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Abstract
ERBB3, a member of the epidermal growth factor receptor (EGFR) family, is unique in that its
tyrosine kinase domain is functionally defective. It is activated by neuregulins, by other ERBB and
nonERBB receptors as well as by other kinases, and by novel mechanisms. Downstream it interacts
prominently with the phosphoinositol 3-kinase/AKT survival/mitogenic pathway, but also with
GRB, SHC, SRC, ABL, rasGAP, SYK and the transcription regulator EBP1. There are likely
important but poorly understood roles for nuclear localization and for secreted isoforms. Studies of
ERBB3 expression in primary cancers and of its mechanistic contributions in cultured cells have
implicated it, with varying degrees of certainty, with causation or sustenance of cancers of the breast,
ovary, prostate, certain brain cells, retina, melanocytes, colon, pancreas, stomach, oral cavity and
lung. Recent results link high ERBB3 activity with escape from therapy targeting other ERBBs in
lung and breast cancers. Thus a wide and centrally important role for ERBB3 in cancer is becoming
increasingly apparent. Several approaches for targeting ERBB3 in cancers have been tested or
proposed. Small inhibitory RNA (siRNA) to ERBB3 or AKT is showing promise as a therapeutic
approach to treatment of lung adenocarcinoma.
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Introduction
The epidermal growth factor receptor (EGFR) (ERBB1, HER1), a tyrosine kinase, is
evolutionarily ancient and is widely expressed.1 Additional ERBB family members, ERBBs
2–4, have evolved from EGFR in mammals to establish functionality dependent on receptor
interactions. Complex multilayered signaling generated by receptor cross talk and lateral
signaling is becoming evident within these family members. Further complexity is imposed
by a multiplicity of ligands: epidermal growth factor (EGF), transforming growth factor α
(TGFα), amphiregulin, epiregulin, betacellulin, heparin-binding EGF and epigen are known
ligands for EGFR. Neuregulins (NRG, HRG) are a family of ligands for ERBB3 and ERBB4.
Regulated signaling by these multiple ligand and receptor components is implicated for the
maintenance of cell division, proliferation, differentiation, migration and other normal cellular
processes. However, deregulated, aberrant signaling due to mutation, amplification and
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presence of active autocrine loops may participate in development of cancer and other diseases.
Recent reviews are available covering activation, interaction and signaling of ERBB family
members.2–8

Attempts are already in progress in the clinic to utilize the EGFR and ERBB2 as molecular
targets for cancer therapy. EGFR is being targeted with the monoclonal antibody cetuximab
and with two low molecular weight tyrosine kinase inhibitors, gefitinib and erlotinib, with
success against several types of epithelial cancers, including head and neck, pancreatic,
colorectal and a subset of nonsmall cell lung cancers with mutant or highly expressed EGFR.
9 ERBB2 has been successfully targeted by the monoclonal antibody trastuzumab (herceptin)
in breast cancers, where it is often overexpressed and this approach is now used clinically.10

However, trastuzumab had little or no effectiveness against cancers of the prostate,11 pancreas,
12 colon and rectum13 or lung epithelia.14

High expression of ERBB3 in certain human cancers led early to the suggestion that it could
be a therapeutic target.15 Nevertheless efforts at targeting ERBB3 in cancers have lagged
behind, due in part to its impaired kinase activity; a mainly modulatory role is often assumed,
secondary to ERBB2 as ‘the master positive regulator of the ERBB network’.6 However, cross
talk among the ERBB receptors that amplifies and diversifies signaling is emerging as a central
feature of cancer cells, and in this context ERBB3 can be of key importance. Recent evidence
that ERBB3 is responsible for tumor resistance to therapeutic agents targeting EGFR or ERBB2
has illuminated its critical role in cancer.16 Here, we have reviewed the characteristics of
ERBB3 and its potential role in several types of cancer, and illustrate that it is a potential target
for siRNA-based therapy in lung cancer.

The ERBB3 gene and gene expression
Salient features of the ERBB3 gene, mRNA and protein are summarized in Table 1. ERBB3
maps to human chromosome 12q13.2, is 23.2 kb in size and consists of 28 exons17–19 (NCBI
Gene ID 2065, Oct 25, 2006). The four ERBB receptor genes are thought to have evolved from
a single ancestral gene, with an intermediate progenitor for EGFR and ERBB2 and another
progenitor for ERBBs 3 and 4.20 The gene and protein sequences for the extracellular ligand-
binding domain of ERBB3 have 43–45% homology with EGFR and ERBB2 and 56–67% with
ERBB4; the cytoplasmic tyrosine kinase domain sequences have 60–63% homology with those
of each of the other ERBB receptors.17,21

The human ERBB3 gene is transcribed as a 6.2 kb message of 4080 nucleotides and 1342
codons specifying the full-length protein.17 There are several ERBB3 truncated transcripts. A
1.4 kb transcript codes for the first 140 amino acids of extracellular domain I followed by 43
unique amino acids.22 This transcript is widely expressed in normal and neoplastic cells, with
its level relative to the main 6.2 kb message being higher in cell lines with relatively low
ERBB3 expression.22–24 It transcribed a 24 kDa protein23 which in mammalian cells formed
an intracellular 58 kDa glycosylated dimer that did not appear to bind ligand.24 The potential
functions of this intracellular ERBB3 form remain to be determined.

There are four additional alternate transcripts of 1.6, 1.7, 2.1 and 2.3 kb generated by intron
read through.23 At least three of these code for truncated, secreted sERBB3.23,25 A p45
sERBB3 consists of extracellular domains I and II and part of domain III, plus 2 unique C-
terminal amino acids. A p85-sERBB3 is formed by domains I, II and III and part of IV, with
addition of 24 unique C-terminal amino acids. Both forms, and especially the p85 sERBB3,
bound NRG and reduced NRG activity as a ligand on breast carcinoma cells.25 Thus these
sERBB3 forms may be potential negative regulators of NRG. In contrast, a p45 form,
designated MDA-BF-1, is a putative prostate cancer bone metastasis factor.26
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ERBB3 mRNA is present from the earliest stages of development, being detected throughout
spermatogenesis,27 in the nucleus of ejaculated human sperm28 and in bovine oocytes at all
stages.29 Erbb3 was expressed and active in epithelial cells of mouse uterus during
implantation30 and likewise ERBB3 mRNA was detected in both the cyto- and
syncytiotrophoblast at the time of implantation in the rabbit, with a pattern distinct from those
of EGFR, ERBB2 and ERBB4.31 Similarly during organogenesis ERBB3 mRNA levels and
distribution were distinct from those of other ERBB receptors, suggesting unique functions,
as for example in the development of murine teeth32 and of fetal rat brain.33,34 In human fetuses
ERBB3 transcripts were detected in liver, kidney and brain but not in heart or lung fibroblasts.
17 ERBB3 is widely expressed in human adult tissues, consistently detected in brain, spinal
cord, liver, prostate, kidney and lung (www.genecards.org).

Relatively little is known about regulation of ERBB3 transcription. The ERBB3 promoter
region is GC rich (65%) and, like EGFR, does not contain a TATA box; there are several
transcriptional start sites.35 Five potential nuclear factor-binding sites were identified and
AP2-1 (OB2-1) was implicated in human breast carcinoma cells with high expression of
ERBB3 protein.35 These investigators looked for but did not find evidence for Sp1 transcription
factor binding or for upstream or intron 1 enhancers. Involvement of AP transcription factors
was confirmed by demonstration that overexpressed AP-2α, AP-2β or AP-2γ in AP-2 deficient
HepG2 cells transactivated the ERBB3 promoter.36 AP-2γ protein correlated positively and
strongly with ERBB3 mRNA level in breast cancer cells and in SV40 transformed lung
fibroblasts, whereas there was a very low or undetectable level of AP-2γ in ERBB3
nonexpressing benign breast epithelial cells and in normal lung fibroblasts.37 In the latter study,
cotransfection experiments indicated that AP-2γ transactivated the ERBB3 promoter in an
AP2 and ERBB3 nonexpressing breast cancer cell line. Dominant negative AP-2 suppressed
ERBB3 promoter activity and also downregulated endogenous ERBB3 mRNA level, to result
in decreased proliferation and reduced colony formation in SV40 transformed lung fibroblasts.
Whether AP-2 is a main regulatory factor for ERBB3 transcription in other cell types should
be studied.

Estrogen negatively regulated ERBB3 mRNA levels in estrogen receptor-positive ZR75-138

and MCF739 human mammary carcinoma cell lines.

ERBB3 expression has recently been found to be regulated by α6β4 integrin in breast carcinoma
cells,40 evidently by effects on translation. The presence of the α6β4 integrin markedly
enhanced levels of ERBB3 and phosphotidyl inositol 3-kinase (PI3K)/Akt signaling in MCF7
and MDA-MD-435 cells, while having no effect on ERBB2.

The ERBB3 protein
Primary and crystal structure

The ERBB3 receptor consists of an extracellular ligand-binding domain followed by a
transmembrane spanning helix and an intracellular cytoplasmic kinase domain that is flanked
by juxtamembrane and C-terminal regulatory regions. It is a glycoprotein of 180 kDa with 10
potential N-linked glycosylation sites; up to 30% of the apparent molecular weight of ERBB3
consists of glycosyl groups. Only one glycosylation site is conserved in all ERBB family
members, suggesting that glycosylation patterns may contribute to the unique functioning of
each receptor.41 Glycosylation site Asn414 was in fact found to be critical to regulation of
ERBB3 function: mutation of this site to Gln, in constructs expressed in CHO cells, resulted
in autodimerization and heterodimerization with ERBB2 in the absence of ligand, and
enhancement of the neoplastic properties of the cells.42
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The extracellular domain—As in other members of the ERBB family, the extracellular
domain of ERBB3 consists of four subdomains, I (L1), II (C1), III (L2) and IV(C2). Domains
I and III (ligand binding) have β-helical folding, while domains II and IV (cysteine rich) have
an extended structure held together by disulfide bonds. The I/II and the III/IV sequences
probably evolved by gene duplication.41 Considerable information has been gleaned from X-
ray crystallography studies of the extracellular domain structures of ERBB family members.
In the absence of ligand, a direct intramolecular interaction between domains II and IV,
involving a β-hairpin loop of residues 242–259 in domain II, keeps the ERBB3 in a closed
(locked or tethered) conformation that prevents interaction between domains I and III.43,44

This conformation disrupts the ligand-binding pocket and buries the dimerization arm of
domain II. Similar locked conformations have been observed for unliganded EGFR and
ERBB4.1,45 In the presence of ligand, the I and III domains of EGFR are held in a rigid
conformation and the putative dimerization loop from domain II extends and interacts
intramolecularly with another ligand-bound monomer to form dimers. Mathematical and
biochemical modeling studies indicated that another binding event, in addition to ligand
binding, is required to explain the observed shape of Scatchard binding plots for EGF/EGFR
interactions.46,47 Most recently, small-angle X-ray scattering methodology confirmed
extension of the extracellular domains of both EGFR and ERBB3 upon ligand binding, and
suggested that multiple weak interactions over several parts of these proteins contribute to the
tethered conformation.48

Unique features of the extracellular domain of ERBB3 may give clues as to its special functions.
(1) Domain I is a major contributor to ligand binding by ERBB3,49,50 in contrast to EGFR,
where domain III ligand binding is dominant. (2) ERBB3 has higher affinity for NRG,
compared with affinity of EGFR for EGF and this is greatly increased by dimerization with
ERBB2.50 (3) In EGFR, ligand-binding sites in domains I and III are close enough for EGF to
contact both at the same time. In ERBB3, in the region of the connection between domains I
and II, domain II is twisted 30° relative to the configuration of EGFR and ERBB2. As a result
the comparable configuration in ERBB3 is wider, suggesting that additional events may be
needed for ligand action, or that two molecules of ligand could bind simultaneously.48,50,51

(4) The latter interpretation is supported by the observation that constitutively locked ERBB3
bound ligand as well as did the extended conformation.52 (5) ERBB3 does not form stable,
ligand-bound homo-dimers,53 in contrast to EGFR. Part of the reason for this may be amino
acid changes in loops adjacent to domain II dimerization arms; disulfide-bonded module 6 is
utilized in EGFR dimerization,54 whereas for ERBB2/ERBB3 heterodimer formation module
7 plays the key role.55 (6) ERBB3 does however form self-oligomers; both the purified
extracellular domain of ERBB3 and the full length protein expressed in insect cells underwent
self-oligomerization at low concentrations, comparable to those normally seen on cell surfaces.
56 This oligomerization was destabilized and reduced in the presence of NRG ligand. These
features contrast with those of EGFR, with homodimerization induced by ligand and ERBB2,
which showed no oligomerization of the extracellular domain. Inability of NRG to cause
homodimerization of the extracellular domain of ERBB3 was confirmed with chimeric
ERBB3/EGFR and ERBB4/EGFR molecules.53 By use of a constitutively extended form of
ERBB3 it was shown that intermolecular complexes included two different types of interfaces,
one involved in oligomerization that is sensitive to NRG disruption, and another for dimer
formation that is not affected by NRG.52 It was proposed that self-associated ERBB3
constitutes the catalytically inactive oligomeric state. Binding of the ligand releases the ERBB3
and may stabilize the extended form of the receptor to expose the dimerization interface for
interaction with ERBB2.52 (7) The extracellular domain of ERBB3 retains NRG ligand binding
even at acidic endosomal pH (in both the extended and locked conformations), and the
genetically engineered constitutively locked conformation even showed a strong association
at minimum pH 5.5.50 This was in contrast to the binding of TGFα or EGF to the EGFR
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extracellular domain, that is much reduced at low pH. A critical pH-sensitive histidine in
domain III of EGFR is absent in ERBB3 and ERBB4.

Overall the unique features of the extracellular domain of ERBB3, as currently understood,
seem specifically adapted for highly sensitive activation and fine-tuned control of interaction
with ERBB2, including multiple ligand effects, first to disrupt inactivating self-oligomerization
of the extended conformation, then to induce and stabilize ERBB2 heterodimer formation. It
has been proposed that the locked conformation may have a role especially in endosomal
signaling.7,50

Transmembrane domain—EGFR, ERBB2 and ERBB4 possess two GXXXG consensus
sequences in their transmembrane domain which enhance the efficiency of ligand-induced
dimerization.57 ERBB3 is unique in that it presents only one such sequence and is
correspondingly less able to homodimerize.57 This feature may promote heterodimerization.

Cytoplasmic domain—The important functions of the cytoplasmic domains of the ERBB
receptors include interaction with other receptor molecules; specific interactions with
downstream substrates and modulators; and stimulation of phosphorylation of self and of
substrates.

