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Abstract
Great strides have been made in the last 2 years in the field of frontotemporal lobar degeneration
(FTLD), particularly with respect to the genetics and molecular biology of FTLD with ubiquitinated
inclusions. It is now clear that most cases of familial FTLD with ubiquitinated inclusions have
mutations in the progranulin gene, located on chromosome 17. It is also clear that most ubiquitinated
inclusions in FTLD with ubiquitinated inclusions are composed primarily of TAR DNA-binding
protein-43. Thus, FTLDs can be separated into 2 major groups (i.e. tauopathies and
ubiquitinopathies), and most of the ubiquitinopathies can now be defined as TAR DNA-binding
protein-43 proteinopathies. Many of the familial FTLDs are linked to chromosome 17, including
both the familial tauopathies and the familial TAR DNA-binding protein-43 proteinopathies with
progranulin mutations. This review highlights the neuropathologic features and the most important
discoveries of the last 2 years and places these findings into the historical context of FTLD.
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Historical: Pick Disease
More than 115 years ago, in 1892, Arnold Pick published an article describing 3 patients with
clinical aphasia and pathologic circumscribed frontal and temporal atrophy (1). In 1911, Alois
Alzheimer subsequently discovered argyrophilic “Pick bodies” in such cases (2), and then in
1922, Gans, one of Arnold Pick's students, coined the term “Pick disease” for frontal disorders
with circumscribed atrophy and Pick bodies (3).

Frontal Lobe Dementia of the Non-Alzheimer Type: Pick Disease and Non-
Pick Lobar Atrophy/Dementia Lacking Distinctive Histology

Twenty years have passed since Arne Brun defined “frontal lobe dementia of the non-
Alzheimer type.” In his 1987 article, Brun et al (4) described the clinical presentation of frontal
lobe dementia of the non-Alzheimer type as various combinations of alterations in behavior,
personality, executive function, or language. He delineated 2 major underlying pathologic
entities: the less common Pick disease and the more frequent non-Pick lobar atrophy, which
has the same circumscribed frontal and temporal atrophy but lacks Pick bodies. At that point
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in the history of frontotemporal dementia, the neuropathology could be simply diagrammed
(Fig. 1).

In 1990, Knopman et al (5) described “dementia lacking distinctive histology (DLDH),” which
in most cases includes the type of pathology found in “non-Pick lobar atrophy.” Dementia
lacking distinctive histology has no immunohistochemically labeled inclusions, but does have
some distinctive histologic findings, including circumscribed atrophy, variable caudate
atrophy, and nigral pallor, both with corresponding neuronal loss and gliosis, and superficial
microvacuolation and gliosis in frontal or temporal neocortex, or both. These features are also
common to Pick disease (Fig. 2), but, whereas Pick disease has Pick bodies, DLDH has no
pathologic inclusions (Fig. 3).

Tau Protein and the TAU gene (MAPT) in Frontotemporal Lobar Degeneration
In the 1990s, great strides were made in Alzheimer disease (AD) by studying of familial cases,
identifying mutations and their effects, and looking for similar mechanisms to occur in sporadic
AD (6-8). Specialists noted that up to 50% of clinically defined frontotemporal dementias
(FTDs) were familial, and that many of them had insoluble tau deposits and were linked to
chromosome 17. Some of these cases were described as familial multiple system tauopathy
with dementia (9-11). This led to a consensus statement article designating such cases as
“familial tauopathy with dementia linked to chromosome 17” (FTDP-17) (12). In 1998, Hutton
et al (13) and Poorkaj et al (14) discovered that mutations in the MAPT gene were responsible
for FTDP-17 cases with insoluble tau deposits. Like the mutations identified in familial AD,
this exciting discovery allowed the development of research projects based on testable
hypotheses for sporadic as well as familial tauopathies, with the goal of developing targeted
drug therapy (15).

Currently, there are 64 MAPT mutations identified worldwide, 42 of which are pathogenic
(16). MAPT missense mutations seem to result in partial loss of microtubule binding, whereas
exon 10 splicing mutations seem to disrupt alternative splicing, thereby disturbing the normal
4R:3R tau isoform ratio (17-22). Both increase the tendency of tau protein to assemble into
insoluble fibrils. These discoveries proved that tau dysfunction was sufficient to cause
neurodegeneration and were significant because, whereas tau is also the major component of
the neurofibrillary tangles of AD (23), no MAPT mutations were associated with AD. Tau was
also found to be the major protein component of Pick bodies and the insoluble tau deposits
typical of other sporadic degenerative disorders, including progressive supranuclear palsy
(PSP), corticobasal degeneration (CBD), amyotrophic lateral sclerosis (ALS)-Parkinson
disease complex of Guam, and argyrophilic grain disease (24-27). Notably, many of these
disorders present either as frontotemporal dementia/aphasia or as a movement disorder
(parkinsonism or ALS), or both. The pathology of the FTDP-17s can be unique, or it can be
similar to any of the sporadic tauopathies such as Pick disease, PSP, or CBD (Fig. 4). There
remained a group of familial cases with clinical frontotemporal dementia that were linked to
chromosome 17 but that had no mutations in MAPT (28-33).

