Skip to main content
. Author manuscript; available in PMC: 2009 Oct 14.
Published in final edited form as: J Am Chem Soc. 2008 Feb 12;130(9):2817–2831. doi: 10.1021/ja0771033

Table 1.

Calculated thermodynamic and local water structure data for each of the 43 hydration sites we identified by clustering the factor Xa active site solvent density distribution. The occupancy was the number of water oxygen atoms found occupying a given hydration site during the 10ns of molecular dynamics simulation, −TSe is the excess entropic contribution to the free energy calculated from a truncated expansion of the excess entropy in terms of correlations in the single particle translational and rotational density, E is average energy of interaction of the water molecules in a given hydration site with the rest of the system, the #nbrs value is the average number of neighboring waters found within a 3.5Å oxygen atom to oxygen atom distance from a water occupying the specified hydrations site, the #HBnbrs value is the is the average number of neighboring water oxygens found within a 3.5Å distance from the water oxygen occupying the specified hydrations site that make a less than 30° oxygen-oxygen-hydrogen hydrogen bonding angle with this water, the %HB value is the #HBnbrs/#nbrs fraction, and the exposure value is the #nbrs value divided by the bulk #nbrs value found in the bulk fluid.

Hyd. Site Occupancy −TSe (kcal/mol) E (kcal/mol) #nbrs #HBnbrs % HB Exposure
Neat 1385.00 N/A* −19.67 5.09 3.53 0.69 1.00
1.00 9347.00 4.00 −20.34 1.54 1.30 0.84 0.30
2.00 9062.00 3.91 −22.59 3.13 1.99 0.64 0.61
3.00 8425.00 2.61 −20.85 3.45 2.27 0.66 0.68
4.00 8383.00 2.93 −19.55 3.12 2.79 0.89 0.61
5.00 8157.00 3.24 −23.18 2.52 1.88 0.75 0.50
6.00 8123.00 3.20 −21.86 3.62 2.24 0.62 0.71
7.00 8116.00 3.37 −21.82 3.22 2.12 0.66 0.63
8.00 8081.00 2.74 −22.73 3.05 2.39 0.78 0.60
9.00 7257.00 2.13 −19.38 4.30 2.76 0.64 0.84
10.00 7172.00 2.52 −21.04 3.75 2.85 0.76 0.74
11.00 6886.00 2.05 −20.71 3.41 2.24 0.66 0.67
12.00 6815.00 2.28 −16.93 1.62 1.49 0.92 0.32
13.00 6238.00 1.72 −17.88 2.72 2.05 0.75 0.53
14.00 6081.00 1.95 −19.89 2.58 2.11 0.82 0.51
15.00 5441.00 1.83 −22.62 4.66 3.63 0.78 0.92
16.00 5078.00 1.51 −20.01 3.30 2.56 0.78 0.65
17.00 4919.00 1.33 −17.04 2.45 1.78 0.73 0.48
18.00 4887.00 1.35 −17.74 3.38 2.46 0.73 0.66
19.00 4466.00 1.20 −19.48 4.11 2.77 0.67 0.81
20.00 4386 .00 1.37 −22.14 3.69 2.79 0.76 0.72
21.00 4356.00 1.23 −18.50 3.75 2.67 0.71 0.74
22.00 4241.00 1.22 −20.27 3.72 2.63 0.71 0.73
23.00 4189.00 1.13 −19.58 3.87 2.84 0.73 0.76
24.00 4170.00 1.17 −19.64 3.69 2.51 0.68 0.72
25.00 4137.00 1.12 −20.85 4.61 2.59 0.56 0.91
26.00 4067.00 1.07 −20.19 4.23 3.09 0.73 0.83
27.00 4046.00 1.03 −20.72 4.37 3.48 0.80 0.86
28.00 3921.00 1.10 −16.74 2.66 2.00 0.75 0.52
29.00 3833.00 1.03 −21.44 4.27 2.57 0.60 0.84
30.00 3793.00 1.04 −21.97 4.05 2.68 0.66 0.80
31.00 3786.00 0.99 −20.00 4.70 3.39 0.72 0.92
32.00 3686.00 0.99 −22.61 4.48 2.69 0.60 0.88
33.00 3618.00 1.00 −20.46 4.34 2.56 0.59 0.85
34.00 3570.00 0.95 −19.75 4.36 2.92 0.67 0.86
35.00 3312.00 0.90 −24.24 4.41 2.74 0.62 0.87
36.00 3296.00 0.84 −19.66 4.06 2.66 0.66 0.80
37.00 3152.00 0.79 −18.87 4.57 3.15 0.69 0.90
38.00 3094.00 0.73 −19.09 4.70 3.25 0.69 0.92
39.00 3089.00 0.92 −21.61 3.55 2.55 0.72 0.70
40.00 3007.00 0.79 −19.96 4.20 2.79 0.67 0.82
41.00 3003.00 0.78 −20.41 3.71 2.70 0.73 0.73
42.00 2862.00 0.73 −19.26 4.72 3.28 0.69 0.93
43.00 2791.00 0.75 −20.93 3.98 2.84 0.71 0.78
*

The truncated expansion of the excess entropy used included only the first order terms. The first order excess entropic term for all neat fluids is strictly zero, however the second order and larger terms will be quite large.