Several features of the ERBB3 cytoplasmic domain should be mentioned. (1) The tyrosine
kinase domain of ERBB3 is largely conserved relative to the other ERBBs, even though it is
functionally defective58 and presumably plays a role in protein–protein interactions. In the
kinase region of the protein, the consensus sequence for the ATP-binding site, GlyXGlyXXGly
at positions 716–721, is conserved. However, relative to the other ERBB receptors, human
ERBB3 has several nonconserved regions in the kinase domain, at positions 740 (Ala instead
of conserved Cys), 759 (His instead of Glu) and 834 (Asn instead of Asp).41 It has been
suggested that these substitutions contribute to the impaired kinase activity of this protein,17

resulting in a 100-fold reduction in capacity for autophosphorylation and substrate
phosphorylation, but site-directed mutation at 759 and 834 to glutamate and aspartate,
respectively, did not restore kinase activity.59 Rat Erbb3 presents the consensus Asp at the site
equivalent to human 834, and when this was mutated to Asn, interaction of the rat Erbb3 with
its targets Ptpn11 (Syp) and PI3K were greatly increased in a yeast two-hybrid assay.60

Furthermore, mutations at the sites equivalent to 740 or 759 gave additional enhancement of
these interactions. These results indicate functional significance for the ERBB3-specific
changes at these sites with regard to downstream signaling.

An ongoing question has been how ERBB3, with its impaired kinase activity, could
transphosphorylate ligandless ERBB2 within a simple ERBB2/ERBB3 heterodimer.
Possibilities include sufficiency of the very low kinase activity of ERBB3 or involvement of
another kinase recruited by ERBB3. Studies with transfected mutants of ERBB3 and ERBB2
appeared to rule out participation of ERBB3 as a kinase and of another cytoplasmic kinase.
61 It is most likely that allosteric interactions between lobes of the kinase regions of ERBB2
and ERBB3 result in activation of ERBB2.8 (2) The C-terminal domain of ERBB3 is 30 to
50% longer than the comparable regions of EGFR and ERBB2. (3) There are three sequential
amino-acid residues in this region, Leu957, Val958 and Ile959, that are required for
transactivation of ERBB2 and that are conserved among EGFR, ERBB3 and ERBB4, whereas
ERBB2 differs at the position equivalent to site 957.61 (4) The same amino-acid substitutions
at positions 931, 934 and 966 of ERBB3, relative to the other ERBBs, in three diverse species
(human, rat and pufferfish) indicate potential functional significance.41 (5) The carboxy
terminal region of ERBB3 includes 13 tyrosines and the sequence Tyr-Glu-Tyr-Met is repeated
three times. (6) ERBB3 has a nuclear localization signal near the C-terminus of the protein.
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Turnover, localization and trafficking
Turnover—The biosynthesis time for ERBB3 is estimated to be ½h, with a half life of 2–3
h. Inactivation and turnover involves dephosphorylation, proteolysis and re-cycling from
endosomal compartments. A computational model based on data for H292 human lung
carcinoma cells led to the conclusion that dephosphorylation of ERBB3 as well as of EGFR
and ERBB2 occurs mainly in the intracellular, endosomal compartment, rather than at the cell
membrane.62

Unlike the EGF-activated EGFR, which undergoes lysosomal routing and ligand-mediated
degradation, ERBB3 is not subject to ligand-induced proteolysis but rather is processed by
slow endocytosis with relatively late ligand degradation, followed by rapid recycling.63–65

This difference is a function of the cytoplasmic domain, as fusion of the C-terminal region of
ERBB3 to EGFR resulted in a recycled rather than degraded chimeric molecule.66 ERBB2/
ERBB3 heterodimers similarly undergo slow endocytosis. Signaling may continue within the
endosome, dependent on ligand binding; NRG binding to ERBB3 is stable at endosomal pH.
45,50 The nature of the ligand may influence receptor stability. Whereas most EGFR ligands
led to rapid degradation of this receptor, betacellulin bound-EGFR was stable at endosomal
pH.50

Degradation of ERBB3 occurs in proteasomes and is regulated by the recently identified E3
ubiquitin ligase, neuregulin receptor degradation protein (NRDP1), a ring finger protein also
known as RNF41 or Flrf. It was discovered as an ERBB3-interacting protein by yeast two-
hybrid analyses.67,68 NRDP1 associates with ERBB3 and stimulates its ubiquitination and
rapid degradation by proteasomes in a ligand-independent manner, thus regulating steady-state
levels. The C-terminal domain of NRDP1 associates with the cytoplasmic tail of ERBB3. The
N-terminal RING finger promotes ERBB3 ubiquitination and degradation. Coexpression
experiments indicated that NRDP-1 specifically interacts with ERBB3 and ERBB4 and not
with EGFR or ERBB2. As observed in cotransfection experiments, NRDP1 redistributed
ERBB3 from the cell surface and was colocalized in the intracellular compartments,
particularly perinuclear regions.68 NRDP1 itself is highly labile and undergoes self-
ubiquitination and is degraded through a proteo-some-mediated pathway.69 NRDP1 correlated
negatively with ERBB3 levels in primary breast cancers from both humans and mice and
overexpression of NRDP1 led to reduced ERBB3 levels and inhibition of mammary cancer
cell growth and motility, whereas reduction in NRDP1 had the opposite effects.70

ERBB3 may also be negatively regulated by the leucinerich repeat protein LRIG1, which
colocalizes with ERBB receptors and apparently enhances ubiquitination.71

Most recently, ERBB3 stability has been found to be regulated also by the NRG isoform that
activates it.72 This study utilized recombinant, nonglycosylated NRG1-β1, the subtype which
binds preferentially to ERBB3, with or without N-terminal domains in addition to the EGF-
like domain. The presence of N-terminal domains stimulated ERBB3 degradation in MCF7
mammary carcinoma cells. This effect was sequence-independent, as substitution of other
peptides of equal size did not abrogate it and was correlated with ability of the full-sized NRG1
to disrupt higher order oligomers of ERBB3.

Nuclear localization—In addition to cell membrane and cytoplasmic localization, all ERBB
family members have been observed in cell nuclei.73–75 This localization has been most
extensively studied for EGFR and has been proposed to involve routing from endosomes or
direct extraction from cell membrane. Suggested functions for EGFR in the nucleus have
included action as a transcription factor, a chromatin re-modeling agent, an agent in DNA repair
and/or a signal transducer by means of its tyrosine kinase activity. Nuclear localization of
EGFR has typically been described as a response to cell stress or as a concomitant of cell
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proliferation, as in hepatic regeneration and in various cancers. Only a few studies of nuclear
localization of ERBB3 have been reported, but these indicated potentially interesting functions
in this compartment. In immortalized human breast cells and breast cancer cell lines, full-length
ERBB3 showed prominent nuclear localization with several antibodies and techniques.76 An
active nuclear localization signal was confirmed in the C-terminal region of the ERBB3.
Amounts in the nucleus were increased by treatment with a nuclear export inhibitor. However,
neither NRG nor ERBB2 was present in the nuclei of these cells. When immortalized cells
became differentiated and polarized as a result of growth on a permeable membrane, nuclear
ERBB3 was localized primarily in nucleoli. Exposure to NRG resulted in shift of the ERBB3
from nucleoli, to nucleoplasm, to cytoplasm. These results suggest a role for ERBB3 in
regulation of RNA synthesis during growth arrest, and downregulation of this role by
cytoplasmic sequestration with NRG during proliferation.

In a series of Japanese lung cancers, ERBB3 was detected in the nucleus of 57%, associated
with significantly higher levels of ERBB3 mRNA.77 In a transformed cell line from peripheral
mouse lung peripheral epithelium, ERBB3 was detected in the nucleus and became enriched
in the nucleoli of serum-starved cells.78 As for the breast cancer cells, treatment with NRG
resulted in movement of the ERBBs out of the nucleus into the cytoplasm.

ERBB3 has also been detected in nuclei of prostate cancers and cancer cell lines.79 Its nuclear
levels were low or absent in nonmalignant tissue and higher in hormone refractory compared
with hormone-sensitive cancers and so were apparently correlated with tumor progression. In
contrast, nuclear ERBB3 was higher in prostate cancer cell lines that were androgen responsive.
Treatment of the cells with NRG resulted in tyrosine phosphorylation of ERBB3 in the
cytoplasm, but not the nucleus, consistent with lack of ERBB2/ERBB3 heterodimer in nuclei
of breast cancer cells.76 ERBB3 was also noted in nuclei of Schwann cells.80

In sum, it seems likely that nuclear localization of ERBB3 has major functional importance in
health and disease and is a compelling subject for future study.

ERBB3 interacting proteins: activation, signaling and regulation
Activation (Table 2)

Ligand-dependent activation—The primary ligands for ERBB3 are the members of the
NRG family, a large group of isoforms encoded by four genes, with an EGF-like C-terminal
portion and a variable N-terminal region. Several recent comprehensive reviews of NRGs are
available.81–83 Alpha and β isoforms utilize different exons for the EGF-like domain. The
relative effects of the NRGs on ERBBs appear to relate in part to the cells under study and the
type of assay. ERBB3 affinities for the EGF-like domains have been measured in a direct
binding assay.84 NRG1β bound with much greater affinity than NRG1α. When ERBB2 and
ERBB3 were present together, relatively weak binding was also detected for NRG2β and
epiregulin α. NRG2α and 3α, betacellulin α, heparin-binding EGF, EGF and TGFα were
negative.

Consistent with these results, NRG1β had a much stronger stimulatory effect on DNA synthesis
in NIH3T3 cells, compared with NRG1α.85 Similarly in T47D mammary and OVCAR3 ovary
cancer cells NRG1β caused greater activation of ERBB3, ERBB4 and ERBB2 and more
persistent ERK2 activation than did NRG1α.86 In MDA-MB-453 breast carcinoma cells,
NRG1β and NRG2β caused equivalent levels of ERBB2 and ERBB3 phosphorylation, but
NRG1β led to increased or prolonged signaling through AKT, ERK, PKC, RSK, S6K, MYC,
JUN and CREB compared with NRG2β, and also generated a different gene expression profile.
87 This was associated with lower recruitment of ERBB2 signaling partners after NRG2β
compared with NRG1β.88
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Nevertheless in some breast cancer cell lines NRG2 is active. Cell lines MDA-MD-453 and
T47D were stimulated to grow by two NRG2 isoforms.89 NRG3 was expressed in breast cancer
cell lines, and the EGF-like domain of NRG3, as a recombinant protein, activated ERBB2/
ERBB3 in breast cancer cells and altered their growth,90 although it had little affinity in a
direct-binding assay.84 NRG4 appears to be specific for ERBB4.91

In the context of the ERBB family members expressed individually or in pairs in myeloid cells,
NRG1α and β and NRG2α and β had no effect on ERRB3 expressed alone but were equally
effective in activating it in the presence of ERBB2; similar though lesser effects were seen
with ERBB3+ERBB4.92 When ERBB3 was expressed with EGFR, only NRG1β and
NRG2α had effects.92

Altogether the effects of activation of ERBB3 by NRGs probably depends on the amounts and
ratios of the NRG isoforms present, their status as secreted, paracrine or autocrine factors and
the relative amounts of other ERBBs. An additional complexity has recently been added with
the finding that in gefitinib-treated breast cancer cells NRG changed in both amount and in
nuclear localization, in opposite directions depending on the gefitinib responsiveness of the
cells.93

Ligand-specific cellular effects have also been described for ERBB4 and related to
phosphorylation of specific tyrosine residues.94 Several possible mechanisms were postulated,
including recruitment of cytosolic kinases or phosphatases, extracellular regulators or signal-
regulatory proteins and differential receptor aggregation or conformation change.

Effects of NRG1β on membrane localization of ERBB3 have recently been studied by
immunoelectron microscopy. ERBB3 expressed in stably transfected CHO cells formed
clusters in the cell membrane.95 The sizes of these clusters were similar with high or low
receptor expression, and increased when NRG was added. In SKBR3 mammary carcinoma
cells, NRG also led to large increases in ERBB3 clusters and marked coclustering of ERBB3
with the p85 subunit of PI3K, but not with ERBB2 or EGFR.

Other ERBB family ligands may also have effects under some circumstances. In a direct
binding assay, EGF and betacellulin did not activate ERBB3 when expressed alone, but these
ligands did have low-affinity activity when ERBB3 was expressed in cells with ERBB2;
TGFα, amphiregulin and heparin-binding EGF remained in-effective.84 Similar results were
obtained with MDA-MB134 and MDA-MB453 mammary carcinoma cells after prolonged
exposure to EGF or betacellulin.96,97 Somewhat different results were obtained with T47D
mammary tumor cells, where betacellulin and heparin-binding EGF but not EGF activated
ERBB3.98 Finally, in a wound repair model, transfected ERBB3 enhanced various wound
healing parameters more effectively when combined with epiregulin or HB-EGF, than with
EGF or NRG.99

Physical interaction with other ERBB family members—Since ERBB3 has only
minimal intrinsic kinase activity, its phosphorylation after NRG activation is dependent on
physical association with other ERBB family members, to provide highly potent heterodimers.
100 Phosphorylation may also occur without NRG, via EGFR activation by its specific ligands.
101 Complexation of ERBB3 with EGFR is a prominent phenomenon in some models.101–
103 In several different types of transfected cells, the expression of the EGFR was sufficient to
allow activation of ERBB3 in response to EGF.104–106 ERBB3 was a highly receptive substrate
for EGFR tyrosine kinase activity.107 Activity of purified EGFR toward tyrosine-containing
peptides from the C-terminal region of ERBB3 was measured in vitro.108 Activity was high
toward the peptides with two tyr (1197/1199, 1222/1224 and 1260/1262) as well as toward
that with tyr1159. EGF increased EGFR catalytic activity toward ERBB3 phosphorylation
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sites, but affinity was not changed. Certain sites had higher specificity constants than any EGFR
sequence. However the tyr1289 in ERBB3, important as a PI3K binding site, had relatively
low activity with EGFR. ERBB3 also has the potential to activate EGFR: in several models
involving high expression of transduced ERBBs, NRG-stimulated ERBB3 activated EGFR.
104,109 However, in five human mammary and ovarian carcinoma cell lines expressing both
receptors no EGFR tyrosine phosphorylation occurred after NRG treatment.86

Interaction of ERBB3 with the ligand-less ERBB2 results in a complex with enhanced affinity
for NRG and increased ERBB3 phosphorylation,106,110,111 and these receptors, as noted
below, contribute synergistically to cell transformation and to malignant properties of cancer
cells. ERBB2 is more likely to heterodimerize with ERBB3 than to homodimerize.112 NRG-
induced formation of the ERBB2/ERBB3 complex resulted in conversion of ERBB2 from an
inhibited to an active protein conformation.113

