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Abstract
Congenital central hypoventilation syndrome (CCHS) children show cognitive and affective deficits,
in addition to state-specific loss of respiratory drive. The caudate nuclei serve motor, cognitive, and
affective roles, and show structural deficits in CCHS patients, based on gross voxel-based analytic
procedures. However, the magnitude and regional sites of caudate injury in CCHS are unclear. We
assessed global caudate nuclei volumes with manual volumetric procedures, and regional volume
differences with three-dimensional surface morphometry in 14 CCHS (mean age ± SD: 15.1 ± 2.3
years; 8 male) and 31 control children (15.1 ± 2.4 years; 17 male) using brain magnetic resonance
imaging (MRI). Two high-resolution T1-weighted image series were collected using a 3.0 Tesla MRI
scanner; images were averaged and reoriented (rigid-body transformation) to common space. Both
left and right caudate nuclei were outlined in the reoriented images, and global volumes calculated;
surface models were derived from manually-outlined caudate structures. Global caudate nuclei
volume differences between groups were evaluated using a multivariate analysis of covariance
(covariates: age, gender, total intracranial volume). Both left and right caudate nuclei volumes were
significantly reduced in CCHS over control subjects (left, 4293.45 ± 549.05 mm3 vs 4626.87 ± 593.41
mm3, p < 0.006; right, 4376.29 ± 565.42 mm3 vs 4747.81 ± 578.13 mm3, p < 0.004). Regional deficits
in CCHS caudate volume appeared bilaterally, in the rostral head, ventrolateral mid, and caudal body.
Damaged caudate nuclei may contribute to CCHS neuropsychological and motor deficits; hypoxic
processes, or maldevelopment in the condition may underlie the injury.
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Introduction
Congenital central hypoventilation syndrome (CCHS) is a rare genetic disorder characterized
by reduced drive to breathe, primarily during sleep, reduced ventilatory sensitivity to CO2 and
O2, various autonomic deficits, developmental delays, and multiple affective and cognitive
issues, with a wide range of expression of both physiological and neuropsychological
characteristics (Haddad et al., 1978, Paton et al., 1989, American Thoracic Society, 1999,
Vanderlaan et al., 2004, Ruof et al., 2008). Mutations in PHOX2B, a transcription protein for
cellular development which targets neurons in autonomic and brainstem respiratory ganglia
(Dauger et al., 2003, Stornetta et al., 2006), are found in over 90% of CCHS patients (Weese-
Mayer et al., 2003, Matera et al., 2004), and those mutations appear to underlie the primary
respiratory and autonomic characteristics of the syndrome. The neuropsychologic and
cognitive aspects of CCHS would depend on reduced integrity of limbic regions and basal
ganglia, including the caudate nuclei, and other rostral brain areas serving emotional and
memory functions. Immunoreactive cells to Phox2b are found in selected suprapontine areas
of the mouse, particularly the hippocampus and isolated cortical areas (Lein et al., 2007), and
may contribute to the cognitive and affective behaviors; such cells do not appear in the caudate
nuclei. The caudate nuclei, which are especially susceptible to certain forms of hypoxia
(Veasey et al., 2004, Pulsipher et al., 2006), and other suprapontine structures could also be
affected by hypoxic exposure resulting from sleep hypoventilation, the principal characteristic
of the syndrome, or by secondary consequences of impaired perfusion from damaged
autonomic ganglia.

The caudate nuclei play significant roles in learning, mood, memory, and cognition (Mendez
et al., 1989, Poldrack et al., 1999, Levitt et al., 2002, Matsuo et al., 2008). The structure shows
volume deficits in patients with conditions accompanied by cognitive impairment, including
fronto-temporal lobar degeneration (Looi et al., 2008), Down syndrome (Haier et al., 2008),
and schizotypal personality disorder (Levitt et al., 2002). The caudate structures comprise
elements of circuitry for higher cognitive and limbic functions, including pathways to the
dorsolateral prefrontal and lateral orbito-frontal cortices (Lehericy et al., 2004, Postuma and
Dagher, 2006). Areas within the caudate nuclei, which serve functions mediated by these
different projections, are topographically organized (Alexander et al., 1986, Hontanilla et al.,
1994), but specific regions within the caudate nuclei affected in CCHS are unknown.