Ubiquitinopathies
Meanwhile, progress was also being made with regard to frontotemporal lobar degeneration
(FTLD) not associated with tau deposits. In 1991, Okamoto et al described ubiquitinated
cytoplasmic and intranuclear inclusions in extramotor cortex in ALS (34). In 1992, Wightman
et al (35) next found the same inclusions in hippocampus and neocortex in ALS patients with
dementia. Two articles in 1995 and 1996 devised simple immunohistochemical means of
pathologically subtyping frontotemporal dementia into major subtypes (Table 1) (36,37), and
in 2001, Woulfe et al (38) showed the same ubiquitinated inclusions in the hippocampus and
neocortex of pathologically defined FTD cases without ALS. At the 2001 meeting of the
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American Association of Neuropathologists, Lipton et al (39) reported that FTLD with
ubiquitinated inclusions (FTLD-U) was the single most common FTLD variant (Fig. 5). This
and a similar article by Josephs et al (40,41) were published in 2004. Most cases of DLDH,
formerly thought to be the most common pathologic subtype, have now been shown to be
FTLD-U, and DLDH is most likely rare to possibly nonexistent (40,42-45).

The pathology of frontal lobe dementia of the non-Alzheimer type, now preferably termed
“frontotemporal lobar degeneration,” could now be divided into 2 major categories: tauopathies
and ubiquitinopathies (46,47). The FTDP-17 cases without MAPT mutations also had
ubiquitinated inclusions of the type seen in FTLD-U. The identity of the major protein
component of the ubiquitinated inclusions remained elusive, as did the mutation or mutations
in the FTDP-17 cases without MAPT mutations.

Non-MAPT FTDP-17 and Progranulin Mutations
Knowledge regarding FTLD-U “ballooned” beginning in the summer of 2006, with 2 papers
published back-to-back in Nature in which familial FTLD-U cases linked to chromosome 17
were found to have mutations in the progranulin (PGRN) gene (48,49). Work on PGRN
advanced so quickly that, less than 2 years later, 98 PGRN mutations have been identified, 53
of which are known to be pathogenic (16). To date, most pathogenic mutations are nonsense
mutations and produce a premature termination codon (“null” mutations) that results in
haploinsufficiency (48,49). However, a few missense mutations have been shown to be either
pathogenic or major risk factors for FTLD-U; these likely result in low PGRN protein
expression or secretion (50-54). Recently, a genomic deletion that included the entire PGRN
locus was described in a Belgian FTD patient (55). Therefore, whereas mutations in MAPT
seem to result in toxic gain of function, mutations in PGRN apparently result in loss of function
(56).

PROGRANULIN was first described in relation to wound healing and tumorigenesis (57,58).
It is present in inactive, ramified microglia; in this form, it is anti-inflammatory and likely
neurotrophic. Elastase cleaves PGRN into 7 proinflammatory granulin peptides that are present
in ameboid microglia (59,60). Serine leukocyte protease inhibitor (SLPI) protects PGRN from
elastase cleavage (61). Because of the opposing effects of PGRN and GRN peptides, microglia
can have both anti-inflammatory and proinflammatory effects and, therefore, may be involved
in either a deficient or an overactive response to injury in the development of FTLD-U (59,
60). Alternatively, the loss of the neurotrophic support of PGRN may underlie FTLD-U, or
there may be other, as yet unidentified, factors involved (59,60). Progranulin in murine brain
is located in microglia and in neurons of the superficial neocortex, hippocampal granular layer,
and cerebellar Purkinje layer (62). Immunostains of human brain with antibodies to PGRN
show similar positivity in a subset of cortical neurons and in activated microglia, including
those surrounding senile plaques in AD, but no positivity of FTLD-U inclusions (48,59,63).

Progranulin mutations are found in many familial FTLD-U cases and in as many or more
familial FTLD cases as are MAPT mutations (49,64-66). Progranulin mutations are also found
in apparently sporadic FTLD-U cases (64,65). There is much heterogeneity in the clinical
presentation even within the same family. Clinical presentation is usually early onset (fifth or
sixth decade), but may also be late-onset, behavioral variant FTD or aphasia with or without
parkinsonism (66-81). Clinical presentation may also be that of corticobasal syndrome (68,
80-83). Cases with corticobasal syndrome often have prominent parietal atrophy and often
right-greater-than-left asymmetry, whereas those with aphasia syndromes often have left-
greater-than-right temporal atrophy, both on imaging and on gross pathologic examination
(68,70,74,76,83,84). Most report that motor neuron disease (MND) is absent clinically and
pathologically in cases with PGRN mutations, but a few studies describe sequence variation
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or missense mutations of uncertain pathogenicity, but which may affect PGRN protein levels
or modify the disease in ALS, causing younger age at onset, shorter survival, or both (85-87).
Some cases also have pathologic AD, unusual tau pathology, or α-synuclein pathology (69,
88,89).