ERBB2 participates in communications between ERBB3 and the EGFR: stimulation of PC12
cells with either EGF or NRG led to formation of complexes containing EGFR, ERBB2 and
ERBB3; it was proposed that primary dimers of EGFR/ERBB2 after EGF and of ERBB3/
ERBB2 after NRG underwent dissociation, and secondary dimers formed of ERBB2/ERBB3
or ERBB2/EGFR, respectively.114 A site-specific mutagenesis study identified ERBB2 sites
L295 and H296 as critical to ERBB2/ERBB3 heterodimerization in response to NRG.55 A
monoclonal antibody to the EGFR stimulated the growth of NSCLC line PC-14 by enhancing
ERBB2/ERBB3 heterodimerization, possibly by blocking hetero-dimerization of EGFR with
ERBB2 or ERBB3.115

Herstatin, a naturally occurring ERBB2 inhibitor, prevented transactivation of ERBB3 in
response to NRG in the context of CHO cells transfections.116 However, herceptin, a
monoclonal antibody to ERBB2 which targets ERBB2/EGFR heterodimers, had no effect on
ERBB2/ERBB3; ERBB3/EGFR heterodimers were unstable in this engineered cell expression
system.117

ERBB3/ERBB4 complexes have also been reported78 and can stimulate cell division.92

ERBB3 phosphorylation by other kinases—Other kinases may also phosphorylate
ERBB3 under some circumstances. Also in mammary cancer cells, expression of a kinase-
dead EGFR mutant blocked activation of EGFR, ERBB2 and ERBB4, but basal tyrosine
phosphorylation of ERBB3 was enhanced and c-SRC was implicated by specific inhibitor
studies.118 C-SRC binds a phosphotyrosine site in ERBB3 (see Table 3). Tyrosine
phosphorylation of ERBB2 and ERBB3 and formation of their heterocomplex, as well as
downstream signaling, was enhanced by expression of c-SRC in both fibroblasts and breast
cancer cells.119 A SRC-family kinase inhibitor reduced phosphorylation of ERBB3 at Y1289,
the binding site for SRC, especially in EGFR-dependent NSCLC cell lines HCC827 and
H3255.120

Recently lung cancer cells with EGFR mutations but with resistance to gefitinib therapy were
found to have amplification of the gene for the MET receptor, a transmembrane tyrosine kinase
that is activated by hepatocyte growth factor.121,122 Physical complexes of MET with ERBB3
and PI3K were demonstrated. The downstream activation of PI3K and AKT via the MET/
ERBB3 interaction accounted for the acquired gefitinib resistance.

In myotubes, Nrg caused activation of cyclin-dependent kinase 5 (Cdk5), in addition to the
expected tyrosine phosphorylation of Erbb3 and inhibition of Cdk5 by several means led to
reduced tyrosine phosphoryation of Erbb3 in response to Nrg.123 Furthermore Cdk5 and Erbb3
coimmunoprecipitated, and Cdk5 caused ser/thr phosphorylation on immunoprecipitated
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Erbb3. These results for muscle were confirmed in Cdk5−/− knockout mice.124 In a further
study, Cdk5 immunoprecipitated from brain extracts was demonstrated to phosphorylate Thr
871 and Ser 1120 in rat Erbb3 in vitro;125 the consensus sequence of RSRSRSPRPR
surrounding Ser 1120 is novel. Physical association of Cdk5 and Erbb3 was confirmed in rat
cortical neurons. Cdk5 also phosphorylated Erbb2. In contrast to the situation in muscle,
Cdk5−/− neurons showed reduced Erbb3 ser/thr phosphorylation and lowered PI3K activity,
without a reduction in Erbb3 tyr phosphorylation. This suggests that, at least in neurons, ser/
thr phosphorylation may directly regulate Erbb3 function.

The breast cancer-associated tyrosine kinase BRK (also known as protein tyrosine kinase 6,
PTK6), which is tyrosine-phosphorylated in mammary epithelial cells upon EGF treatment,
further caused an increase in tyrosine phosphorylation of ERBB3 in response to EGF. It also
coimmunoprecipitated with ERBB3 when both were overexpressed in human embryonic
kidney cells.126 Direct phosphorylation of ERBB3 by BRK was postulated but has not yet been
directly demonstrated.

Regulation of ERBB3 activation by feedback effects from AKT—Qualitatively new
insight into ERBB3 regulation developed from a study of escape of breast cancer cells from
suppression by tyrosine kinase inhibitors.127 After prolonged exposure of BT474 or SKBR3
mammary cancer cells to gefitinib, erlotinib or AG825, the initially suppressed pERBB3 and
pAKT levels recovered, even while pEGFR and pERBB2 remained inhibited. This effect
correlated with increased levels of ERBB3 in the cell membranes and was dependent in part
on increases in intracellular peroxides. Effects of a PI3K inhibitor and of constitutively active
AKT implicated negative feedback from AKT in compensatory upregulation of pERBB3
levels.

Other modes of ERBB3 activation—In the MCF10A nontransformed mammary cell line,
NRG activated ERBB3 without apparent involvement of the other ERBBs.128 ERBB3 may be
transactivated by cellular stress and cytokines, including tumor necrosis factor α and interferon
α.129,130 Mechanisms have been further elucidated for multiple myeloma cells, and Janus
tyrosine kinases TYK2 and JAK1 have been implicated, though neither demonstrated physical
association with ERBB3.131

Proteins binding with phosphotyrosines in ERBB3′s cytoplasmic domain
Sequence analysis of ERBB3 indicated putative binding sites for SHC, GRB7, GRB2, SRC
and the p85 regulatory subunit of PI3K.59 These have been empirically confirmed and other
proteins interacting with the C-terminal cytoplasmic domain of ERBB3 discovered, using
several types of arrays and yeast-two hybrid assays. Schulze et al.132 used an array method to
pull down proteins in lysates of HeLa cells by each of the phosphotyrosine-containing peptides
in the ERBB family members. For ERBB3, binding of PI3K p85 to six sites was confirmed,
GRB2 associated with two sites and SHC and SRC were each pulled out by one site. ERBB3,
uniquely among the family, has three pairs of tyrosine residues separated by a single glutamic
acid residue (YEY motif). For all three, p85 bound to the first phosphorylated residue, and for
two of these motifs, GRB2 bound to the second. Doubly-phosphorylated YEY motifs did not
have any unique properties in these assays.

A remarkable accomplishment was recently reported by Jones et al.:133 all of the SRC
homology 2 (SH2) and phosphotyrosine-binding (PTB) domains encoded in the human
genome were measured for binding to each of the phosphopeptides from the ERBB receptors.
This included 106 SH2 domains and 41 PTB domains, and for ERBB3, 10 phosphotyrosine-
containing peptides and their non-phosphorylated counterparts. Binding to ERBB3 was
detectable for 46 of the tested domains. The peptides interacting with pY residues in ERBB3
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with high or moderate affinity (Kds of <1000 nM) in this study are listed in Table 3, including
four that had been previously reported, PI3KR1/2/3 (PI3Kα), GRB7, SHC1 and PTK6. GRB2
and PTPN11, described as binding in other studies, did not interact with ERBB3 in this test
system. Phosphotyrosine sites Y1276 and Y1289 showed many high-affinity interactions,
whereas other sites were markedly more selective. Overall the ERBB3 sites averaged 8.8
domains with high-affinity interaction. ERBB2 by contrast had many promiscuous sites. The
binding profile of ERBB3 changed less with varying concentrations of PTB and SH2 domains
than did those of EGFR and ERBB2.

PI3K regulatory subunit p85 and AKT—The most fully studied target of ERBB3 is the
p85 regulatory subunit of PI3K (PI3KR), with potential for strong mitogenic signals.66 In
vitro phosphorylation of ERBB3 by EGFR resulted in strong association with p85 and
activation of PI3K.105 A proliferative response of NIH3T3 cells to NRG, dependent on
expression of ERBB3, involved association of PI3K with ERBB3.134 Early studies indicated
that a prominent association between ERBB3 and p85 is a unique feature of ERBB3,135 and
this was confirmed by the assays of Jones et al.,133 which found that both SH2 groups in each
of the three PI3KR isoforms bound with moderate or high affinity at multiple sites in ERBB3,
as previously reported.104 However, EGFR and ERBB2 (but not ERBB4) did bind to p85 at a
limited number of sites.133 Each of the p85 sites contributes to ERBB3 signaling, as
demonstrated by their one-at-a-time mutation and restoration, and cooperation among p85-
binding sites was observed.136 These interactions involve the N-terminal SH2 domain of p85,
with the two phosphotyrosine-binding sites in this domain each interacting preferentially with
certain phosphotyrosyl peptides from ERBB3.137 For the three pairs of tyrosine residues
separated by a glutamic acid, the first Tyr in each case binds p85.132 Doubly phosphorylated
tripeptides also bound p85, with the two phosphotyrosine-binding sites in p85 possibly each
engaging a different but nearby phosphotyrosine.137 Because of the high number of binding
sites, ERBB3 is viewed as a possible scaffold protein for PI3KR.

One of the best characterized targets of PI3K is the kinase AKT. ERBB3/PI3K/AKT-induced
survival and proliferation pathways have been implicated in the malignancy of breast, ovarian,
colon, gastric and lung cancer cells. Various approaches using ERBB3 mutants,136,138

immunoprecipitations with antibody against ERBB3139,140 or NRG,141 ERBB3 antisense,
139 ERBB3 small interfering RNA (siRNA),142 and use of the designer ERBB3 transcription
inhibitor E3 in a variety of cells143 have established the importance of this pathway.

GRB7/GRB2—GRB7 was notable for its uniquely high-affinity binding with pY1197 in
ERBB3 (Table 3). GRB7 is an adapter molecule and has a role in integrin signaling and cell
migration in various cell types. It can be overexpressed in breast, esophageal and gastric cancers
and has been proposed for therapeutic targeting.144 In human breast cancer cell lines co-
immunoprecipitation of GRB7 and ERBB3 was detected upon NRG stimulation.145 The
association was direct and mediated by the GRB7 SH2 domain; this study also indicated
pY1197 and pY1260 as the major and minor sites of GRB7 interaction in ERBB3. Although
these recognition sequences represent GRB2-binding sites, ERBB3 preferentially bound to
GRB7. This was also observed with EGFR/ERBB3 chimeras expressed in NIH3T3 fibroblasts.
59 However, in HeLa cells interaction with ERBB3 was demonstrated for GRB2, whereas
GRB7 was not present in these cells.132

SHC—The adapter SHC is unique among the well-studied ERBB3 targets in that binding
preferentially involves the amino-terminal PTB domain, rather than the carboxy-terminal SH2
domain.59,146 This was confirmed by Jones et al.,133 with pY1328 identified as the site of
interaction. Signal transduction to SHC from ERBB3 occurs after NRG or EGF exposure in
NIH 3T3 cells.106 Site-directed mutagenesis studies in these cells indicated that NRG
stimulation of mitogenesis involved both MAPK and PI3K pathways from ERBB3, with the
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ERBB3 SHC-binding site at rat Tyr1325 essential for the MAPK pathway stimulation.147,
148 In MDA-MB-468 human mammary cancer cells, NRG1β preferentially stimulated ERBB3,
resulting in recruitment of SHC.88 ERBB3/SHC interactions were involved in NRG stimulation
of transcription of the acetylcholine receptor gene in muscle cells.149

PTK6—Protein tyrosine kinase 6 (PTK6, BRK), when highly expressed in mammary epithelial
cells, resulted in enhanced phosphorylation of ERBB3 and downstream activation of AKT.
125 Its SH2 domain bound only at pY1276 (Table 3) and did not have affinity for the other
ERBB proteins.

c-SRC—Physical association occurred between c-SRC and ERBB3 in mammary cancer cells,
and when both were stably expressed in CHO cells; however, neither tyrosine kinase activity
of c-SRC nor tyrosine phosphorylation of ERBB3 was required for this complex.118 In the
presence of kinase-dead mutants of EGFR, ERBB2 and ERBB4, ERBB3 passed an anti-
apoptotic signal through c-SRC.118 The SH2 domain of SRC bound only at pY1289 (Table 3)
and bound only to ERBB3 in this assay.

PLCG1—Phospholipase γ1, a signal transducer, has generally been thought to be a substrate
specific to the EGFR,66,135 but an association between ERBB3 and PLCG1 was observed in
irradiated A431 carcinoma cells.150 Its interactions with ERBB3 were limited to pY1276 and
pY1289 (Table 3).

Newly-identified proteins binding ERBB3 phosphotyrosines—The assay of Jones
et al.133 revealed a number of hitherto unsuspected, interesting proteins whose SH2-domains
had affinity for ERBB3 phosphotyrosines. ABL2, a cytoplasmic tyrosine kinase, bound at
seven sites and was the only candidate with high affinity for pY868. ABL1 by contrast had
affinity only at pY1289. RASA1N, a Ras regulatory protein, bound at five sites and was one
of three with affinity for pY868. Ras regulatory protein was present in multimeric complexes
with ERBB proteins after NRG stimulation of breast cancer cells.151 The third protein
interacting at pY868 was SYK, a cytoplasmic tyrosine kinase with central signaling roles in
hematopoietic cells and a tumor suppressive function in mammary cells.152 Several adapter
proteins, CRK, NCK1 and NCK2 and the ras/jun activator CRKL, bound with high affinity
only to pY1276 of ERBB3. The signaling protein JAK2 was also bound at pY1276. NRG1
activated JAK3, but not JAK1 or JAK2, in lung epithelial cells.153 JAK3 also bound at pY1276
but with lower affinity (Kd 1355 nM).

VAV1, an oncogene and a member of the DBL family of Rho guanine nucleotide exchange
factors, bound especially at pY1289, while VAV2, also an oncogene and a SRC effector, had
high affinity for pY1276. VAV3, a guanine nucleotide exchange factor for both RHO and RAC,
also bound at pY1276 but with lower affinity (Kd 1539 nM).

TENC1, which may be a focal adhesion molecule, was bound mainly at pY1222. Several
proteins bound with moderate or high affinity only at pY1289: the oncogene homolog LYN;
TENS1, which has a role in disassembly of EGF-related signaling complexes at focal
adhesions; FER, a nonmembrane receptor tyrosine kinase that regulates intercellular adhesions;
ITK, an intracellular tyrosine kinase; and DAPP1, a protein phosphatase.