Caudate injury in CCHS was initially detected by voxel-based analytic procedures that required
cross-subject normalization of brain images into a common space (Kumar et al., 2005, Kumar
et al., 2006). Such procedures can affect structural assessment, since the presence of excessive
cerebrospinal fluid (CSF) in adjacent ventricles, a characteristic of CCHS, can influence such
evaluation. Moreover, voxel-based techniques, as well as the particular imaging procedures
used provided insufficient spatial resolution to localize regional damage within caudate
structures. By contrast, manual volumetric procedures, using high-resolution T1-weighted
images, combined with three-dimensional (3D) surface reconstruction and morphometry can
provide both volumetric and map-based regional information of the structure.

Here, we aimed to assess caudate nuclei volumes in CCHS and similar age- and gender-
distributed control subjects with manual volumetric procedures, and to determine regional
differences with 3D surface morphometry procedures, using high-resolution T1-weighted
imaging.
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Experimental Procedures
Subjects

Fourteen CCHS children (mean age ± SD: 15.1 ± 2.3 years; range: 12-18 years; 8 male) and
31 control subjects (15.1 ± 2.4 years; 10-19 years; 17 male) were studied. The CCHS diagnosis
was based on standard criteria indicated by the American Thoracic Society (American Thoracic
Society, 1999), and subjects were recruited through the CCHS family network
(http://www.cchsnetwork.org). Of the 14 CCHS subjects, six showed evidence of PHOX2B
mutations, two were inconclusive, and the status of the remaining six CCHS patients was
unknown. Although CCHS patients may require ventilatory support during sleep and waking,
we included only those who required ventilatory support during sleep. CCHS patients with
other conditions, including cardiovascular or neurological issues, or with diagnosed
Hirschsprung's disease that could induce additional neural injury through malnutrition, were
excluded. Brain imaging in all CCHS and control subjects was performed without anesthesia
or sedatives, and subjects were provided rest from the scanner if required. Control subjects
were healthy, without any diagnosed neurological disorder or other issues that could alter brain
tissue integrity, and were recruited through advertisements at the university campus targeting
parents to bring their children to participate in this study.

All control and CCHS subjects or their parents/caretakers provided informed written consent
prior to the study, and the protocol was approved by the Institutional Review Board of the
University of California at Los Angeles.

Magnetic resonance imaging
Brain imaging studies were performed with a 3.0 Tesla magnetic resonance imaging scanner
(Magnetom Trio; Siemens, Erlangen, Germany). Subjects lay supine, and foam pads were
placed on both sides of the head to reduce head motion during data collection. Two high-
resolution T1-weighted image series were collected using a magnetization prepared rapid
acquisition gradient-echo (MPRAGE) pulse sequence [repetition-time (TR) = 2200 ms; echo-
time (TE) = 3.05 ms; inversion-time = 1100 ms; flip-angle = 10°; matrix size = 256 × 256;
field-of-view (FOV) = 220 × 220 mm; slice thickness = 1.0 mm]. Proton-density (PD) and T2-
weighted images were also collected in the axial plane, using a dual-echo turbo spin-echo pulse
sequence (TR = 8000 ms; TE1, 2 = 17, 133 ms; flip-angle = 150°; matrix size = 256 × 256;
FOV = 240 × 240 mm; slice thickness = 5.0 mm), for visual assessment.

Data analysis
T1, T2, and PD-weighted images were evaluated for the presence of any neural pathology,
such as major infarcts, cystic lesions, or any other mass lesions. Both high-resolution T1-
weighted image series were evaluated for any head motion-related or other artifacts.

We used the statistical parametric mapping package SPM5 (Wellcome Department of
Cognitive Neurology, UK; http://www.fil.ion.ucl.ac.uk/spm/), MRIcron (Rorden et al.,
2007), and Matlab-based (The MathWorks Inc, Natick, MA) custom software to process the
brain images, delineate caudate nuclei structures, and evaluate caudate nuclei volumes.