A clinicopathologic correlation paper of 12 Northwestern Cognitive Neurology and Alzheimer
Disease Center cases with pathologic FTLD-U or FTLD-MND analyzed for PGRN mutations
was recently published (71). All had clinical cognitive impairment: 7 had clinical behavioral
variant FTD, 4 had primary progressive aphasia (PPA), and 1 had “dementia.” Three also had
clinical and pathologic ALS; final pathologic diagnosis in these cases was FTLD-MND. Based
on pathologic and genetic results, the cases can be separated into 3 groups: cases with FTLD-
U and PGRN mutations (Group 1), cases with FTLD-U but without PGRN mutations (Group
2), and cases of FTLD-MND without PGRN mutations (Group 3; Table 2). Two of the Group
1 cases had the p.Arg493X mutation that was found to be the most common PGRN mutation
in a study of 3,405 neurodegenerative diseases (90). Additionally, 1 case had the
p.Ser226TrpfsX28 mutation, and 1 had the p.Ala237TrpfsX4 mutation, the same as that
reported for the HDDD1 family (69). Unlike the HDDD1 family, however, this
p.Ala237TrpfsX4 mutation case did not have AD pathology. On the other hand, disease
duration was only 8 years, and age at death was only 61 years. One case in Group 3 (FTLD-
MND group) had a likely silent polymorphism, c.708C>T (p.Asn236Asn).

With regard to clinical data, this study found no difference between groups in clinical diagnoses
or family history. The Group 1 cases with PGRN mutations were split evenly in clinical
diagnoses: 2 presented with PPA and 2 with FTDV. With regard to neuropathologic features,
there was no difference between groups in regional neuronal loss and gliosis, superficial
neocortical microvacuolation, or simple presence of neuronal intranuclear inclusions (NIIs).
Group 1 cases had greater caudate atrophy, and, similar to what others have found, Group 1
cases with PGRN mutations had more frontal and temporal cytoplasmic inclusions (CIs) and
dystrophic neurites and higher densities of frontal and striatal NIIs (63,68,73,91,92). Group 3
cases had more dentate gyrus CIs. Ubiquitinated inclusions in all cases labeled with antibodies
to TAR-DNA binding protein-43 (TDP-43).

Since the publication of this article, 11 additional Northwestern Cognitive Neurology and
Alzheimer Disease Center cases have been analyzed for PGRN mutations for a current total
of 23. Breakdown of the pathology in these 23 cases is as follows: 12 have FTLD-U alone, 7
have FTLD-MND, 1 has FTLD-U with MND pathology but no clinical MND, and 3 have
FTLD-U with AD pathology, 2 of these sufficient for the pathologic diagnosis of AD by
National Institute on Aging/Reagan criteria (93). Unlike the HDDD1 family (69), none of the
cases with combined FTLD-U and AD pathology had PGRN mutations. The only additional
mutations found in this group (both in FTLD-U cases) are 2 with the IVS6+2 del TGAG
mutation that has not yet been proven to be pathogenic.

TDP-43 Is the Major Protein Component of Ubiquitinated Inclusions in FTLD-
U

In the fall of 2006, 2 months after the first PGRN mutation articles were published, Neumann
et al (94) identified TDP-43 as the major protein component of the ubiquitinated inclusions in
FTLD-U; this was swiftly confirmed by Arai et al (95). Identification of this protein had
previously been hampered by the relative scarcity of the inclusions and their very small size.
In preliminary work, however, monoclonal antibodies were generated to the urea-soluble
fraction prepared from homogenates of FTLD-U brains, and these were shown to variably label
ubiquitinated cytoplasmic and intranuclear inclusions and dystrophic neurites in subsequent
sections from FTLD-U brains (91). Neumann et al (94) performed 2-dimensional
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polyacrylamide gel electrophoresis on the urea-soluble fraction from FTLD-U brain
homogenate and identified spots labeled with certain monoclonal antibodies. They identified
the same spots on duplicate Coomassie blue-stained 2-dimensional polyacrylamide gel
electrophoresis gels, excised the spots, analyzed them by liquid chromatographyYtandem mass
spectrometry, and identified them as amino acid residues belonging to TDP-43. The
monoclonal antibodies strongly labeled inclusions in FTLD-U brains, and immunoblots
showed that pathologic TDP-43 in FTLD-U has signature 25-kd C-terminal breakdown or
cleavage fragments, an approximately 45-kd variant, and a high molecular weight smear.
Dephosphorylation of urea fractions collapsed the 45-kd fraction into a 43-kd band and
separated the 2 C-terminal fragments into at least 4 TDP-43-immunolabeled bands (94).
Frontotemporal lobar degeneration with ubiquitinated inclusion TDP-43 was shown to be
ubiquitinated (94). Thus, in FTLD-U, TDP-43 is abnormally phosphorylated, ubiquitinated,
and enzymatically hydrolyzed in a manner that produces 2 abnormal C-terminal products of
23 and 27 kd.