An interesting possibility is that SH2 domains which bind with moderate or high affinity at
only one site, as is the case for CRK, NCK1, NCK2, CRKL, JAK2, PTK6 and VAV2 at pY1276
and for SRC, VAV1, LYN, TENS1, FER, ITK and DAPP1 at pY1289, compete for binding
at these sites, so that their relative concentrations determine the nature of the signal generated.
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Other intracellular proteins interacting with ERBB3 EBP1—A particularly
interesting binding partner for ERBB3, discovered in a yeast two-hybrid assay, is ERBB3-
binding protein 1(EBP1).154 EBP1 is encoded by human gene PA2G4 (human homolog of the
mouse p38-2G4 protein, a cell cycle-regulated DNA-binding protein), and is widely expressed.
155 It interacts with the first fifteen amino acids of the juxtamembrane domain of unphos-
phorylated ERBB3. A functional story has emerged for EBP1 in human breast and prostate
cancer cell lines, where high expression of EBP1 leads to reduced cell growth and increased
differentiation.156,157 In these cells, binding of EBP1 to ERBB3 is dependent on constitutive
phosphorylation by PKC.158 Upon NRG stimulation, EBP1 is phosphorylated, independent of
PKC, dissociates from ERBB3, and translocates to the nucleus.154,155 Nuclear EBP1 interacts
directly with the cell cycle regulator pRB, resulting in inhibition of transcription of E2F-
regulated genes, including cyclin E, by a mechanism including recruitment of Sin3A and
histone deacetylase.157,159–162 EBP1 contains an LXXLL motif mediating interactions with
nuclear hormone receptors and binds androgen receptor, resulting in inhibition of activation
of androgen-responsive gene promoters.157,163,164 Transcriptional effects of EBP1 are
dependent on phosphorylation at serine 363.165 Thus, in both breast and prostate cancer cells,
EBP1 is potentially a critical effector for ERBB3 signaling.

EBP1 may have even wider and more complicated roles, as shown by recent results with other
cell types. Nucleolar localization was noted for EBP1 in HeLa cells, 3T3 fibroblasts and mouse
mammary epithelial cells,166,167 as part of ribonucleoprotein complexes and in association
with different rRNA species via its dsRNA-binding domain and sigma70-like domain.
Furthermore, in the cytoplasm EBP1 associates with mature ribosomes and potentially
influences protein translation via inhibition of phosphorylation of eukaryotic initiation factor
2α.167 Most recently, in PC12 pheochromocytoma cells, two isoforms of EBP1 were
discovered, with differing properties with regard to ERBB3-binding, intracellular localization
and effects on cell survival and differentiation.168

The crystal structures of human EBP-1169 and of murine Ebp-1170 have recently been reported,
and a requirement demonstrated for the C-terminal region in RNA binding.170

BMS/ETK—The nonreceptor tyrosine kinase BMS/ETK was activated by NRG1β and formed
a complex with ERBB3 in prostate cancer cells.171 Activation also required PI3K activity
through a membrane-targeting effect of phosphatidylinositol-3-phosphate. Thus ERBB3
appeared to be involved both directly and indirectly in activation of this growth-stimulatory
signaling molecule.

ERBB3 interacting factors in yeast two-hybrid assays—Three additional ERBB3-
interacting proteins were identified using the split-ubiquitin membrane yeast two hybrid
system, wherein a human brain library was screened with ERBB3 as bait.172 RGS4 (Regulator
of G protein-signaling family member) was one of the interacting proteins. This interaction
was further confirmed by demonstration that transiently expressed ERBB3 and RGS4 formed
coimmunoprecipitation complexes in human HEK293T cells. This screen also revealed
interactions between ERBB3 and Early Growth Response Protein 1 (EGR1), a zinc finger
transcription factor important for neurite outgrowth, wound repair growth control and
apoptosis; and ZNF207, a hypothetical zinc finger transcription factor. Possibly these
interactions are important in the nuclear functioning of ERBB3 (above). A yeast two-hybrid
assay was also used to discover an interaction between the angiotensin II receptor and the ATP-
binding domain of ERBB3.173 The functional significances of these interactions remain to be
demonstrated.

The human homolog of the mouse transplantation antigen P198, designated p23, was found to
interact with the cytoplasmic domain (juxtamembrane region) of ERBB3 in a yeast two-hybrid
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assay.174 Transfection of p23 into ERBB3 overexpressing mammary cancer cells resulted in
decreased growth and induction of differentiation.

Some of the interesting proteins interacting physically with ERBB3 in the cytoplasm are
summarized in Table 4.

ERBB3 in normal and neoplastic tissues
Cell transformation by ERBB3

In view of the demonstrated effects of ERBB3 on cell division and survival, it is not surprising
that it can contribute as an oncogene to cell transformation and tumorigenesis, particularly
when acting in concert with ERBB2. Transfection of ERBB3 into NIH3T3 fibroblast cells
resulted in a low level of colony growth in soft agar,17 but ERBB3 coexpressed in these cells
with ERBB2 greatly enhanced the degree of transformation seen compared with ERBB2 alone.
175 ERBB2 activity and action of ERBB3 in concert with ERBB2 as a heterodimer were
required for this transformation, and phosphorylation of ERBB3 and activation of PI3K were
associated. In another study with transfected 3T3 cells, ERBB3 was again not transforming by
itself, and transformation when combined with ERBB2 required that NRG be expressed as
well.176 Similarly transformation of 3T3 cells by NRG required coexpression of ERBB3 and
ERBB2 or ERBB4, with the former being the more effective.86 3T3 cells overexpressing only
ERBB3 formed small tumors as nude mouse xenografts, but only after a long latency suggestive
of need for additional events.111 Tumors resulting from combined expression of ERBB2/
ERBB3 or EGFR/ERBB2 made high levels of vascular endothelial growth factor, compared
with other receptor combinations.

In an extensive investigation which included microarray analysis of gene expression, all
combinations of the ERBB receptors were expressed in 3T3 cells.177 ERBB3 alone or in
combination with EGFR was not tumorigenic. ERBB3 in combination with ERBB2
transformed the cells as expected, and yielded xenograft tumors that grew more aggressively
than observed with any other ERBB combinations. Tumors were also induced with cells
expressing ERBB3 and 4; these had a slow growth rate. Each cell line expressing single or
double receptors had a unique pattern of gene expression. Especially notable was high
expression of the genes for insulin-like growth factor 2 and insulin-like growth factor-binding
protein 5 in the aggressive tumors induced by ERBB2 plus ERBB3.

NIH3T3 cells were also utilized for a study of differential effects of transfected ERBB3 vs
EGFR on gene expression, as analyzed by representational difference analysis. Expression of
dlk, a gene for a transmembrane protein with EGF-like repeats in the extracellular domain, was
upregulated by ERBB3 but not EGFR.178

Mammary gland
ERBB3 expression in normal mammary gland and cells—Erbb3 levels were low in
embryonic mammary tissue and increased during postnatal maturation, with evidence of
activation via phosphorylation in mammary tissue during mid to late pregnancy in mice and
high expression in both mammary ductal epithelial cells and stroma in pregnant rats.179,180

ERBB3 was downregulated in functionally differentiated mammary epithelial cells.179 In two
nontransformed human mammary epithelial cell lines, H16N-2 and MCF-10A, NRG1β was
strongly mitogenic and activated PI3K through ERBB2/ERBB3 heterodimer formation;181

NRG1α was less effective. A significant, though weak, activation of PI3K was also observed
after EGF stimulation and formation of an EGFR/ERBB2 heterodimer. Others have also noted
ERBB3 expression in MCF10A cells.182,183 However, in other nontransformed immortalized
mammary cell lines, expression of ERBB3 was very low or absent: AB548,17 HBL10035,
184–187 MTSV1.735 and MRSV-2.1 and −2.4.184 It seems that ERBB3 has regulatable
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expression in nontransformed mammary epithelial cells, and that this program may or may not
be activated during establishment of immortalized cell lines.

Mammary tumors in transgenic mice—The great majority of experiments addressing
the cancer-related effects of ERBB3 have been carried out in the context of mammary cancer.
Contributions of ERBB3 in mammary cancer have been appreciated since the discovery of the
gene in 1989: overexpression of ERBB3 mRNA in some mammary tumor cell lines was
reported in the same publication.17 In transgenic mice, targeting NRG to the mammary gland
led to appearance of carcinomas, in which Erbb3 but not Erbb2 or Erbb4 was activated by
phosphorylation.188 The long time course required for tumor appearance (12 months)
suggested that chronic activation of Erbb3 was synergistic with or permissive of other
transforming events. In mutant ERBB2-driven mammary tumors in transgenic mice, Erbb3
was specifically and markedly increased in amount and constitutively phosphorylated;
enhanced Erbb3 protein translation or stability, rather than transcription, was implicated.189

Tumor cells derived from mouse mammary cancers driven by transgenic rat wildtype Erbb2
also presented high Erbb3 levels, Erbb2/Erbb3 heterodimers, and down-stream activation of
PI3K and MAPK pathways by NRG.190

Primary breast cancer in humans—For primary breast cancer in humans, increased
ERBB3 expression relative to normal is common. These expression increases are not related
to increased copy number.184 In what appears to be the only direct study of ERBB3 protein,
2D-PAGE analysis of four normal and four malignant breast cancer samples revealed the
presence of ERBB3 only in the malignant tissue.191 Immunohistochemical approaches find
ERBB3 protein to be detectable in 50–70% of human breast cancers,192–194 with higher
expression of ERBB3 in human breast cancers vs normal tissues in 18–29% of cases.184,192,
195

ERBB3 mRNAs evaluated by real-time PCR showed a 100-fold variation, and increased
expression relative to normal in 46% of breast cancers.186 In another study, ERBB3 mRNA
had twofold higher expression on average compared with isolated mammary epithelial cells,
but there was considerable variability and lack of statistical significance.196 mRNAs for all
four ERBB receptors and their 10 ligands were quantified by real-time PCR for a series of 365
primary breast cancers.197,198 ERBB3 mRNA correlated positively with that for ERBB4 and
negatively with EGFR mRNA. There was a positive association between ERBB3 mRNA and
mRNAs for estrogen and progesterone receptors and with overall survival, and a negative
correlation with histoprognostic grading and with TGFα. Nevertheless, more than 60% of the
tumors presented coexpression of high levels of mRNA for EGFR, ERBB3 and TGFα, whereas
only 39% were positive for NRG. Most recently, ERBB3 was one of a small number of genes
found to be overexpressed in malignant vs normal breast tissue by a subtractive hybridization
technique and PCR, although the degree of overexpression was not marked.199

In one of the studies cited above high ERBB3 mRNA seemed to be a favorable prognostic
indicator. However, in another investigation high ERBB3 mRNA expression correlated with
poor survival.186 With regard to correlation between mammary cancer prognosis and ERBB3
protein status, high expression as determined by immuno-histochemistry has shown positive
associations with metastasis,184 tumor size and local recurrence,200 tumor grade193 and tumor
recurrence.194 Two studies concluded reduced survival associated with ERBB3 protein
overexpression,195,201 whereas several other investigations did not.200

There seems to be particular confusion regarding relationships between ERBB3 expression
and estrogen receptor (ER). At the level of proteins as determined by immunohistochemistry,
ERBB3 and ER did not correlate,193,200 and a high percentage of ER-negative tumors were
strongly positive for ERBB3.193 Another study seemed to be confirmatory, showing a weak
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inverse relationship between ERBB3 protein and ER.195 In cultured mammary cancer cells,
estrogen treatment suppressed ERBB3 transcription.38 On the other hand, for mRNAs, a
positive relationship between ERBB3 and ER was noted, along with increased benefit of
expression of both with regard to endocrine therapy.202 Similarly ERBB3 mRNA expression
in 38 mammary cancers was associated with ER positivity and correlated with ERα mRNA as
well as with estrogen-related receptor α mRNA.196 It has been suggested195 that these
discrepancies may be explained in part by the presence of soluble, inhibitory sERBB3. The
relationship between ERBB3 and ER may be important to understand, since overexpression
of ERBB3 predicted relapse during tamoxifen treatment for breast cancer.203

At present it seems that simple determination of levels of ERBB3 mRNA or protein in
mammary cancers does not lead to sure biological or clinical predictions, probably due to the
many other factors that influence its expression, activity, localization and pathway interactions.

ERBB3 signaling in mammary cancer cell lines—Many of the important features of
ERBB3 signaling have been discovered in cell lines derived from mammary cancer. In 35%
of such lines ERBB3 transcript was expressed at high levels, relative to a nontransformed
mammary cell line.17 As noted above, amounts of ERBB3 in cultured mammary carcinoma
cells may be regulated by estrogen and by integrin. Ethanol, which has been linked
epidemiologically with breast cancer risk, resulted in increased levels of ERBBs 2, 3 and 4 in
T47D breast carcinoma cells, leading to increased invasiveness in response to NRG.204

Human mammary carcinoma cell lines contributed to the demonstration of NRG as a
stimulatory ligand for ERBB3.205 The conclusion that an ERBB2/ERBB3 complex constitutes
a high affinity ligand for NRG110 has been amply confirmed in mammary carcinoma cells,
along with mutual phosphorylating transactivation by ERBB2 and ERBB3.175,176,185,205–
216 ERBB3 can also be transactivated by the EGFR in mammary cancer cells.105,217 Different
breast cancer cell lines show considerable variability with regard to relative expression,
colocalization, responsiveness and activity of ERBB3 and the other ERBB receptors.218,219

Complexes of activated ERBB3 with the p85 regulatory subunit of PI3K, along with increased
PI3K activity and elevations in pAKT, have also been repeatedly demonstrated in mammary
carcinoma cells,105,175,176,185,213–215,220 due either to constitutive activity or to treatment
with NRG or EGF.

The role of ERBB3 was shown in a particularly definitive study by Holbro et al.,143 in which
ERBB3 was downregulated with a designer transcription factor in the SK-BR-3 mammary
carcinoma cell line with high expression of ERBB2. The cells were blocked in cell cycle G1
phase and presented much reduced pAKT and, downstream, cyclin D3 and pRB. These effects
were reversed with an ERBB3 expression vector or with constitutively active AKT.

