showing maximum difference between patients and
controls obtained using jICA is displayed in Fig. 8. The result obtained using jICA is similar
to the one obtained using mCCA (Fig. 7). However, mCCA shows additional motor and
temporal areas. Also the structural regions are more localized and well defined in the mCCA
result. This may be due to the fact that mCCA relaxes the strong constraint of common profiles
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for the pair of components enabling the method to identify associations across a larger network
of areas.

Additionally, we performed a regression analysis using the age of the participants in order to
identify associations of fMRI and sMRI data with age. The mean age in our dataset is 31.96
and the standard deviation is 12.41. The beta maps normalized with the standard deviations of
the error show that with increase in age, activation in motor and visual regions increase for the
sensorimotor task while there is a decrease in gray matter in temporal areas, anterior cingulate,
and smaller regions in frontal and parietal areas. The second most correlated pair of components
as estimated by mCCA have profiles that are correlated with the age information of the subjects
and the component maps show similar areas as those obtained in the regression analyses with
age. This is consistent with previous studies which show increased fMRI activity in older
participants [27] as well as decreased gray matter volume in healthy aging [28]. Our example
demonstrated that mCCA can identify interesting relationships between imaging modalities
and other variables such as age, neuropyschological tests, or symptom scores.

V. Discussion
We introduce a feature-level data fusion technique based on CCA to identify linear associations
across brain imaging modalities. The mCCA method uses a linear mixing model to decompose
the two feature datasets into component pairs and takes advantage of intersubject covariations
to measure the association across the two modalities. Through the examples on simulated and
actual brain imaging data and a comparison with the jICA scheme, we illustrate the potential
of this new fusion tool for discovering hidden factors in the data.

We highlight the key findings from the fusion examples demonstrated in our experiments.
Multimodal CCA is used for the fusion of fMRI and EEG data to take advantage of their high
spatial and temporal resolutions, respectively. The results obtained mainly show temporal and
motor activations linked to the N2 and P3 peaks of the ERP. Activation in the auditory cortex
in the temporal lobe is an effect of the auditory stimuli from the task and the motor activity is
seen due to the button pressing response. Task-related auditory stimuli is known to elicit
activations in the N2 peak, which is linked with matching stimuli to an internally generated
contextual template [29]. Also, the P3 peak is known to be associated with attention, decision
making, and memory, and is shown to be abnormal in schizophrenia [4]. Thus, the results of
the fusion analyses are consistent with what we would expect for an auditory oddball task.

We also illustrate the use of mCCA to find relationships between brain function and structure
associated with schizophrenia. Our mCCA results on sensorimotor fMRI and sMRI data show
that patients with schizophrenia have more motor activity and less temporal activity as well as
less gray matter concentrations. An interesting point to observe here is that the mCCA method
allows for associations in local voxels as well as remotely located voxels, thus enabling
discoveries of structural changes causing compensatory functional activation. The functional
areas picked up in the results are once again consistent with our expectation for a sensorimotor
task. Generally, studies have shown that schizophrenia is associated with less functional
activity [3], [30] as seen in the temporal areas of the fMRI result; however, patients suffering
from catatonic schizophrenia have been known to demonstrate more motor activity. The
amount of gray matter concentrations in patients with schizophrenia has contradictory reports
in different studies; some are consistent with our results reporting less gray matter
concentrations as in [31]–[33] while some show more gray matter concentration as in [18].

The mCCA data fusion scheme offers a number of advantages. It jointly analyzes the two
modalities to fuse information without giving preference to either modality. It circumvents the
inherent problem of the need to deal with data from diverse imaging modalities by performing
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the fusion analyses on lower-dimensional features and identifying relationships based on the
natural intersubject covariances between the modalities. Unlike jICA, mCCA does not assume
a common mixing matrix and does not require the data to be preprocessed to ensure equal
contribution from both modalities. This provides flexibility to the model allowing joint analysis
of very different modalities. An important point to note is that while mCCA provides a
relatively less constrained solution to the fusion problem, jICA utilizes higher order statistical
information by employing ICA. When correlations are strong between the two modalities, the
assumption of a common mixing matrix may be justified and the jICA technique could
potentially improve approximation of the joint sources by employing higher-order statistics in
the estimation. However, by allowing for separate mixing matrices, mCCA promises to identify
common as well as distinct components and reliably estimates the amount of association
between the two modalities.