TDP-43 Function
At the time TDP-43 was identified in FTLD-U inclusions, the TDP-43 literature was quite
sparse; in fact, there were only approximately a dozen articles published regarding TDP-43.
Most were related to its role in human immunodeficiency virus infection and cystic fibrosis.
TAR-DNA binding protein-43 is a 43-kd highly conserved and widely expressed nuclear
protein encoded by the TARDBP gene on chromosome 1. Its functions are diverse and
incompletely understood, but TDP-43 seems to bind to DNA, RNA, and protein. In human
immunodeficiency virus infection, TDP-43 binds to the “transactive response” DNA and
represses transcription in infected cells (96). In cystic fibrosis, TDP-43 is part of a complex
that is involved in splicing the cystic fibrosis transmembrane conductance regulator (97). It is
involved in splicing the apolipoprotein A2 gene (98). TAR-DNA binding protein-43 helps
regulate expression of the mouse SP-10 gene involved in spermatogenesis (99). It also likely
acts as a scaffold to link nuclear bodies (GEMS) by interacting with survival motor neuron
protein (100). Mutants of human and Drosophila TDP-43 that lack the C-terminal domain are
unable to affect splicing (101). Because the C-terminal fragments are aggregated in the urea-
soluble fraction of human brain homogenates, it is likely that TDP-43 aggregates in FTLD-U
result in loss of function, rather than a toxic gain of function. TAR-DNA binding protein-43
is likely also involved in microRNA biogenesis, apoptosis, and cell division (102), and binds
to and stabilizes human low molecular weight neurofilament (hNFL) mRNA (103). Recent
evidence emerged that TDP-43 resides in the dendritic-processing body of somatodendrites in
the form of RNA granules colocalized with the postsynaptic protein PSD95, where it acts as a
translational repressor and thus likely helps regulate neuronal plasticity (104). Restricting
nuclear-cytoplasmic trafficking of TDP-43 results in accumulation of TDP-43 as insoluble
aggregates (105). Finally, loss of TDP-43 results in dysmorphic nuclear shape, misregulation
of the cell cycle, and apoptosis by upregulating cyclin-dependent kinase 6, resulting in
increased phosphorylation of retinoblastoma protein pRB and pRb-related protein pRb2/p130
(106). There are currently approximately 60 publications regarding TDP-43 in FTLD-U and
ALS, and they continue to accumulate.

TDP-43 in FTLD-U and ALS
The TDP-43 antibody labels ubiquitinated cortical, hippocampal, and striatal inclusions in
FTLD-U (107-115) and lower motor neuron and striatal inclusions in ALS (107,108,110,
113-120); it also labels inclusions in FTLD-U white matter (121). Neurons with TDP-43-
positive inclusions in either the cytoplasm or the nucleus have absence of normal nuclear
TDP-43 positivity, additional information that assists in interpreting immunopositivity. Figure
6 compares ubiquitin to TDP-43 immunohistochemistry (IHC) in an FTLD-U case.
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Some investigators have correlated clinical patterns with immunohistochemical TDP-43
patterns as outlined by 2 slightly different schemes (91,92). One study showed that cases with
numerous CIs (Sampathu Type 2/Mackenzie Type 3) have shorter survival, increased
frequency of semantic dementia/semantic variant of PPA, and dense hippocampal inclusions;
cases with numerous neurites (Sampathu Type 1/Mackenzie Type 2) have difficulty with object
naming and have dense temporal and hippocampal inclusions; and cases with intranuclear
inclusions (Sampathu Type 3/Mackenzie Type 1) have substantial executive deficits with dense
frontal inclusions (109). PROGRANULIN mutations were found only in Sampathu Type 3/
Mackenzie Type 1 cases (109), as has been reported (92,112).

The absence of nuclear TDP-43 labeling and the presence of granular cytoplasmic TDP-43
positivity have been interpreted as being characteristic of “preinclusions” (107,108,112). Some
interpret preinclusions to indicate that abnormal TDP-43 is prevented from relocating to the
nucleus, possibly by becoming hyperphosphorylated and therefore remaining in the cytoplasm
where it aggregates (107). Additionally, chromosome 9p-linked FTLD-ALS cases seem to
have TDP-43-positive granular inclusions in cortical neurons that are not labeled with ubiquitin
IHC, corroborating their interpretation as preinclusions that have not yet become ubiquitinated
(112).