Several other studies have described cell cycle-related events in mammary carcinoma cells
after ERBB2 inhibition, with blockage of ERBB2/ERBB3 heterodimer formation and AKT
activation as the likely intermediary: cell cycle arrest with reduced c-myc, cyclin D and CDK1
activity,211 RB-dependent G1 arrest with downregulation of cyclin D,213 and increased p27
and reduced cyclin D and colony formation.214 Recently RAC1 has been identified as an
important mitogenic mediator after NRG treatment of mammary cancer cells, with ERBB3,
ERBB2 and EGFR all involved.221

As noted above, ERBB3 may be activated directly by NRG, or via heterodimer formation with
activated EGFR or ERBB4. Most studies have focused on NRG effects. NRG is mitogenic for
most mammary carcinoma cell lines,82,222–225 and can also stimulate motility and invasiveness
of these cells.209,225–227 In ERBB2-over-expressing breast tumor cells, G1 progression after
NRG stimulation was associated with ERBB2 transactivation of ERBB3 and stimulation of
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the PI3K pathway.228 Contributions of ERBB3 and/or the ERBB2/ ERBB3 complex to these
phenotypic effects of NRG has been confirmed by use of anti-ERBB2 or anti-ERBB3
antibodies211,212,229 or of a dominant-negative ERBB3 construct.230

The downstream participation of PI3K or pAKT was confirmed in some of these studies by
use of pharmacological or dominant-negative inhibitors of PI3K209 or by constitutively active
constructs of the p110 catalytic subunit of PI3K and by pharmacological inhibition of AKT.
213 Additional signal transducing molecules, potentially important for the malignant
phenotype, such as JNK, MAPK and p38 MAPK, have been implicated downstream of NRG
in mammary cancer cells, along with altered transcription of cancer-related genes such as
matrix metalloproteinases, urokinase plasminogen activator, vascular endothelial growth
factor, angiogenic factor Cyr61, autocrine motility factor, HIF1α, activating transcription
factor 4, GADD153, estrogen and progesterone receptors and BRCA1 (reviewed in82).

In tamoxifen-resistant MCF7 mammary carcinoma cells, NRG1 caused heterodimerization of
ERBB3 with both EGFR and ERBB2, and activation of ERK and AKT downstream pathways,
as well as cell proliferation and invasion.231 Blockade of the EGFR with gefinitib prevented
NRG stimulation of EGFR/ERBB3 hetero-dimers, ERK activation and cell proliferation, but
ERBB2/ERBB3 heterodimers, AKT activation and cell invasiveness were persistently induced
by NRG, illustrating the involvement of multiple pathways engaged by NRG-activated
ERBB3.

Thus many results are consistent with NRG-stimulated ERBB3 having an important role in the
malignant properties of mammary carcinoma cells. However, while high expression of NRG
in mammary cancers may often contribute to their malignant phenotype,224 a universal pro-
tumorigenic role for NRG in mammary cancer cannot be assumed. During development of the
mammary gland NRG1α is the main form expressed, and is necessary for differentiation as
well as proliferation.82 NRG caused differentiation in MDA-MD-453 and AU565 mammary
cancer cells, and several NRG isoforms resulted in cell cycle arrest, differentiation or apoptosis,
particularly in cells with high ERBB2 expression such as AU565, which lacks ERBB4.232

Signaling pathways involved included p38 MAPK, PKCα, mTOR, JNK, caspases 7 and 9 and
downregulation of BCL-2.232

In a series of cell lines of increasing malignancy derived from MFC10A cells, in the
nontransformed cells, which do not express NRG or ERBB4, added NRG was anti-proliferative
but acquisition of the fully malignant phenotype correlated with presence of high levels of
secreted NRG.184 Thus even within the same lineage the qualitative effect of NRG differed.
Furthermore, there are numerous NRG isoforms, each of which may have unique functional
implications.81 The persistence of the NRG cytoplasmic tail in certain isoforms may relate to
apoptotic effects.82 To complicate matters further, invasiveness can be increased by NRG in
SK-BR-3 breast cancer cells even while proliferation is suppressed.233

There is little information on NRG-independent activation of ERBB3 in mammary carcinoma
cells. In SK-BR-3 mammary cells, which do not produce NRG, there is constitutive activation
of ERBB3 and complex formation with ERBB2,143,175 suggesting possible transactivation via
the EGFR and/or ERBB4, facilitated by expression of large amounts of ERBB2. The
environmental xenoestrogen β-hexachlorocyclohexane caused complex formation between
ERBB3 and ERBB2 in MCF-7 mammary carcinoma cells and, interestingly, did not result in
ERBB3 phosphorylation, though the chemical synergized with the ERBB3-activating effects
of NRG.234

Summary and future for ERBB3 in breast cancer—These many results offer a complex
picture of ERBB3 in breast cancer, with much data pointing to its active involvement, but also
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some ambiguities. The collective evidence is summarized in Table 5. ERBB3 may interact in
several ways with breast cancer therapy. It contributes to tamoxifen resistance by unknown
mechanisms.235 There are compelling new results showing that ERBB3 upregulated activity
is a means of escape from therapeutic suppression by several tyrosine kinase inhibitors, in at
least six mammary cancer cell lines, by a novel pathway involving feedback from AKT.127,
236 ERBB3 is likely to become increasingly a center of attention for breast cancer treatment.

Ovarian cancer
Emerging evidence implicates ERBB3 in other cancers of endocrine-responsive tissues,
including ovary and prostate. Interesting features are summarized in Table 6. In a comparative
genomic hybridization study of ovarian serous adenocarcinomas, the ERBB3 gene was found
to be amplified 2.4- to 3-fold.237 ERBB3, as well as NRG, is expressed in the majority of
ovarian tumors, with highest frequency in carcinomas.238–245 Although greatest expression
was reported in early-stage or more differentiated tumors,239–241 association of ERBB3 with
poor prognosis has also been reported, for transitional cell carcinoma240 and endometrioid
cancers.237 It has recently been confirmed that high ERBB3 expression in ovarian cancer
correlates with poor survival.246 In the latter immuno-histochemical study, ERBB3
overexpression was more common than high ERBB2 and the predominant localization of the
ERBB3 protein was cytoplasmic, in contrast to the typical membrane staining for ERBB2.

In some ovarian cancer cell lines, responses of ERBB3 to NRG have seemed to be mediated
by formation of heterodimers with ERBB2, as observed for mammary cancer cells (above).
208,243 However, there have also been some unique observations pertaining to ERBB3 in
ovarian cancer cells. In the cell line OVCAR3, activation of ERBB3 and its association with
PI3K p85 were independent of ERBB2.128 This was confirmed by a later study with this cell
line showing that ERBB3 and ERBB4, but not ERBB2 or EGFR, were phosphorylated after
NRG treatment.247 In this cell line, ERBB4 could have effected transactivation of ERBB3.
However, in SKOV3 and IGROV1 cells, which lack ERBB4, NRG activated ERBB3 without
any effects on ERBB2 or EGFR.247 In OVCAR3 cells, EGF led to activation of all four ERBB
family members, but in the cell line OAW42, lacking ERBB3, EGF did not activate ERBB4
and NRG activated ERBB4 only after long exposure. These results indicate, for ovarian cancer
cells, a central role for ERBB3 in activation of ERBB4, and suggest that ERBB3 itself is
activated by a path other than the other ERBB receptors, either its own very weak kinase
activity, or by recruitment of some other kinase known to increase its activation, such as
PTK6125 or c-SRC.126

Another intriguing observation was the presence of truncated ERBB3 transcripts of 1.6, 1.7,
2.1 and 2.3 kb in ovarian carcinoma cells lines.23 When cloned into fibroblasts, three of these
made truncated proteins, including several that were secreted and one that was retained
intracellularly.

Prostate cancer
Development and progression of prostate cancer involves complex contributions from both the
androgen receptor and AKT-regulated pathways, and interactions between these signaling
components.248–250 Furthermore, ERBB2/ERBB3 complexes caused AKT-independent
phosphorylation of the androgen receptor that stabilized the protein and enhanced its
transcriptional activity.248 Increased expression of ERBB3 in prostate cancers, compared with
normal prostate, has been demonstrated by immunohistochemistry in several studies79,251–
254 and was associated with poor prognosis.252 Microarray analyses have likewise shown an
increase in ERBB3 mRNA in these cancers.254–256 ERBB3 was one of 15 genes whose
expression levels had promise as diagnostic and prognostic markers for prostate cancer;
EGFR and ERBB2 were also in this cluster.256 In a particularly sophisticated and thorough
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microarray-based study of nonmetastatic prostate cancers, increased ERBB3 mRNA was
confirmed in laser microdissected samples.254 ERBB4 mRNA was also overexpressed in these
prostate cancers, whereas EGFR and ERBB2 were less frequently affected, and it was
concluded that ERBB3/ERBB4 may be particularly important. Other studies however have
failed to confirm a close correlation between ERBB3 and ERBB4 in prostate cancers253 and
in prostate cancer cell lines ERBB4 is frequently not expressed.257–259

ERBB3 may be activated in prostate cancer cells by NRG, leading to formation of ERBB2/
ERBB3 hetero-dimers. ERBB2 has been strongly implicated in prostate cancer.260–264

Findings regarding NRG expression have been mixed. While NRG1 was expressed in the
majority of prostate cancers as observed by immunohistochemistry,252 other studies have
found this ligand to be absent from prostate cancers253 and malignant cell lines,253,258 although
expression of NRG in prostate stroma253 and other cell types could have effects on cancers
within the organ.

Reported effects of NRG are likewise varied. In prostate cancer cell lines, added NRG led to
ERBB3/ERBB2 activation and triggering of several downstream signaling cascades, including
activation of PI3K, and in the androgen-responsive cell line LNCaP caused differentiation and
reduced growth.258 Growth suppressive effects of multiple isoforms of NRG were confirmed
for LNCaP cells,253 whereas growth of two androgen-nonresponsive lines, DU145 and PC3,
was not affected by these ligands.

In contrast, in the androgen-independent prostate cancer cell line 22Rv1, NRG stimulated
ERBB2/ERBB3 complex formation, ERBB2 phosphorylation and cell proliferation, effects
that were reduced by application of the 2C4 monoclonal antibody which blocks complex
formation by ERBB2.265 Similar results were reported for 22Rv1 as well as other androgen-
independent prostate cancer cells in another investigation.212 In the CWR-R1 recurrent prostate
cancer cell line, there was evidence for an autocrine pathway involving NRG and low-level
constitutive ERBB2/ERBB3 activation leading to androgen receptor transactivation.266

Xenografts of three androgen-dependent cell lines (CWR22, LNCaP and LNCaP35) also
showed growth inhibition under treatment with 2C4 monoclonal antibody, although effects of
NRG on these cells in culture were not reported.212

One of the consequences of NRG activation of ERBB3 is release of the EBP1 protein. Among
the several known effects of the freed EBP1 is interaction with the androgen receptor as an
inhibitor, so in androgen-dependent prostate cancer cells EBP1 suppressed proliferation and
xenograft growth, in part by blocking androgen action.162–164 Thus in such cells there is
theoretical possibility of opposite effects of NRG activation of ERBB3: activation of the
androgen receptor and its effects via AKT-dependent and -independent actions, and inhibition
of it via EBP1. It is not surprising that variable effects have been seen experimentally with
NRG applied to prostate cancer cells.

ERBB3 may also be activated via the EGFR in prostate cancer cells. Development of an
autocrine or paracrine TGFα/EGFR growth-stimulatory pathway in prostate has been
uniformly observed by many investigators (for example see Culig Z et al.267). Inhibitor studies
indicated that TGFα and EGF contribute to cell proliferation in hormone responsive LNCaP
cells;259,268 treatment of these with EGFR ligands activated the ERBB3-PI3K p85-AKT
pathway, and inhibition of PI3K led to apoptosis.269 EGF stimulated growth of three of four
prostate cancer cell lines; only the poorly differentiated line PC3 was refractory.259

Interestingly, in primary prostate cancers acquisition of autocrine coexpression of both
TGFα ligand and EGFR was a characteristic of androgen-independent metastases.270 As noted
above, high expressions of EGFR and ERBB2, as well as ERBB3, mRNAs in microarrays were
indicators of prostate cancer,256 and all were expressed and constitutively phosphorylated in
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hormone nonresponsive prostate cancer cell lines PC3 and DU145, whereas in LNCaP there
was low constitutive phosphorylation of EGFR and ERBB3.271 Expression of mRNAs for
TGFα, as well as for amphiregulin, heparin-binding EGF and epiregulin, were 10- to 100-fold
greater in androgen-independent DU145 and PC3 cells, compared with hormone-responsive
LNCaP and PNT1A cells.272 In addition, low levels of EBP1 in androgen-independent prostate
cancer cells164 could contribute to constitutive upregulation of androgen receptor-controlled
events.

Whereas ERBB3 is clearly activated via the EGFR to send survival signals through PI3K in
hormone-responsive LNCaP prostate cancer cells,269 effects of ERBB2/ERBB3 on androgen
receptor stability were independent of EGFR and did not involve AKT.248 The upstream
activator of ERBB2/ERBB3 and the responding downstream kinase(s) involved in this novel
scenario remain to be demonstrated. Other crosstalk may also be important. For example, in
LNCaP cells, interleukin-6 treatment activated ERBB2 and ERBB3 without involvement of
the EGFR, in a process apparently involving the IL6 receptor.273

Finally, additional complexity is added by prostate cancer-related differences in the intra-
cellular localization and in the processing and secretion of ERBB3. Prostate cancers, especially
hormone refractory ones, show increased nuclear ERBB3, but in cancer cell lines nuclear
ERBB3 was more notable in the hormone-sensitive ones,79 and biochemical recurrence of
prostate cancers was significantly associated with reduced nuclear localization.274 A secreted
isoform of ERBB3 was identified in 41/45 prostate cancer bone metastases and in activated
osteoblasts and new bone matrices, but not in epithelial cells of primary cancers.26 This secreted
isoform stimulated bone cells to express osteonectin, which enhanced the invasiveness of the
prostate cancer cells.275 Furthermore, in xenograft experiments, a bone microenvironment, as
compared to subcutaneous tumors, promoted nuclear localization of the ERBB3, as did
castration of mice bearing subcutaneous tumors.276

Interesting findings regarding ERBB3 in prostate cancer are summarized in Table 6. The main
conclusion that can be drawn from this tantalizing tangle of findings at present is that ERBB3
is very likely an important player in prostate cancer, and contributes in complex ways. In the
practical context of potentially using ERBB3 as a molecular target for treatment of prostate
cancer, it seems particularly important to sort out the growth-suppressive, differentiation-
promotive vs the mitogenic, pro-survival effects of NRG and the involvement of ERBB3 in
these.