The mCCA data fusion method has some limitations. The generative linear model used by
mCCA assumes that the components are linearly mixed across subjects (components have
varying activation levels across subjects), an assumption that may not always hold given the
diverse nature of the modalities but highly simplifies the fusion scheme. In future studies, this
limitation can be addressed by using different modality specific models. The mCCA method
is a feature-level analysis method and does not utilize the information in the entire dataset,
however, this helps identify associations based on covariations of the components across
subjects without making unreasonable assumptions about the data. In the future, we would like
to look at ways to incorporate more information from the data, possibly by entering several
features from each modality into a multiple CCA analysis [34]. Similarly, we can use multiple
CCA to study the fusion of more than two modalities. Since brain imaging data is high
dimensional and noisy, we have used dimension reduction to preprocess the data. The
appropriate choice of this reduced dimension is important to correctly identify and quantify
the relationships between the modalities. There are a number of information-theoretic criteria
that can be used for order selection and an appropriate order selection scheme can be adopted
for this case as well. For eigen-analysis based solutions such as mCCA, identical eigenvalues
are known to pose problems in the source separation as seen in the simulation example for
similar correlation values. This problem can be mitigated by performing the CCA analysis on
more than two datasets as shown in [35]. In addition, our discoveries have been limited to linear
relationships across modalities and an interesting direction would be to investigate nonlinear
associations by using nonlinear CCA techniques [36] for data fusion.

Thus, we have introduced a new feature-based data fusion technique. Our results show that
mCCA is a powerful tool for exploring brain imaging data and identifies interesting
relationships between modalities. We have also noted the complementary aspects of the mCCA
and jICA fusion schemes. Using these two methods in conjunction with each other promises
to provide a better perspective on multimodal data fusion.
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Fig. 1.
Data model for mCCA and jICA.
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Fig. 2.
Steps to perform mCCA to identify associations between fMRI and sMRI data.
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Fig. 3.
Correlations across the two datasets for the simulated data in Example 1.
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Fig. 4.
Example 1: Correlations across modalities simulated to be 0.9, 0.7, 0.4, 0.25, and 0, for
component pairs 1, 2, 3, 4, and 5, respectively. Correlation with ground truth of components
and profiles as estimated by mCCA (*) and jICA (○).
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Fig. 5.
Example 2: Correlations strengths across modalities simulated to be 0.9, 0.7, 0.27, 0.25, and
0, for component pairs 1, 2, 3, 4, and 5, respectively. Correlation with ground truth of
components and profiles as estimated by mCCA (*) and jICA (○).
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Fig. 6.
Three pairs of fMRI and ERP components that are significantly different (α = 0.05) between
patients and controls show associations of the temporal and motor areas with the N2 and P3
peaks. The fMRI maps are scaled to Z values and thresholded at Z = 3.
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Fig. 7.
FMRI component, sMRI component, and scatter plots of profiles for pair of components
identified by mCCA as maximally correlated. Patients with schizophrenia show more
functional activity in motor areas and less activity in temporal areas associated with less gray
matter as compared to healthy controls. The activation maps are scaled to Z values and
thresholded at Z = 3.5.

Correa et al. Page 21

IEEE J Sel Top Signal Process. Author manuscript; available in PMC 2009 October 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Joint components estimated by jICA corresponding to common profile demonstrating
significant difference between patients and controls. The activation maps are scaled to Z values
and thresholded at Z = 3.5.
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