Both high-resolution T1-weighted image series were realigned to remove variation from
potential motion, and averaged to increase signal-to-noise ratio. The averaged images were
bias-corrected for image signal intensity variation, and reoriented into a common space, using
a 6-parameter rigid-body (non-distorting) affine transformation, and sampled to 0.9×0.9×0.9
mm.
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Intracranial volume calculation—The bias-corrected and reoriented images were used to
partition gray matter, white matter, and CSF, resulting in probability maps, using a unified
segmentation approach (Ashburner and Friston, 2005). The gray, white, and CSF probability
maps were summed for each voxel, and each voxel classified as “intracranial” if the voxel
probability was greater than 0.5; intracranial voxels were counted in each subject, and total
intracranial volume calculated.

Caudate tracing and volume calculation—A single investigator, unaware of subject
group assignment, delineated the left and right caudate nuclei with MRIcron using the
reoriented and resampled brain images. Both left and right heads and bodies of the caudate
nuclei, caudal to the level of the posterior thalamus, were outlined using axial views; anatomic
landmarks were followed in all other views. Coronal and sagittal views were used to verify the
structure boundaries. Delineated voxels in each caudate nucleus were counted, and volumes
of the structure on each side were calculated by multiplying the number of counted voxels by
the volume of one voxel.

Statistical analysis
The Statistical Package for the Social Sciences (SPSS, V 15.0, Chicago, IL) was used for
statistical evaluation. Both biophysical and demographic numerical variables were assessed
with independent-samples t-tests and the categorical variable (gender) was assessed with a Chi-
square test. Left and right caudate nuclei volumes were assessed between groups using a
multivariate analysis of covariance (MANCOVA), with age, gender, and total intracranial
volume included as covariates.

Correlations between caudate nuclei volume and age in CCHS and control subjects were
evaluated with Pearson's correlation. Intra- and inter-tracer reliabilities were established with
intraclass correlation coefficient (ICC) procedures.

Intra- and inter-tracer reliabilities
We established intra- and inter-tracer reliabilities for delineating the caudate nuclei. A single
investigator, who performed all the structural tracings, repeated the same procedure in 6
randomly-selected CCHS and control subjects. Of these 6 subjects, two were CCHS, and four
were control subjects. In the same subject subgroup, another investigator also outlined the
structures. Both intra-tracing (ICC = 0.97, p < 0.001) and inter-tracing (ICC = 0.95, p < 0.001)
reliabilities were high.

3D caudate surface morphometry
We used an anatomical surface modeling approach, together with surface-based statistics
(Butters et al., 2009) to compare regional caudate nuclei volumes between CCHS and control
groups. Surface models were derived from outlined left and right caudate nuclei, and equivalent
surface points of the caudate nuclei were derived with anatomical mesh modeling procedures
applied to each subject (Thompson et al., 2004). We derived the medial 3D curve, the centerline
of the structure in the anterior-posterior direction, for each caudate nucleus model of individual
CCHS and control subjects, and at each point we computed the “radial distance” of the caudate,
based on the distance of each surface point from the 3D medial curve (Lin et al., 2005). Two
sample t-tests were performed at each surface point to map associations between group and
radial distance, and statistical maps indicating regional group differences in caudate nuclei
were generated. We controlled for multiple comparisons (across the mesh points) by
performing permutation testing, resulting in an overall p-value for the statistical map on each
side. This p-value expresses the probability of observing the overall pattern of group effects
by chance. Regional p-values corresponding to group differences were displayed using a color
code, on averaged 3D surface models derived from all subjects.
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Results
Biophysical and demographic variables of CCHS and control subjects are summarized in Table
1. Age, gender, and body-mass-index showed no significant differences between CCHS and
control groups.

Left and right mean caudate nuclei volumes of CCHS and control subjects are summarized in
Table 2, and values from individual subjects are displayed in scatter plots (Fig. 1). The 3D
rendering shows bilateral caudate nuclei volume deficits in a CCHS compared to a comparable
control subject (Fig. 2). Left and right mean caudate volumes were significantly reduced in
CCHS over control groups, controlling for age, gender, and total intracranial volume
(MANCOVA; left, p < 0.006; right, p < 0.004). No significant correlations were detected
between caudate nuclei volumes and age in CCHS or control groups.