Kidney and urinary bladder
Although an early study failed to detect ERBB3 in six renal cell carcinomas,277 this protein
was found in 28% of urothelial carcinomas; ERBB2, but not ERBB3, correlated with tumor
invasiveness and survival.278 In bladder cancers, ERBB3 was highly expressed in 20%, and
had a possible positive correlation with EGFR and a negative one with ERBB2.279 More recent
studies have indicated that ERBB3 enhances survival in the context of bladder cancer, with
some interesting and complex relationships among the ERBB family members and their
ligands. Low mRNA expression for ERBB3, NRG2α, NRG2β and NRG4 correlated with
invasiveness, and high ERBB3 and NRG4 expressions were associated with favorable
prognosis, especially where ERBB3 or ERBB4 were highly expressed along with NRG4.280

This was confirmed in a further study, where high expression of EGFR or ERBB2 predicted
poor survival only when ERBB3 and ERBB4 had low expression.281 RT4 bladder carcinoma
cells were treated with mitogenic HB-EGF, resulting in increased mRNA expression of
ERBB3, ERBB4, NRG1α and NRG1β, whereas expressions of NRG2α, NRG2β and NRG4 were
decreased.282 These findings point to positive and negative regulatory interactions involving
all four ERBB family members and several NRGs in cancers of this cell type.
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Hematopoietic neoplasms
There have been few studies of ERBB3 in this class of neoplasms. No measurable ERBB3 was
found in seven unspecified hematopoietic cell lines.17 In multiple myeloma cells, interferon
α treatment led to phosphorylation of ERBB3, and silencing ERBB3 with siRNA reduced the
growth response both to the interferon and to interleukin-6.129 Several Janus kinase family
members, TYK2 and JAK1, were found to be involved in the transactivation of ERBB3 by the
interferon receptor 1.131

Nervous system
ERBB3 in normal nervous system—In fetal rats Erbb3 expression was strong in ventral
roots of the spinal cord.283 In mouse cerebellum Erbb3 was detected by western blot only after
birth, peaking at postnatal day 18; in situ hybridization showed it to be localized to granule
cells, probably associated with the process of maturation of synaptic connections.284 Although
Erbb3 mRNA was not detected in fetal mouse brain,34 studies with Erbb3 knockout mice
revealed an essential role in neurological development; these mice exhibited severely
underdeveloped sympathetic ganglia and partial lack of Schwann cells. Erbb2/Erbb3
heterodimer was shown to be necessary for Schwann cell differentiation.286–288 Failure of
migration of progenitor cells from neural crest was similarly observed in Erbb3, Erbb2 and
Nrg knockout mice, implying a role for Nrg to Erbb3/Erbb2 signaling.285,289,290

ERBB3 also has an essential role in development of the human nervous system: lethal
congenital contractural syndrome 2, an autosomal recessive trait associated with atrophy of
the anterior horn of the spinal cord, is caused by aberrant splicing of ERBB3.291

In adult rodent brain Erbb3 mRNA, with prominence mainly in white matter, has an expression
pattern different from that of Erbb4.34,292,293 While Erbb3 mRNA was expressed in the ventral
and dorsal spinal cord roots of fetal rats, it was absent from these areas in adults. It re-appeared
after ventral funiculus lesion; a role for Erbb3 in regenerative growth of axons was suggested.
283 Erbb3/Erbb2 appear to contribute to peripheral nerve regeneration in rats.294 Erbb3 may
also retain a role in mature Schwann cells during reparative proliferation, as indicated by
evidence for Nrg/Erbb3 autocrine loop for Schwann cell mitogenesis in culture,295 and
association of upregulation of Erbb2/Erbb3 in Schwann cells post axotomy.296

ERBB3 and brain cancer—ERBB3 and the transcription factor SOX10, which regulates
ERBB3 directly or indirectly in neural tissue, are notably overexpressed in pilocytic
astrocytoma (a common childhood glioma), compared with other pediatric brain tumors.297,
298 Since SOX10 is an embryonic neural regulator of ERBB3, these childhood neoplasms may
reflect a dysregulated developmental pathway. SOX10 was expressed in three-fourths of
schwannomas, and in relatively differentiated neoplasms, for example in schwann-like cells
of neuroblastoma (all ganglioneuromas and some stage IV neuroblastomas), correlated with
widespread expression of ERBB3.299 Interestingly, SOX10 and ERBB3 were rarely expressed
in pediatric glioblastomas, but were consistently seen in radiation-induced glioblastomas, and
gene expression patterns of the latter cancers resembled those in pilocytic astrocytomas.300

ERBB3 was rarely expressed in meningiomas.301 Most studies have reported expression,
though not amplification, in adult gliomas,301–304 with one exception.305 In astrocytic glioma
cell lines, constitutive ERBB3 phosphorylation, complex formation with ERBB2 and
activation by NRG occurred to varying degrees and was associated with inhibition of apoptosis
rather than stimulation of mitosis.302,306

ERBB3 in retinoblastomas—In a micoarray analysis of 10 childhood retinoblastomas
compared with adult normal retina, ERBB3 expression was increased 9.9-fold; this was
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confirmed by RT-PCR.307 PI3K, class 3 and AKT1 were also increased. Interpretation of this
study is complicated by lack of availability of normal infant retinas as reference controls.

Melanomas
Melanomas, as derivatives of neural crest, have ontogenetic kinship to glial cells. In several
microarray clustering studies, ERBB3 has emerged as one of a small number of genes whose
upregulation is characteristic of melanoma and tumors with melanocytic features.308–311

Immuno-histochemical analysis of ERBB3 protein confirmed these results in one series of
studies and suggested increased ERBB3 expression associated with metastatic progression.
312,313 Although another investigation reported that ERBB3 was found in only a minority of
melanomas, and only in those that were not metastatic,314 and several melanoma cell lines did
not express ERBB3,315 ERBB3 showed a fourfold increase in expression in melanoma
micrometastases and 14-fold increase in macrometastases, compared with normal lymph
nodes.316 NRG-stimulated migration but not proliferation of melanocytes, and had the opposite
effect in two melanoma cell lines,317 suggesting qualitative changes in ERBB pathway
signaling during melanoma development. Muc4, a transmembrane mucin that promotes growth
and metastasis of melanoma cells, caused increased membrane localization and stability of
ERBB2 and ERBB3.318

Clear cell sarcoma of soft tissue is a rare tumor of children and young adults with melanocytic
differentiation. Upregulation of ERBB3 is particularly prominent in these cancers.309,310 Cell
lines derived from these tumors expressed ERBB3 protein and either ERBB2 or ERBB4; in
half of the lines ERBB3 was constitutively activated by NRG1 expression; the others were
responsive to added NRG1.319

Gastrointestine (Table 7)
Expression and function in normal gastrointestinal tissues—ERBB3 protein was
detected by immunohisto-chemistry in epithelial cells throughout the gastrointestinal tract,
including squamous epithelium of the oropharynx and esophagus, parietal cells of the stomach
and surface enterocytes of small and large bowel.320,321 NRG1 on the other hand was detected
in mesenchymal but not epithelial cells of gastric mucosa.321 In mouse fetuses Erbb3 was
expressed in the gastric epithelium, which was much thinned in the Erbb3−/− knockout mice;
289 in fetal pancreas Erbb3 was expressed in the mesenchyme, not the epithelium and in the
knockout fetuses pancreatic development was retarded. In rat hepatocytes Nrgβ1 bound
specifically to Erbb3, induced its phosphorylation, and increased DNA synthesis322 and insulin
inhibited Erbb3 expression.322 This was also observed in vivo under conditions of insulin
insufficiency, and the PI3K pathway was implicated in the insulin effect.323

Colorectal cancers—ERBB3 is occasionally mutated in colon carcinomas, with two
mutants found in 100 cases analyzed.324 Increased ERBB3 mRNA or protein is more common,
detected in 34–90%.320,325–330 Association with poor clinical outcome was noted in one
study328 but not in several others.329–331 In a recent and particularly complete investigation,
332 colonic adenomas expressed more cytoplasmic ERBB3 than did normal tissues or
carcinomas, whereas nuclear staining was observed in 82% of normal, 54% of adenomas and
23% of carcinomas, all significant differences. Nuclear ERBB3 or pERBB3 did not, however,
correlate with any tumor characteristics. However, ERBB3 mRNA levels were higher in cases
with positive lymph nodes, and correlated significantly with reduced time-to-disease
progression and probability of relapse.

Coexpression of ERBB3 with EGFR and ERBB2 was frequently noted in these investigations,
and there is evidence that both of these receptors contribute to ERBB3 activation in colon
cancers. In colorectal cancer cell lines, ERBB2 and ERBB3 generally show high expression
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and constitutive activation and dimer formation,141 which is further enhanced by treatment
with NRG, leading to stimulation and enhanced invasiveness.333 Stimulation of COX-2 gene
expression was part of the mechanisms of these effects of NRG. The EGFR may also be
important, as sensitivity of colon cancer cell lines to growth suppression by the EGFR-specific
inhibitor erlotinib (Tarceva) correlated closely with expression of ERBB3.334 As further
evidence for ERBB3’s importance in this type of cancer, inhibition of proliferation of HT-29
colon cancer cells by conjugated linoleic acid involved downregulation of the ERBB2/ERBB3,
PI3K, AKT pathway.335

Pancreatic cancers—In pancreatic cancers, ERBB3 mRNA or protein has consistently been
observed to be increased336–339 and associated with advanced stage and poor outcome.337,
339 As with colorectal carcinoma cell lines, pancreatic cell lines’ sensitivity to inhibition by
the EGFR-specific inhibitor erlotinib was determined by coexpression of ERBB2 and ERBB3,
and in particular the level of constitutive pERBB3.334 Activation of AKT and S6, but not of
ERK, was specifically linked to this ERBB3 effect, and results were confirmed by down-
regulation of ERBB3 by siRNA. Similarly specific downregulation of ERBB2 by an HSP90
inhibitor resulted in radiosensitization only in pancreatic cell lines that did not express ERBB3,
and downregulation of ERBB3 by siRNA in other pancreatic cell lines resulted in acquisition
of radiosensitivity, related to reduced tyrosine phosphorylation of EGFR.340

Gastric cancers—ERBB3 showed increased expression in gastric cancers.277,341,342 Both
membrane and cytoplasmic staining were noted, whereas elevated ERBB3 in surrounding
tissue was mainly cytoplasmic.341 Relative expressions of EGFR and ERBB2, as well as
ERBB3, were higher in gastritis compared with normal stomach and higher yet in carcinomas;
only carcinomas had high expression of all three receptors.342 Gastric cancer cell lines all
expressed ERBB3 and a truncated, secreted product.22 Such lines expressed EGFR and ERBB2
as well, but not ERBB4 or NRG1.321 Addition of NRG1 led to cell proliferation and formation
of pERBB3, ERBB3/ERBB2, ERBB3/EGFR and ERBB2/EGFR dimer formation, and p85
PI3K association with ERBB3. ERBB3 activation was also seen during coculture with gastric
fibroblasts that secreted NRG1. These results suggest that activation of an ERBB3-dependent
mitogenic pathway in gastric cancer may involve NRG1 paracrine stimulation from
mesenchymal cells.

Several NRG isoforms had a marked morphogenic effect on gastric carcinoma cells, with
motility as the fundamental cellular response; ERBB3/ERBB2 complexes appeared to mediate
this response.343 Strong evidence for a key role for ERBB3 in gastric malignancy came from
a study of poorly differentiated signet-ring cell gastric carcinomas.344 Activation of ERBB3
and complexation with PI3K were associated with the de-differentiated state; expression of a
chimera of activated ERBB2/ERBB3 resulted in increased malignancy of an initially highly
differentiated cell line.

Head and neck cancers—In squamous cell and verrucous oral carcinomas ERBB3 has
been reported to be highly expressed and associated with invasiveness, metastasis and poor
prognosis,345–351 although other studies of oral cancer have not found ERBB3 to be
overexpressed352 or related to survival.353 Coexpression of ERBB3 with EGFR and
ERBB2348 or of ERBB2 and ERBB3349 related to poor prognosis, and expression of ERBB3
was correlated with resistance to the EGFR inhibitor gefitinib.354 Increases in ERBB3 along
with EGFR and ERBB2 were also reported for papillary carcinoma of thyroid.355,356

Involvement of ERBB3 in oral cancer was confirmed in a rat model, where Erbb3 protein was
increased in carcinogen-induced oral carcinomas.357 In diabetic rats, this protein was increased
in hyperplastic and dysplastic lesions also.
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A role for ERBB3 may be less likely for esophageal cancers. EGFR is often overexpressed in
these cancers.358–360 ERBB3 mRNA on the other hand was significantly lower than normal,
even though immuno-reactivity was high in 64% of tumors; there was no relationship with
tumor characteristics or prognosis.358 The highly expressed EGFR in esophageal cancers was
sensitive to inhibitory effects of gefitinib, and both the ERK and the PI3K pathways were
involved,360 but activation of the AKT isoforms after treatment of esophageal carcinoma cell
lines with EGF did not entail activation of ERBB2 or ERBB3.359

Respiratory tissues
Role of ERBB3 in normal respiratory tissues—Type II alveolar lung cells from fetal
rats expressed more Erbb3 than did fibroblasts.361 The Erbb3 coimmunoprecipitated with both
Erbb2 and Erbb4, and had a prominent nuclear localization, moving into the cytoplasm after
NRG stimulation. ERBB3 (and colocalized ERBB2 but not ERBB4) were demonstrated in
airway epithelium from explanted human fetal lung.362 NRG treatment caused a decrease in
production of SP-A, a differentiation marker, in type II alveolar cells of these lungs. Stimulation
of type II cell proliferation was observed in this same study. Thus at least in human fetal lung
epithelium, NRG to ERBB3/ERBB2 signaling favored cell division while suppressing
differentiation programs. A similar conclusion was reached with the BR516 cell line from
neonatal rat distal airway, which was characterized by high mRNA for Nrg, Egfr, Erbb2 and
Erbb3, but little for Egf, betacellulin, or Erbb4.363 These cells responded to Egf, betacellulin
or Nrg with growth and a probable autocrine effect of Nrg occurred.

This same signaling loop may regulate regenerative proliferation of adult lung epithelium.
ERBB3 was expressed in primary proliferating cultures of human bronchial epithelium.364 In
scrape-wounded adult lung epithelial monolayers, tyrosine phosphorylation of EGFR, ERBB2
and ERBB3 occurred immediately.365 Smoking was associated with significant increases in
EGFR and especially in ERBB3 in bronchial epithelial cells compared to nonsmokers.366 In
intact polarized human airway epithelium, NRG1 and ERBB3 were segregated, the former on
the apical membrane, and the latter on the basolateral surface.367 When the epithelium was
disrupted, as in lung injury, NRG1 contacts and activates ERBB3 (and ERBB2). Cell division
could then ensue to re-establish epithelial integrity.

There is additional complexity, however, related to interactions between epithelial cells and
fibroblasts in lung. Paracrine production of NRG by fibroblasts led to surfactant production
by type II cells.368 Similarly differentiation was induced in primary human lung epithelial cells
when NRG was added to the basolateral medium.369 Coculturing of airway epithelial cells with
primary lung fibroblasts, which expressed all ERBB ligands except betacellulin, also resulted
in epithelial differentiation. Blocking ERBB2 activation with trastuzumab caused de-
differentiation of well-differentiated human airway epithelial cells. It was proposed that
ERBB2 stimulation is essential for maintaining epithelial differentiation and hypothesized that
ligands secreted by mesenchyme underlying the airway epithelium may be involved in
maintaining epithelial differentiation. Thus, the effects of ERBB3 activation in peripheral lung
may differ, perhaps depending on whether the ligand comes from an autocrine or a paracrine
source and could well reflect the integrated activities of several ligands and pathways.