The Northwestern Cognitive Neurology and Alzheimer Disease Center participated in an
international collaborative study analyzing TDP-43 immunopositivity in one of the largest
group of FTLD cases published (112). TAR-DNA binding protein-43 IHC was performed
using the polyclonal TDP-43 antibody (Proteintech, Chicago, IL) in 193 familial and sporadic
FTLD-U and FTLD-MND cases, which included 36 with PGRN mutations, 5 with valosin-
containing protein (VCP) mutations, 4 with charged multivesicular body protein 2B
(CHMP2B) mutations, 7 with chromosome 9p linkage but no VCP mutation, 46 other familial,
and 95 sporadic cases. These cases were compared with 49 other non-FTLD-U FTLD cases,
including Pick disease, CBD, PSP, basophilic inclusion body disease, neuronal intermediate
filament inclusion disease, and FTDP-17; 42 non-FTLD dementia cases, including AD,
argyrophilic grain disease, tangle predominant senile dementia, Parkinson disease, DLBD,
multiple systems atrophy, trinucleotide repeat disorders, and hippocampal sclerosis; and 19
normal controls. TAR-DNA binding protein-43 was positive in all the familial and sporadic
FTLD-U and FTLD-MND cases except those with neuronal intermediate filament inclusion
disease (112,122-124) and those with CHMP2B mutations, as has been reported (112,125) (see
also succeeding sentences). Rare, apparently sporadic FTLD-U cases were found to be TDP-43
negative, and those were termed “atypical FTLD-U” (Fig. 7). These cases are currently being
investigated for possible spontaneous CHMP2B mutations. Cases of hippocampal sclerosis
were also positive with TDP-43 (Fig. 8). There were no TDP-43-positive inclusions in any of
the non-FTLD-U dementias, including AD and dementia with Lewy bodies (DLB), or in the
controls (112). Of particular interest to studies involving animal models of superoxide
dismutase 1 (SOD1)-linked familial ALS (FALS), a large series of ALS cases was studied
immunohistochemically for TDP-43. Results showed that, whereas ubiquitinated lower motor
neuron inclusions in 59 sporadic ALS cases (SALS) and 11 FALS cases with SOD1 mutations
excluded were labeled with TDP-43, those in 15 FALS cases with SOD1 mutations were not
(Fig. 9) (119). TAR-DNA binding protein-43 negativity of lower motor neuron inclusions in
2 FALS cases with SOD1 mutations has been confirmed in another study (120).

Clearly, additional clinicopathologic studies are needed to better delineate the pathologic and
significance of TDP-43 in FTLD-U and ALS.
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Additional FTLD-U-Associated Chromosomes
Although PGRN mutations account for many of the familial FTLD-U cases, there are rare
mutations in 3 other genes associated with familial FTLD-U. Most, but not all, of these have
TDP-43-positive ubiquitinated inclusions (see next two sections).

Chromosome 9 Related
1) Inclusion body myopathy with Paget disease of bone and frontotemporal dementia is due to
mutations in the VCP gene (126). Twelve mutations, 11 of which are pathogenic, have been
identified. The ubiquitinated inclusions in inclusion body myopathy with Paget disease of bone
and frontotemporal dementia are predominantly intranuclear and are not primarily composed
of VCP (127) but rather of TDP-43 (128). 2) A mutation in intraflagellar transport protein 74
on chromosome 9p has been reported in only 1 family with familial FTD-ALS (129). No
pathologic description is available for this family. 3) There are other as yet undefined mutation
(s) on chromosome 9p associated with familial FTD-ALS (129-131). These cases have
ubiquitinated inclusions that are labeled by TDP-43 (112). 4) Lastly, there is a potential locus
on chromosome 9q linked to familial FTD-ALS, although this has not been replicated (132).

Chromosome 3
A large Danish familial FTLD and FTLD-ALS pedigree linked to chromosome 3 was found
to have mutations in CHMP2B (see previous sentences) (133). Ten mutations have been
identified, 4 of which are pathogenic. The ubiquitinated inclusions in CHMP2B-related familial
FTLD-U are TDP-43 negative (112,125).

TDP-43 in Other Disorders
The discovery that TDP-43 is the major protein component in the ubiquitinated inclusions of
FTLD-U has allowed investigation into combined pathologies of FTLD-U with other disorders.
For example, in the past, because AD pathology also labels with ubiquitin, cases of AD
combined with FTLD-U could only be definitively identified if the FTLD-U component had
intranuclear inclusions. Because only a fraction of the AD tangle pathology sometimes labels
with TDP-43, combined AD/FTLD-U pathology is now known to be quite common; in some
studies, it has been shown to occur in the hippocampus and amygdala in approximately 30%
of AD and combined AD-DLB cases, half of pure DLB cases, and in the dentate fascia in 70%
of hippocampal sclerosis cases (134-137). Results have been conflicting, however, with some
studies finding no TDP-43-positive inclusions in pure DLB (136). Likewise, some have found
combined TDP-43 proteinopathy and Pick disease (95,138) with a subset of inclusions positive
for both tau and TDP-43, whereas others have not (112). On the other hand, most Guamanian
ALS-Parkinson disease complex cases have TDP-43 positivity (139,140). The significance of
TDP-43 positivity in hippocampus and amygdala but not in cortex in AD and DLB is unclear.
Does it play a role in the patient's cognitive impairment or is it simply a sign of generalized
molecular and cellular disarray in medial temporal regions? Interestingly, in an
immunohistochemical analysis of TDP-43 in 5 cases of PPA with AD pathology (which might
be expected to have concomitant TDP-43-positive inclusions), none did; all had AD pathology
only (141). Further studies may shed light on these issues.