Three-dimensional surface morphometry showed reduced volumes in CCHS patients at
specific sites within both left and right caudate structures (Fig. 3), corrected for multiple
comparisons using permutation testing (left, p < 0.02; right, p < 0.03). The left caudate in CCHS
showed loss in the rostral head (Fig. 3a, r), caudal (Fig. 3c, g, n, q), and ventrolateral mid-body
portions (Fig. 3b, h, m) over control subjects. Similarly, the right caudate in CCHS showed
loss in the head (Fig. 3d, k, l, p, t), caudal (Fig. 3i, s), and ventrolateral mid-body portions (Fig.
3e, f, j, o), compared to control subjects.

Discussion
We found that CCHS subjects showed both global volume reduction and localized sites of
volume loss within the caudate nuclei. The caudate nuclei interact with multiple brain sites,
including the midbrain, thalamus and prefrontal cortices, and are implicated in a wide range
of motor (Gerardin et al., 2004), and higher cognitive and emotional processes (Levitt et al.,
2002, Matsuo et al., 2008). Caudate sites earlier showed abnormal functional responses to
autonomic and ventilatory challenges in CCHS, and structural injury, based on gross evaluation
procedures (Harper et al., 2005, Kumar et al., 2005, Macey et al., 2005a, Macey et al.,
2005b, Kumar et al., 2006, 2008). The current study evaluates the extent of damage and
localizes the injury to specific sites within the nuclei; these sites may influence specific aspects
of cognition, affect, and motor regulation in the syndrome.

Global caudate volume loss in CCHS
Global volume analyses showed an approximate 8% mean volume difference between CCHS
and control groups; the extent of deficit should be viewed in the context of other conditions,
such as patients with schizotypal personality disorder, who exhibit a 13% reduction in absolute
volumes compared to control subjects (Levitt et al., 2002). Thus, the overall volume deficits
in CCHS are significant, but not as large as found with severe personality disorders. The volume
loss appears appropriate for behavior characteristics in CCHS; although some children are
affected in a major fashion, others are not. The particular deficits are more easily understood
by examining the regional losses in CCHS caudate nuclei.

Regional site differences and their significance
Variability in characteristics—CCHS patients show common physiological
characteristics, including diminished central chemosensitivity and impaired parasympathetic
and sympathetic regulation, as well as the principal life-threatening deficit of loss of drive to
the breathing muscles during sleep, a state-specific motor behavior. However, physiological
deficits can vary substantially across affected individuals, with a reduced drive to breathe even
during waking in some cases, and a range of severity in incidence of cardiovascular

Kumar et al. Page 5

Neuroscience. Author manuscript; available in PMC 2010 November 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



abnormalities (Weese-Mayer et al., 2001). Similarly, emotional and cognitive deficits, as well
as extent of developmental delays, vary substantially among patients (Vanderlaan et al.,
2004, Ruof et al., 2008). The variability in expression of both motor and neuropsychological
characteristics in CCHS complicates evaluation of influences from localized caudate injury.

Motor deficits—While recognizing the variability in certain deficits, both impaired
developmental motor behaviors and sleep-related suppression of respiratory motor action are
characteristic of CCHS. Localized caudate injury may play a role in both motor aspects.
Ventrolateral regions of the body showed the most extensive regional injury. Ventrolateral
regions, with pronounced projections to the pedunculopontine tegmentum (PPT), help regulate
motor behaviors, especially oral motor activity (Allen and Winn, 1995); the PPT is a significant
component of the mesencephalic locomotor region (Garcia-Rill and Skinner, 1987). The
oscillatory motor patterning influenced by the PPT may extend to the respiratory issues in
CCHS, since repetitive locomotion, such as cyclic foot movement, enhances breathing in
CCHS patients during sleep (Gozal and Simakajornboon, 2000). Impaired projections from
the ventrolateral caudate to the PPT may degrade caudate influences on the PPT, modifying
state-related cyclic breathing patterns in sleep.

Damage also occurred in the head of both the left and right caudate nuclei. The extensive
caudate roles in other motor regulatory behavior through projections from the caudate head to
the supplementary motor and frontal regions, including ventral, medial, and dorsolateral
prefrontal cortices (Lehericy et al., 2004), should influence developmental motor patterning
significantly, a major concern in CCHS (Vanderlaan et al., 2004).