Further, ERBB3 signaling in lung epithelial cells may affect surrounding mesenchyme. In
intact mice, lung injury by bleomycin resulted in Erbb3 activation as part of the response, along
with inflammatory cell infiltration and collagen deposition.370 In mice where Erbb3-mediated
effects were blocked in lung by a dominant-negative Erbb3 transgene, these outcomes were
diminished after bleomycin and survival was improved. Blockade of Erbb2/Erbb3 signaling
with the 2C4 monoclonal antibody had a similar effect.371 These results imply that, at least in
this model, Erbb3-initiated signaling in epithelial cells ultimately results in increased collagen
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production by mesenchymal cells, leading to fibrosis. Erbb3 was also implicated in chronic
obstructive pulmonary disease in rats.372

In normal human nasal epithelium ERBB3 expression was demonstrated by
immunohistochemistry and by RNA analysis and immunoblotting of nasal epithelial cells in
primary culture.373 EGFR and ERBB2 but not ERBB4 were also noted, as well as EGF,
TGFα, heparin-binding EGF, amphiregulin and betacellulin.

ERBB3 in lung cancer (Table 8)
ERBB3 expression and lung cancer—An immunohisto-chemical study identified
ERBB3 protein in alveolar type II and bronchioalveolar cells of normal lung regions in operated
lung cancer patients, where staining was less intense and more diffuse in the cytoplasm,
compared with punctate cytoplasmic and/or membrane staining in carcinoma cells.374 As
measured by immunohisto-chemistry, ERBB3 was highly expressed in some lung
adenocarcinomas277 and associated with poor prognosis.274 Quantitative real time RT-PCR
indicated that high ERBB3 expression was significantly associated with decreased survival in
patients with early stage (I–IIIA) NSCLC.375 Coexpression of ERBB3 with other ERBB family
members was indicative of tumor recurrence.376 The expression of the proliferation-associated
marker Ki-67 at a higher frequency in ERBB3-positive NSCLC cases than in ERBB3-negative
tumors was suggestive of a contribution of ERBB3 to aggressive behavior; combination of
elevated ERBB3, p53 and microvessel density predicted poor survival.377 In an interesting
real-time PCR-based study of expression of 56 receptor tyrosine kinases in early stage NSCLC,
ERBB3 was one of 10 associated with metastasis development and decreased survival, along
with EGFR and ERBB2.375 Microarray analysis of NSCLC yielded a five-gene signature that
predicted relapse-free and overall survival, and ERBB3 was one of these five genes.378 There
is therefore mounting evidence that ERBB3 expression supports lung malignancy.

Additional strong evidence for the importance of ERBB3 expression in lung tumorigenesis
came from ERBB3 transgenic mice, which developed a high incidence of lung adenocarcinoma
compared to nontransgenic mice,379 in spite of lack of K-ras mutations. Mice doubly transgenic
for ERBB3 and Erbb2 had an incidence of spontaneous lung tumors similar to that in ERBB3
singly transgenic mice, but developed larger tumors with a shorter latency, suggesting that
Erbb2 synergized with ERBB3 in lung tumor progression. More tumors with shorter latency
also occurred in ERBB3 transgenic mice treated with the carcinogen methylnitrosourea, which
induced K-ras mutations, indicating a possible promotion/progression effect of high ERBB3
expression on tumors initiated by genotoxic damage such as K-ras mutation.

Another important mouse model study utilized transgenic expression of mutant K-ras for lung
tumor initiation.380 Erbb3 was not present in normal lung cells, but increased steadily during
the different stages of lung tumor progression. Amphiregulin, epigen and epiregulin showed
increased mRNA expression in the lungs of the K-rasLA1 mice, whereas EGF, TGFα, β-cellulin,
NRG1 and NRG2 were not changed relative to wildtype. The EGFR inhibitor gefitinib
treatment reduced the levels of Erbb3, amphiregulin and epiregulin in lung tumors and
suppressed the growth of alveolar neoplasia in these mice.380

ERBB3 mutation and amplification in lung cancer—No mutations in ERBB3 have
been detected in lung cancers.324,381 Several studies have reported lack of ERBB3 gene
amplification in primary lung cancers and ERBB3-expressing lung cancer cell lines.382–384

However, a recent fluorescent in situ hybridization analysis revealed ERBB3 gene
amplification (high polysomy and gene amplification) in 26.8% of the cases in a cohort of 82
NSCLC patients treated with gefitinib.385 ERBB3 genomic gain was significantly associated
with female gender and nonsmoking status and not with tumor stage or histology. It was

Sithanandam and Anderson Page 25

Cancer Gene Ther. Author manuscript; available in PMC 2009 October 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



possible that this amplification could have been related to the chemotherapy that most of these
selected patients had received.

ERBB3 expression and functions in lung cells in culture—ERBB3 was expressed
in human bronchial cells in culture and in various types of lung cancer cells,386 although its
levels were much greater in a transformed compared with a nontransformed sister line of human
bronchial epithelial cells.387 By contrast, ERBB3 protein was absent from an immortalized,
nontransformed cell line from human peripheral lung epithelium, but highly expressed in most
human lung adenocarcinoma cell lines.139 The same contrast was noted for nontransformed
vs malignant mouse lung cell lines,140 and is consistent with absence of Erbb3 from lung
alveolar cells in intact mice.380 These observations are further indicators that ERBB3
upregulation is distinctly related to neoplasia development in the peripheral lung.

The pathway involving ERBB3 has been explored in detail in mouse and human lung
adenocarcinoma cell lines,139,140 providing the first evidence that abnormal expression of
ERBB3 has a controlling role in growth and invasiveness of these cells and defining an
intracellular signaling pathway leading to these effects. Like ERBB3, TGFα was highly
expressed in the mouse and human lung adenocarcinoma cell lines, but not in their
nontransformed counterparts.139,140 TGFα expression has also been strongly implicated in
transformation of bronchial epithelial cells.386,387 Use of specific inhibitors established the
signaling sequence: TGFα, EGFR, ERBB2/ERBB3, p85 regulatory subunit of PI3K, AKT,
GSK3β inactivation, cyclin D1 increase and cell cycle progression. The role of ERBB3 was
proposed to be complex formation with and activation of p85, and this was confirmed by use
of an ERBB3-specific antisense oligonucleotide, which reduced amounts of ERBB3-p85
complex and significantly suppressed cell proliferation only in ERBB3-expressing human lung
cancer cells.

NRG1β also activated this pathway in the lung adenocarcinoma cells. Expression of NRG1α
and β at the RNA level was described in four human lung cancer lines; only NRG1α protein
was detected in lysates and in conditioned medium.388 An ERBB3-specific antibody, which
blocks the NRG-binding sites on ERBB3, reduced NRG-induced ERBB2/ERBB3 activation
significantly and transfection of DN ERBB3 abrogated NRG-induced ERBB2 phosphorylation
in a dose-dependent manner.

The findings cited above implicate AKT as a critical mediator of ERBB3 effects in lung cancer
cells, activated via PI3K. Accumulating evidence supports this role for the PI3K/AKT pathway.
389–392 The PI3K–AKT pathway was important in actions of tobacco carcinogens and in
transformation-related characteristics of lung cells.393,394

The JAK-STAT pathway may also be involved in NRG stimulation of proliferation of lung
cells mediated by ERBB3. In two human lung cancer cell lines, NRG1 had a modestly
stimulatory effect on cell number, and involvements of ERBB2, JAK3, TYK2, STAT3 and
STAT5 were indicated.153 However, direct association of the JAK family members with ERBB
proteins was not demonstrated.

Small interfering RNAs are proving to be highly useful tools for experimental downregulation
of specific genes and are exciting interest for therapy. In one of the first applications of siRNA
as a potential therapeutic approach for lung cancer, we found that siRNA for ERBB3 applied
to human lung adenocarcinoma cells could stably and dose-dependently reduce cell numbers
in A549, H441 and H1373 cell lines and inhibit soft agar growth, motility, migration and
invasiveness.140 Apoptosis, necrosis and suppression of cell cycle contributed to the reduction
in cell number. siRNAs to AKTs were also tried in this study. There are three AKT isoforms;
the functional significance of these in lung is not known. In our investigation, AKT1, AKT2
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and AKT3 siRNAs, like ERBB3 siRNA, had suppressive effects on growth, necrosis, apoptosis
and soft agar growth. siRNAs against all three isoforms had similar effect on apoptosis, necrosis
and cell survival. AKT2 siRNA was particularly effective in blocking migration and
invasiveness whereas AKT1 siRNA had no effect on cell migration or invasion. Thus AKT2
may be a particularly attractive potential target for therapy.

siRNAs to ERBB3 or AKT2 have recently been tested in vivo for effects on human lung
adenocarcinoma xenografts, a model which has been shown to be predictive of clinical activity.
395 In three separate experiments, both siRNAs reduced by 40–80% the size of tumors formed
by human lung adenocarcinoma A549 cells as xenografts in nude mice (Table 9). Nonsilencing
siRNA was without significant effect. These findings are particularly remarkable, as the
intravenous siRNA was administered as a saline solution without carrier.

ERBB3, EGFR mutation and clinical responsiveness to EGFR inhibitors—
Recently activating mutations have been found in the EGFR gene in lung cancer patients
responsive to EGFR tyrosine kinase inhibitors, including gefitinib and erlotinib.396–399 These
mutations are especially prevalent in non-smokers, females, East Asians and bronchioalveolar
carcinomas.400–405 EGFR polysomy/amplification and high mRNA and protein expression
were also associated with survival after treatment with these inhibitors.406–409 In PC-13 cells,
which have no endogenous EGFR expression, transfected mutant EGFR showed high
constitutive phosphorylation of itself and of AKT and STAT3, and prolonged cell survival
under serum-free conditions.410 Most recently, erlotinib411 and gefitinib412 are showing
efficacy as first-line therapy for non-small cell lung cancers.

Emerging evidence indicates that not only EGFR activity, but also participation of other ERBB
family members, especially ERBB2 and ERBB3,409,413,414 are critical components of lung
cancer clinical responsiveness to tyrosine kinase inhibitors.409,415 As detected by
immunohistochemistry, ERBB3 expression levels were higher in tumors of patients, who had
shown an objective gefitinib response or stabilization of disease compared to those with
progressive disease; ERBB3 was in fact a better predictor of response than EGFR mutation.
380 Among Japanese patients with lung cancer, tumor ERBB3 mRNA was significantly higher
in those with EGFR mutations, as well as in cancers from women and from non-smokers.77

Studies with lung cancer cell lines have confirmed an integral contribution of ERBB3 in
sensitivity to EGFR protein tyrosine kinase inhibitors. Some lung cancer cell lines with
wildtype EGFR show responsiveness to gefitinib or erlotinib. ERBB3 is high in those that are
responsive,392,416 in association with an epithelial as opposed to a de-differentiated
mesenchymal phenotype.417 Similarly, ERBB3, as well as epiregulin and amphiregulin, were
expressed at higher levels in lung cancer cell lines that are highly (HCC827, H3255 and H4006)
or moderately (H1819 and HCC2279) sensitive to gefitinib compared to the gefitinib resistant
cell line H1299.380 Association of responsiveness with levels of activated AKT418–421 also
suggested a central role for ERBB3. In gefitinib-sensitive lines with high expression of ERBB3,
gefitinib led to uncoupling of ERBB3 from the p85 regulatory subunit of PI3K and
downregulation of ERBB3 with shRNA markedly reduced AKT activation.420 Engelman and
Cantley414 describe unpublished data that constitutive oncogenic mutants of PI3K/AKT
abrogate response to gefitinib, confirming the pivotal role for ERBB3. Interestingly, gefitinib
not only inhibits EGFR activity, but may also lead to sequestration of ERBB2 and ERBB3 as
inactive heterodimers with EGFR.422 Futhermore, coexpression of ERBB2 and ERBB3, in
LK2 NSCLC cells with very low EGFR, may confer some sensitivity to gefitinib; evidently
the affinity of the chemical for ERBB2 was increased 10-fold by its heterodimerization with
ERBB3.423
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In spite of all of this evidence for participation of ERBB3 in gefitinib response, no change in
the latter was observed in lung cancers showing ERBB3 amplification and while ERBB3 gene
copies were significantly associated with gene gains for EGFR and ERBB2, they did not
correlate with EGFR mutation or level of activated AKT.385 ERBB3 protein was not analyzed
in this study; it is possible that ERBB3 copy number is not determining with regard to protein
expression.

EGFR activity and ERBB3 expression are not the sole determinants of ERBB3’s role in lung
cancer. Forced expression of ERBB3 in H1299 and A549 cells did not increase sensitivity to
gefitinib, and exogenous stable expression of WT EGFR or two EGFR mutants into H1299
cells did not render them sensitive to gefitinib.380,420 A549 cells present wildtype, moderately
amplified EGFR and moderate sensitivity to gefitinib. PX866, an inhibitor of the p110α
catalytic subunit of PI3K, potentiated the antitumor activity of gefitinib against large A549
xenografts, giving complete tumor growth control in the early stages of treatment.424 Additive
effects of another PI3K inhibitor, LY294002, with gefitinib were also noted in H460 lung
cancer cells.421 These results suggest pathways to PI3K activation in addition to that controlled
by EGFR. In A549 cells, as noted above, NRG can activate ERBB3, and ERBB3 siRNA
blocked NRG-induced pAKT levels and increased cyclin D1 in A549 cells. These results
together suggest that, at least in A549 cells, ERBB3 conducts proliferation and survival signals
from both EGFR via ERBB2, and directly after NRG stimulation, again probably involving
ERBB2 hetero-dimer formation.

Participation of an NRG/ERBB3 pathway in resistance to gefitinib has recently been confirmed
by demonstration that gefitinib insensitivity in 44 NSCLC cells lines correlated very strongly
with NRG expression and, much more weakly, with ERBB3.425,426 Further, ERBB3 activation
in these cells was correlated with levels of ADAM17, a sheddase for NRG, and siRNA
inhibition of ADAM17 suppressed ERBB3 and AKT activation. Pertuzumab, a humanized
anti-ERBB2 monoclonal antibody, is effective against ERBB2-expressing mammary and
prostate cancer cells, but has varying activity in the context of lung.427 In a panel of NSCLC
cell lines, pertuzumab was effective in those wherein NRGα stimulated ERBB2/ERBB3
heterodimer formation and ERBB3 phosphorylation.