Gene Expression Studies in FTLD-U
Mishra et al (142) performed gene expression micro-array analysis on homogenates from
superficial frontal cortex of 10 cases of FTLD-U (n = 6) and FTLD-MND (n = 4) and 6 age-
matched controls. Three of the FTLD-U cases had PGRN mutations. The FTLD-MND cases
that had TDP-43-positive inclusions predominantly in the dentate gyrus and not in the frontal
cortex had results similar to the controls. Frontotemporal lobar degeneration with ubiquitinated
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inclusion cases compared with controls had downregulated synapse-related genes. This is not
surprising because normal TDP-43 colocalizes with the postsynaptic protein PSD-95 (104).
There was upregulation of cytoskeletal protein-associated, mitochondrial/energy-associated,
and kinase family-associated genes (142). Compared with FTLD-MND, FTLD-U also had
downregulation of microtubule-/axon-associated genes, including hNFL and MAP4 (142). The
downregulation of hNFL is interesting in view of the recent report that TDP-43 binds to and
stabilizes hNFL mRNA (103). Several ubiquitin-/proteasome-associated genes were also
downregulated (142). Subsequently, another analysis of gene expression in FTLD-U frontal
cortex gray matter, hippocampus, and cerebellum showed similar downregulation of synapse-
related and upregulation of cytoskeletal protein-associated genes in affected regions (143).
However, this study showed dysregulation of more genes than did the study by Mishra et al
and identified pathways not involved in other neurodegenerative diseases such as the cell cycle
pathway and transforming growth factor β signaling (143). A gene expression analysis in ALS
showed downregulation of cytoskeletal protein-related and mitochondrial-/energy-associated
genes, but found similar downregulation of signaling-related genes (144). This study used
slices of “fresh frozen prefrontal cortex,” and it is not clear whether it was full-thickness cortex
and white matter or a focused region of cortex that was analyzed (144). One might expect
results of gene expression analyses in FTLD-U and ALS to be similar because FTLD-U and
ALS seem to be on a clinical and pathologic spectrum (145); additional work in this area may
be enlightening.

TDP-43 Gene Analysis
The 2 major recent discoveries in the FTLD field are the PGRN mutations in non-tau FTDP-17
dementias (48,49), which have also been called FTDU-17 in recognition of the presence of
ubiquitin inclusions, and the identification of TDP-43 as the major protein component of the
ubiquitinated inclusions (94). Familial FTLD-U with PGRN mutations have insoluble
inclusions composed of TDP-43 rather than PGRN protein, ie the insoluble aggregates in these
cases are not composed of the mutated gene protein product. This is a distinct contrast from
the familial taupathies with MAPT mutations which contain insoluble tau protein deposits.
Until now, mutations in the TARDBP gene have not been found in FTLD-U (146-148) and
FALS (148) cases with TDP-43-labeled inclusions, which has leant credibility to those reports
that TDP-43 is not truly the major protein component of the ubiquitinated inclusions (149).
New reports, however, describe TARDBP mutations in FALS (150) and in FALS and SALS
(151). The TARDBP mutation in the autosomal dominant FALS family is a novel missense
mutation, Ala-315-Thr (c.1077 G>A), in exon 6 (150). No member of this family has yet come
to autopsy, but it will be crucial to examine such a case for TDP-43-positive insoluble
inclusions. In the FALS and SALS cases, 3 single base substitutions in TARDBP exon 6 were
identified, all near the C-terminal protein-protein interaction region of TARDBP, resulting in
substitution of valine for methionine (M337V), lysine for glutamine (Q331K), and alanine for
glycine (G294A) (151). The M337V mutation segregated with disease in a large autosomal
dominant FALS kindred, whereas the Q331K mutation was found in screening 200 British
SALS cases (absent in 500 controls) and the G294A mutation in screening 172 Australian
SALS cases (absent in 372 controls) (151). Screens of an additional 390 controls revealed no
TARDBP mutations (151). Chick embryos whose spinal cords were transfected with either the
M337V or the Q331K mutant TARDBP gene did not develop limb or tail buds (151). It will
likely not be long until TARDBP mutations are found in familial FTLD-U.

Links Between PGRN and TDP-43
Given that most familial FTLD-U cases with known mutations have PGRN mutations, and that
the aggregated protein in these brains is composed primarily of TDP-43, it is important to
understand the relationship between PGRN and TDP-43 and the roles they play in
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neurodegeneration. In one study, in which PGRN missense mutations were shown to result in
very low PGRN protein levels, investigators asked whether reduced PGRN expression would
induce accumulation or relocalization of TDP-43 fragments (52). PROGRANULIN expression
was downregulated in human cell lines and in zebrafish, but neither TDP-43 relocalization nor
proteolytic processing to C-terminal fragments occurred (52). Zhang et al (152) recently
reported that PGRN mediates caspase-dependent cleavage of TDP-43, generating 25- and 35-
kd fragments. Suppression of PGRN expression (which is similar to PGRN haploinsufficiency
related to mutations) results in accumulation of TDP-43 fragments and this can be inhibited
by caspase inhibitors (152). Because SLPI, binding to PGRN, inhibits elastase-mediated
proteolysis of PGRN (61), the authors speculate that the mechanism involves a complex
between SLPI, PGRN, caspase 3, and TDP-43; decreased PGRN and therefore decreased SLPI
might free caspase 3 activity to cleave TDP-43, thereby resulting in a cascade of intracellular
events that lead to FTLD-U (152). Staurosporine, a protein kinase inhibitor, also induces
caspase cleavage and redistribution of TDP-43 from the nucleus to the cytoplasm, which
correlates with the findings in FTLD-U and ALS (152). The results suggest a potential role for
PGRN in normal TDP-43 function and a link between the two in FTLD-U disease (152).