A characteristic found in many CCHS patients is inappropriate facial expression to emotional
stimuli, e.g., unilateral inability to smile to a joke, but appropriate voluntary-initiated smiling.
The deficit may represent caudate injury forming a component of the “emotional motor
system” (Holstege, 1992). That motor system may provide a component of other emotional
responses; dopaminergic processes within the caudate may underlie that structure's response
to orgasm in women (Georgiadis et al., 2006). The abundance of serotonergic receptors in the
head of the caudate may modulate other neurotransmitter actions, including those of dopamine,
gamma-aminobutyric acid and glutamate, and thus a range of motoric actions mediated by
those neurotransmitter systems.

Mood and cognitive issues—The midline pontine raphé, the source of rostrally-projecting
serotonergic fibers, shows pronounced injury in CCHS (Kumar et al., 2008). A reduced number
of serotonergic terminals within the caudate head secondary to the raphé damage may
contribute to the tissue loss found here, and relate to mood deficits mediated by that
neurotransmitter (Drevets et al., 1999). Altered mood appears consistently across a high
proportion of CCHS patients (Vanderlaan et al., 2004). The deficits can appear as anxiety, but
a common characteristic is apathy toward self care related to their need for oxygen. Thus,
CCHS children are often inattentive to high CO2 or low O2 conditions, and will participate in
dangerous behaviors, such as challenges for underwater endurance (a challenge in which they
obviously excel). Loss of tissue appeared in the caudate nuclei heads in CCHS; these areas
project and receive input from prefrontal, frontal, and limbic sites (Lehericy et al., 2004), and
normally are rich in serotonergic fibers (Mori et al., 1985).

Neuropsychological deficits in CCHS also include cognitive disturbances and learning
disabilities (Vanderlaan et al., 2004, Ruof et al., 2008), and speech impairments. The cognitive
deficits appear as problems in working memory, attention, and social interaction (Ruof et al.,
2008). Caudate nuclei injury is classically expressed with several cognitive impairments,
including learning and attention deficits (Mendez et al., 1989, Poldrack et al., 1999), short- and
long-term memory and retrieval problems (Mendez et al., 1989, Fuh and Wang, 1995), mental
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flexibility (Lombardi et al., 1999), motivation, and verbal fluency (Fuh and Wang, 1995). The
extensive projections from the caudate head to prefrontal and frontal cortical sites may interrupt
input involved in mediation of executive function (Newman et al., 2007). Both rostral and
caudal portions of the caudate are implicated in different types of working memory functions,
as revealed by functional brain imaging studies in both human and animal models (Levy et al.,
1997, Chang et al., 2007); the caudal portions injured here may be contributing to the cognitive
deficits.

Pathological mechanisms
Although the precise mechanisms of caudate nuclei volume loss in CCHS are unclear, several
possibilities emerge. A portion of the injury may result from developmental consequences of
PHOX2B mutations characteristic of CCHS. Volume losses in the caudate nuclei also occur
in autosomal dominant and other neurodegenerative diseases, including Huntington's disease
(Wolf et al., 2009). Animal models of Phox2b mutations show injury localized to visceral
ganglia and brainstem autonomic and retrofacial nuclei, and immunoreactivity to Phox2b
appears in more rostral areas, such as hippocampus (Dauger et al., 2003, Stornetta et al.,
2006, Lein et al., 2007, Dubreuil et al., 2008).

However, the absence of Phox2b immunoreactive neurons in the caudate nuclei of mice
suggests other mechanisms of damage. Secondary developmental damage arising from
impaired perfusion resulting from initial mutations of PHOX2B targeting autonomic ganglia
may lead to injury. Damage to autonomic regulatory areas, including the nucleus of the solitary
tract, could significantly alter development or function of the microvasculature, and modify
perfusion of perhaps distant brain areas, impairing development of those sites. An indication
of the vascular effects can be found in large arteries supplying the brainstem; the basilar artery
is significantly dilated, relative to other major vessels (Kumar et al., 2009b), perhaps from
excessive constriction of the brainstem microvasculature.