Yet another route for ERBB3 activation independent of the EGFR has recently been
discovered: resistance to gefitinib acquired by NCSLC with mutant EGFR was due to
amplification of the MET receptor, which in turn led to activation of ERBB3 and the PI3K and
AKT down-stream-signaling pathways.121,122 It may be that other pathways could also be
involved: erlotinib-sensitive lung carcinoma cells expressed higher levels of the SRC-like
kinase BRK; BRK is known to phosphorylate ERBB3 and promote PI3 kinase AKT signaling
in mammary cells.125 In addition, ERBB3 can be targeted independently of EGFR and ERBB2,
as recently shown for the marine-derived anti-tumor agent kahalalide F.428

In short, ERBB3 not only participates in the sensitivity of the majority of lung cancers that
respond to EGFR tyrosine kinase inhibitors, but also in other malignancy-associated signaling
paths. These multiple facets increase its attractiveness as a molecular target for therapy in this
type of cancer.

Conclusions and perspectives
The ERBB family of receptors, their ligands, and their many potential downstream signaling
targets constitute a highly complex, layered network, requiring a systems biology approach.6
Since it is clear that misbehavior of this network contributes to many cancers, it is essential to
find the vulnerable nodes in this network for therapeutic applications. ERBB3 is rapidly
emerging from its earlier disrespected categorization as a kinase-dead structural partner for
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ERBB2. It has become apparent that ERBB3 has a central, active role, indeed probably several
discreet functions, in integrated cellular regulation. As detailed above, expression and activity
levels of ERBB3 may determine the therapeutic effectiveness of tyrosine kinase inhibitory
drugs for mammary, colorectal and lung cancers. Yet another mode by which ERBB3
influences the success of cancer treatment relates to targeting of the chaperone HSP90, which
is a specific stabilizing agent for ERBB2. Ansamycin inhibitors of HSP90 were effective only
in those breast cancers sustained by the ERBB2-ERBB3 pathway.429 Similarly
radiosensitization of cancer cells may be accomplished by chemical targeting of the chaperone
HSP90, leading to downregulation of ERBB2 and loss of the EGFR signaling that engenders
protection against radiation. However, if ERBB3 is highly expressed, EGFR/ERBB3
heterodimers allow persistence of this protective signaling. This apparent effect of high ERBB3
expression was demonstrated in pancreatic, prostate and mammary cancer cell lines.340,430

Thus, ERBB3 is an attractive therapeutic target in its own right and indeed may be an essential
one as part of any treatment protocol focused on control of ERBB receptors or the PI3K/AKT
pathway. ERBB3 is not an easily druggable target due to lack of kinase activity.16 Several
approaches for therapeutic targeting of ERBB3 have been tried experimentally (Table 10).
RNA aptamers to the extracellular domain of ERBB3 inhibited NRG-induced ERBB3/ERBB2
heterodimerization, ERBB2 phosphorylation and growth of MCF7 breast cancer cells.431 A
synthetic designer zinc finger transcription factor inhibitory to ERBB3 gene expression in A431
squamous cell carcinoma cells resulted in reduced proliferation and migration, and the
repression of ERBB3 expression had a bigger effect than changing ERBB2.432 The vitamin E
isomer γ-tocotrienol inhibited mammary cell proliferation by specific block of ERBB3
activation and of downstream stimulation of the PI3K/AKT path-way. EGFR and ERBB2 were
not affected; the mechanism of the specific action on ERBB3 is not known.433 Micro-RNA
125a reduced ERBB3 RNA and protein, activation of AKT and cell growth and invasiveness
of SKBR3 mammary carcinoma cells.434

Various other therapeutic approaches have been suggested. These include use of negative
regulators of ERBB3 such as the NRDP1 ubiquitin ligase;435 blocking of transactivation of
ERBB3 or of nucleocytoplasmic trafficking of NRG;436 and application of a specific inhibitor
of ADAM17 sheddase.426,437

Our recent results with ERBB3 siRNA (Table 9) suggest that this may be a particularly simple
and efficacious approach, as highly significant suppression of xenografted lung tumor growth
was achieved with simple intravenous injection of saline solutions of siRNA. The potential
importance of ERBB3 siRNA in therapy is underscored by recent results showing that
downregulation of ERBB3 by siRNA in breast cancer cells abrogated their secondary resistance
to tyrosine kinase inhibitors and allowed induction of apoptosis.127 In view of the multiple
ERBB3 ligands and the possibility of by-passing a block imposed by inhibiting or
downregulating a single receptor,438 simultaneous targeting of several ERBBs, for example
by herceptin for ERBB2 and siRNA for ERBB3, could be explored.

To maximize the potential usefulness of ERBB3 as a therapeutic target, there are several
intriguing aspects of the biology of ERBB3 that must be explored in more depth. Roles for the
intracellular and secreted truncated forms of ERBB3 may be worth further study, especially in
light of the recent demonstration that the p45 form is a prostate cancer metastasis factor.26 The
mysterious nuclear and nucleolar activities of ERBB376,78,79 must be unraveled. Further study
is needed of the involvement of non-NRG, non-ERBB regulators of ERBB3, such as
CDK5,122–124 BRK,125 SRC,126 and MET.120 The fascinating and widely expressed ERBB3
effector EBP1 has thus far been examined mainly in mammary and prostate cells;154–164 may
it be important also in other cancers where ERBB3 is clearly a player, such as lung and
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melanoma? It is hoped that full understanding of the regulation and functions of ERBB3 will
facilitate its integration into cancer management.
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Table 1
ERBB3 gene structure, mRNA, and protein characteristics and control

References

Gene

  Human chromosome 12q13.2 19

  23.2 kb, 28 exons 17,18

  43–67% homology with other ERBBs 17,20,21

mRNA

  6.2 kb, with several alternative transcripts and
  truncated protein products

1,14,22–24

  Positive regulation by AP transcription factor 35–37

  Negative regulation by estrogen 38,39

Protein

  Extracellular ligand-binding domain consisting of
  four subdomains that change conformation in
  response to ligand

41,43,44,48

  Ten potential glycosylation sites, at least one of
  which is critical to regulating heterodimerization
  with ERBB2

41,42

  Absence of homodimer formation, but assembly
  of self-oligomers which are disrupted by NRG

52,53,55,57

  High affinity for NRG, increased by
  heterodimerization with ERBB2

50

  Cytoplasmic domain lacking kinase activity;
  unique amino acids in this domain affecting
  protein interactions

58,60

  Thirteen tyrosines and a nuclear localization
  signal in carboxy terminal

1,17,18,20

  Downregulation by slow endocytosis, followed by
  rapid recycling

63–65

  Persistant ligand binding after endocytosis, at
  acid pH

50

  Degradation and intracellular trafficking regulated
  by the ubiquitin ligase NRDP1, which affects
  cancer cell growth

67,68,70

  Nuclear localization, dependent in part on NRG 76–80
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Table 2
Activation of ERBB3

Reference

Ligands

  NRG1β most effective 84,86–88

  Cell membrane clustering after NRG activation 95

Other receptors, heterodimer formation

  EGFR 101–108

  ERBB2 106,110–113

  ERBB4 78–92

  MET 121,122

Other kinases

  Cyclin-dependent kinase 5 (CDK5) 122–124

  c-SRC 118,119,126

  BRK 125

Other (direct or indirect)

  AKT feed-back 127

  Cell stress, TNFα, INFα 129,130

  TYK2, JAK1 131
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Table 4
Interesting proteins with cytoplasmic interactions with ERBB3

References

Some proteins interacting at ERBB3 phospho-tyrosine sitesa

  Phosphatidyl inositol 3-kinase, p85
  regulatory subunit (PI3KR)

59,132,133,135,136,137,139,140

  GRB2/GRB7, adapter 132,133,145

  c-SRC, kinase 133

  SHC, adapter 59,88,132,133,146–149

  Protein tyrosine kinase 6(PTK6, BRK) 125,133

  Phospholipase γ1 (PLCG1), signal transducer 133,150

  ABL1/2, cytoplasmic tyrosine kinases,
  oncogenes

133

  RasGAP (RASA1N), ras
  proto-onogene regulator

133,151

  SYK, cytoplasmic tyrosine kinase,
  tumor suppressor

133

  CRKL, activator of ras and jun
  oncogenes

133

  VAV1/2, oncogenes 133

Proteins interacting at ERBB3 juxtamembrane sites

  ERBB3-binding protein 1 (EBP1),
  transcription and protein
  translation regulator

154

  P23, homolog of mouse
  transplantation antigen

174

Other interacting proteins

  BMS/ETK, nonreceptor
  tyrosine kinase

171

  RGS4, regulator of G protein
  signaling

172

  Early growth response protein 1
   (EGR1), transcription factor

172

a
For a complete list, see Table 3 and Ref.133
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Table 5
ERBB3 in mammary cancers and cancer cells

References

Evidence implicating ERBB3 in mammary cancer development

  ERBB3 activation in mammary tumors
  in transgenic mice

188–190

  Increased ERBB3 mRNA or protein in
  many primary human breast cancers

184,186,191,192,195,199

  Clear role in survival and cell growth in
  many human breast cancer cell lines

143,211–214,221,228–231

  Upregulation as a mode of escape
  from mammary tumor cell suppression
  by tyrosine kinase inhibitors, via pAkt
  feedback

127,139

Ambiguities

  Variable relationship of mRNA or
  protein to clinical prognosis

High ERBB3 favorable
  or null:197,198,200

High ERBB3
  unfavorable:184,186,
  193–195,200,201,203

  Conflicting evidence regarding
  relationship to estrogen
  receptor expression

193,200,203

  NRG-dependent mammary
  cell differentiation, apoptosis,
  or growth suppression

82,184,232,233

Cancer Gene Ther. Author manuscript; available in PMC 2009 October 14.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sithanandam and Anderson Page 60

Table 6
Interesting features of ERBB3 in ovarian and prostate cancer

References

Ovarian cancer

  ERBB3 expression usually high and associated
  with poor prognosis

237–246

  Possible ERBB3 activation not involving other
  ERBB receptors

128,247

  Truncated ERBB3 transcripts and proteins,
  including secreted forms

23

Prostate cancer

  Consistent ERBB3 overexpression and
  association with poor prognosis

79,251–256

  Growth suppression by release of ERBB3-bound
  EBP1, an androgen receptor inhibitor, after NRG
  treatment of androgen responsive cells

162–164

  Enhancement of androgen receptor
  phosphorylation and stability and actions, as
  ERBB2/ERBB3 complex, independent of EGFR
  and AKT

248

  Nuclear localization of ERBB3 variably
  associated with hormone dependence and with
  microenvironment

79,274

  Secreted ERBB3 isoform enhancing bone
  invasion

26,275,276
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Table 7
Evidence for involvement of ERBB3 in gastrointestinal cancers

References

Colorectal cancers

  Variable association of mRNA and protein
  levels with poor prognosis

320,325–332

  Reduced nuclear ERBB3 in colon tumors,
  especially carcinomas

332

  High expression in colorectal cancer cell
  lines, association with invasiveness

141,333–335

Pancreatic cancers

  Consistent upregulation of mRNA and
  protein and association with poor prognosis

334,336–339

  Correlation with radio resistance 340

Gastric cancer

  Increased expression in cancers 277,341,342

  High expression in gastric cancer cell
  lines, and secretion of a truncated product

22

  NRG activation of both EGFR/ERBB3 and
  ERBB2/ERBB3 heterodimers; increase in
  motility

321,343

  Reduced differentiation and increased
  motility in response to NRG

344

Head and neck cancers (oral cavity)

  Highly expressed and associated with poor
  prognosis of oral cancers in most though
  not all studies

Positive:347–351
  No link:352,353

  Correlation of expression with resistance to
  EGFR inhibitor gefitinib

354

  Increase in carcinogen-induced oral carcinomas
in rats

357
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Table 8
Involvement and characterization of ERBB3 in lung cancer

References

Correlation of expression with poor prognosis 374–378

Lung tumorigenesis in transgenic mice 379,380

ERBB3-dependent signaling pathways leading
to proliferation, survival and invasiveness of lung
adenocarcinoma cells in culture and as
xenografts

139,140

High expression in lung cancer and cancer
cell lines relative to responsiveness to
therapeutic effects of EGFR inhibitors

77,380,392,416

Stimulation by NRG/ERBB3 pathway 153,388

Correlation of NRG expression with
insensitivity to EGFR inhibitor

425,426

Activation of ERBB3 by the MET receptor in
lung cancer cells developing resistance to
EGFR inhibitor

121,122

Importance of AKT activation 140,388,389,391–394
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Table 9
Effects of in vivo siRNA treatment on growth of lung adenocarcinoma A549 cells as xenografts

Average tumor size (percent of average size in untreated controls)

Exp 1 Exp 2 Exp 3

ERBB3 siRNA 40.9 ± 17.7 20.6 ± 4.5 33.9 ± 5.5

P = 0.029 P<0.0001 P<0.0001

AKT2 siRNA 34.2 ± 7.6 21.6 ± 3.5 46.2 ± 13.2

P = 0.0003 P<0.0001 P = 0.0028

Nonsilencing siRNA ND 87.1 ± 22.2 90.0 ± 17.6

P = 0.57 P = 0.58

Saline only ND 79.7 ± 22.1 ND

P = 0.38

A549 cells (5 × 106) from a proliferating culture were implanted subcutaneously into female Swiss athymic nude mice. When the tumors reached a size

of 2 × 2 to 2.5 × 2.5mm (2–2.5 weeks after implantation), the mice were injected intravenously through the tail vein with 2 µg g−1 body weight of saline
solutions of ERBB3 siRNA, AKT2 siRNA, nonsilencing siRNA, saline, or nothing, 5 days per week for 3 weeks. Sequences of the siRNAs have been

reported previously.140 Tumors were measured weekly. In each treatment group there were 4–6 mice (Exp 1) or 10–12 mice (Exps 2 and 3). After 3
weeks, the average size of the tumors in the untreated group was determined, and each tumor in the treated mice was measured and its size expressed as
a percent of the untreated average. Results in the table are averages of these sizes ± s.e. All of the data sets were found to be normally distributed; the P-
values are based on one-sample t-tests. ND, not done. From Sithanandam et al., in preparation.
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Table 10
Possible approaches for therapeutic targeting of ERBB3

References

Experimental approaches under study

  RNA aptamers to extracellular domain
(breast cancer cells)

431

  Synthetic designer zinc finger transcription factor
(squamous carcinoma cells)

432

  Vitamin E isomer (breast cancer cells) 433

  Micro-RNA downregulation of mRNA (breast cancer
cells)

434

  siRNA downregulation of mRNA (lung cancer cells) Table 9

Suggested approaches

  NRDP1 ubiquitin ligase as negative regulator 435

  Blockage of transactivation 436

  Blockage of NRG nucleocytoplasmic trafficking 437

  Specific inhibitor of ADAM17 sheddase 425,426
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