CONCLUSIONS AND FUTURE DIRECTIONS
The pathology of frontal lobe dementia of the non-Alzheimer type, now preferably termed
frontotemporal lobar degeneration, is currently divided into the same 2 major categories,
tauopathies and ubiquitinopathies. There now are at least 13 different subtypes (Table 3)
(153,154). Much has been learned in 20 years, and the FTD subtype diagram has become much
more complex (Fig. 10; compared with Fig. 1). There has been exciting recent progress, but
much work clearly remains to elucidate the interactions between PGRN and TDP-43 and the
roles they play in FTLD-U and ALS. Individuals at risk must be identified early to prevent or
halt progression of the disease. Can TDP-43 be measured in cerebrospinal fluid? Can ligands
similar to the Pittsburgh B compound that allow in vivo imaging of amyloid plaques be
developed to image FTLD-U pathology? In view of the role of PGRN in tumorigenesis, do
individuals with PGRN mutations and resulting haploinsufficiency have a decreased incidence
of cancer? In view of its role in inflammation, do those with PGRN mutations or FTLD-U
without mutations have an increased or decreased incidence of autoimmune or chronic
inflammatory disorders? Progranulin is upregulated in activated microglial cells, but is it
upregulated in neurons, and, if so, is this beneficial or deleterious to the neuron or to the CNS
in general? What is the significance, if any, of TDP-43-positive inclusions in medial temporal
regions in AD? Do they contribute to cognitive impairment or are they simply markers of
general molecular and cellular dysfunction in these regions in AD? TARDBP mutations have
now been identified in ALS—are TARDBP mutations also found in FTLD-U? The 2
discoveries of mutations in PGRN and TDP-43 protein in FTLD-U inclusions occurring only
months apart offer opportunities to explore and answer these questions and learn more
regarding the neurobiology of the brain in the process.
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FIGURE 1.
Frontotemporal dementia (FTD) pathologic subtypes, 1987.
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FIGURE 2.
Pick disease pathology. (A, B) Circumscribed frontal and temporal atrophy. (C) Pick bodies
in dentate gyrus seen on hematoxylin and eosin (top; 40×) and with paired helical filament 1
immunohistochemistry (IHC) (bottom; 60×). (D) Pick bodies seen with paired helical filament
1 IHC (top; 60×) in frontal cortical layer II, which also shows microvacuolation and gliosis on
hematoxylin and eosin (bottom; 10×).
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FIGURE 3.
Dementia lacking distinctive histology. Pathology (circumscribed frontal and temporal
atrophy, as in Pick disease, is also present). (A) Caudate atrophy. (B) Pallor of the substantia
nigra. (C) Superficial microvacuolation and gliosis, cortical layer II, frontal and temporal lobes
(hematoxylin and eosin: 20×). (D) Neuronal loss and gliosis, caudate nucleus (hematoxylin
and eosin: 40×). (E) Ubiquitin immunohistochemistry (IHC) of frontal lobe shows no
inclusions (40×). (F) Ubiquitin IHC of dentate gyrus shows no inclusions (60×). (G) Neuronal
loss and gliosis in substantia nigra (hematoxylin and eosin: 20×).
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FIGURE 4.
Familial tauopathy with dementia linked to chromosome 17 pathology. (A) Dentate gyrus with
Pick-like bodies, L266V tau mutation (paired helical filament 1 immunohistochemistry [IHC];
40×). (B) Progressive supranuclear palsy (PSP)-like pathology in frontal cortex, with neuronal
PSP-type tangle (arrow) and tufted astrocyte (arrowhead; AT8 IHC; 60×). (C) Corticobasal
degeneration-like cortical pathology with 2 large astrocytic plaques and abundant thread
pathology (Gallyas stain; 20×). (D) Cortical gray-white junction with unique tau pathology
consisting predominantly of globular white matter (oligodendroglial)-insoluble tau deposits
(AT8 IHC; 20×).
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FIGURE 5.
Frontotemporal lobar degeneration with ubiquitinated inclusions pathology. (A) Superficial
frontal cortex with neuronal cytoplasmic inclusions (arrow), neuronal intranuclear inclusions
(NIIs; solid arrowhead), and dystrophic neurites (open arrowhead; 40×). (B) Dentate gyrus
with neuronal cytoplasmic inclusions (60×). (C) Putamen neuron with NII (100×). (D) Dentate
gyrus neuron with NII (60×). All are ubiquitin immunohistochemistry (Dako polyclonal,
Carpinteria, CA).
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FIGURE 6.
Ubiquitin and TAR-DNA binding protein-43 (TDP-43) immunohistochemistry (IHC) in
frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). Ubiquitin (A;
ubiquitin IHC, Dako polyclonal; 60×) and TDP-43 (B; TDP-43 IHC, Proteintech) in frontal
cortex of FTLD-U have similar labeling patterns; (A) Ubiquitin IHC (Dako polyclonal). (B)
TDP-43 (Proteintech).
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FIGURE 7.
Typical and “atypical” frontotemporal lobar degeneration with ubiquitinated inclusions
(FTLD-U). (A, B) Typical FTLD-U labeled with ubiquitin (A; 40×) and TAR-DNA binding
protein-43 (TDP-43; B; 40×); both label cytoplasmic inclusions (CIs). (C, D) “Atypical”
FTLD-U labeled with ubiquitin (C; 60×) and TDP-43 (D; 60×). Inclusions are ubiquitin
positive but TDP-43 negative (note arrows pointing to unlabeled CIs).
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FIGURE 8.
Hippocampal sclerosis, ubiquitin, and TAR-DNA binding protein-43 immunohistochemistry
(IHC). (A) Ubiquitin IHC of dentate gyrus in hippocampal sclerosis shows 2 equivocal
inclusions noted retrospectively (arrows; 60×). (B) TAR-DNA binding protein-43 of same case
clearly shows 2 positive cytoplasmic inclusions (CIs; arrows; 40×). Note that all nuclei are
labeled except those in neurons with CIs.
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FIGURE 9.
Ubiquitin and TAR-DNA binding protein-43 immunohistochemistry (IHC) in familial
amyotrophic lateral sclerosis (FALS) with and without superoxide dismutase 1 (SOD1)
mutations. Familial amyotrophic lateral sclerosis cases without SOD1 mutation (A, B) and
with SOD1 mutation (C, D). Ubiquitin (A, C) clearly labels Lewy-like bodies (A) and skein-
like inclusions (C) in FALS cases with (C) and without (A) SOD1 mutations. TAR-DNA
binding protein-43 (B, D) labels FALS without SOD1 mutation (B) but is negative in FALS
with SOD1 mutation (D) (all magnifications: 60×).
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FIGURE 10.
Frontotemporal lobar degeneration (FTLD) pathologic subtypes, 2008. The pathology of
frontotemporal dementia (FTD) has become increasingly complex, and pathologic diagnoses
now incorporate molecular information compared with Figure 1. CBD, corticobasal
degeneration; CHMP2B, charged multivesicular body protein 2B; MND, motor neuron
disease; MSTD, multiple system taupathy with presenile dementia; NIFID, neuronal
intermediate filament inclusion disease; PGRN, progranulin; PSP, progressive supranuclear
palsy; TDP-43, TAR-DNA binding protein-43; VCP, volosin-containing protein.
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TABLE 1
Immunohistochemical Features of Neuronal Inclusions in Disorders Causing Frontotemporal Dementia