The caudate nuclei are classic targets for hypoxic injury, especially carbon monoxide poisoning
(Pulsipher et al., 2006). The sensitivity of the caudate nuclei to hypoxia suggests that
hypoventilation accompanying CCHS may play a significant role in the damage found here.
Increased levels of inflammatory markers and oxidative damage appear in other animal hypoxia
models, such as intermittent hypoxic exposure simulating obstructive sleep apnea (Ohga et al.,
2003, Veasey et al., 2004, Zhan et al., 2005). Injury in those models appears in several brain
sites, including the fornix, cerebellum, thalamus, hippocampus, and frontal cortices, as well as
the caudate nuclei (Gozal et al., 2001, Veasey et al., 2004, Pae et al., 2005).

Loss of afferent and efferent projections from damaged cortical and subcortical regions may
impact the caudate nuclei. The caudate nuclei are not alone in structural damage in CCHS.
Multiple other areas are severely affected, including the mammillary bodies, hippocampus,
cerebellum, medial midbrain, cingulate cortex, and various frontal and parietal cortical areas
(Kumar et al., 2005, Kumar et al., 2006, 2008, Kumar et al., 2009a, Macey et al., 2009). The
caudate nuclei receive projections from many of these sites, including the ventral medial
prefrontal and anterior cingulate cortices (Alexander et al., 1986); the localized caudate injury
here may partially result from damage to projections from other distant regions.

Conclusions
Both left and right caudate nuclei volumes are significantly reduced in CCHS over similar age-
and gender-distributed control subjects, with the regional volume loss more pronounced in the
ventrolateral mid-body; portions of the head and caudal regions are also affected. The
projections to mesencephalic locomotor areas, as well as to frontal cortical sites and the
thalamus may contribute to the breathing, cognitive, and behavioral deficits found in CCHS.
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The caudate injury may result from hypoxic processes, impaired perfusion, or maldevelopment
associated with mutations of PHOX2B.
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CCHS  

Congenital central hypoventilation syndrome

CSF  
Cerebrospinal fluid

3D  
Three-dimensional

TR  
Repetition-time

TE  
Echo-time

FOV  
Field-of-view

ICC  
Intraclass correlation coefficient

PD  
Proton-density

MANCOVA 
Multivariate analysis of covariance

PPT  
Pedunculopontine tegmentum
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Figure 1.
Caudate nuclei volumes from individual control (×) and CCHS (○) subjects. Both left and right
caudate volumes are reduced significantly in CCHS compared to control subjects, controlling
for age, gender, and total intracranial volume.
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Figure 2.
3D rendering (MATLAB, box filter, 3 voxel kernel) of caudate nuclei in a CCHS (A, blue; age
18.3 yrs; male) and control (B, green; age 17.6 yrs; male) subject; both plotted in the same
scale (scale, right side). Both left and right caudate nuclei of the CCHS subject show smaller
volumes over those of the control subject.
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Figure 3.
Probability maps show the significance of the regional reduction of volumes within the caudate
in CCHS compared to control subjects. Both caudate nuclei show reduced volumes in the rostral
head, ventrolateral mid-body, and caudal body portions. Significance levels are color-coded
and displayed on averaged 3D surface models of the caudate nucleus.
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Table 1
Biophysical and demographic variables of CCHS and control subjects.

Variables CCHS [n =14] Control [n = 31] p-values

Age (mean ± SD, years) 15.14 ± 2.27 15.14 ± 2.36 0.993

Gender (Male: Female) 8:6 17:14 0.885

BMI (mean ± SD, kg/m2) 20.67 ± 3.80 21.36 ± 4.30 0.609

Table legend: SD = Standard deviation; BMI = Body mass index.
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Table 2
Caudate nuclei volumes from CCHS and control subjects.

Brain site CCHS [n = 14]
(mean ± SD, mm3)

Control [n = 31]
(mean ± SD, mm3)

* p values

Left caudate 4293.45 ± 549.05 4626.87 ± 593.41 < 0.006

Right caudate 4376.29 ± 565.42 4747.81 ± 578.13 < 0.004

Table legend: SD = Standard deviation,

*
p-values, corrected for total intracranial volume, age, and gender derived from MANCOVA.
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