Disease Type of Neuronal
Inclusion

Major Site Tau Immunoreactivity Ubiquitin Immunoreactivity

Pick disease Pick body Hippocampal
and
neocortical
neurons

++ +

Corticobasal degeneration Corticobasal inclusion Layer II of
neocortex,
substantia
nigra

++ -

Motor neuron disease-
type dementia

Motor neuron disease-
type inclusion

Layer II of
neocortex,
hippocampal
dentate
granule cells

- ++

Alzheimer disease Neurofibrillary tangles Hippocampal
and
neocortical
neurons

++ +

Dementia of frontal type None - - -

This concise table illustrates the simplicity with which tau and ubiquitin immunostains can distinguish pathologic subtypes of frontotemporal dementia
based on positivity or negativity and type and distribution of inclusions. Reprinted with permission from Acta Neuropathol 1996;91:12734 (Fig. 1).
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TABLE 3
Frontotemporal Lobar Degeneration: Pathologic Subtypes, 2008

Tauopathies Ubiquitinopathies

Pick disease FTLD-U/TDP-43 proteinopathy

Corticobasal degeneration FTLD-MND

Progressive supranuclear palsy FTDP-17 with PGRN mutations

FTDP-17 with MAPT mutations FTLD-U with VCP mutations

Sporadic MSTD FTLD-U with CHMP2B mutations

Tauopathies, unclassifiable FTLD-MND linked to chromosome 9p

Atypical FTLD-U (TDP-43 negative)

CHMP2B, charged multivesicular body protein 2B; FTDP, familial tauopathy with dementia linked to chromosome 17; FTLD, frontotemporal lobar
degeneration; FTLD-U, FTLD with ubiquitinated inclusions; MND, motor neuron disease; MSTD, multiple system tauopathy with presenile dementia;
PGRN, progranulin; TDP-43, TAR-DNA binding protein-43; VCP, valosin-containing protein.
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