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Abstract
The operation of biochemical systems in vivo and in vitro is strongly influenced by complex
interactions between biochemical reactants and ions such as H+, Mg2+, K+, and Ca2+. These are
important second messengers in metabolic and signaling pathways that directly influence the kinetics
and thermodynamics of biochemical systems. Herein we describe the biophysical theory and
computational methods to account for multiple ion binding to biochemical reactants and demonstrate
the crucial effects of ion binding on biochemical reaction kinetics and thermodynamics. In
simulations of realistic systems, the concentrations of these ions change with time due to dynamic
buffering and competitive binding. In turn, the effective thermodynamic properties vary as functions
of cation concentrations and important environmental variables such as temperature and overall ionic
strength. Physically realistic simulations of biochemical systems require incorporating all of these
phenomena into a coherent mathematical description. Several applications to physiological systems
are demonstrated based on this coherent simulation framework.

1. Introduction
1.1. The physicochemical basis of biology

It is essential that modern research in biology and biomedical science, which is increasingly
focused on gaining quantitative understanding of the behavior of biochemical systems, be
grounded in the physical chemical principles that govern the organization and behavior of
matter. In particular, it is crucial to recognize that living systems, which continuously transport
and transform material and transduce free energy among chemical, electrical, and mechanical
forms, operate in nonequilibrium thermodynamic states. Thus effective characterization of the
operation of living systems, through quantitative analysis and computational simulation, must
account for the chemical thermodynamics of such systems. From this perspective, a useful
characterization of a biological network includes an investigation and appreciation of its
thermodynamic properties. Similarly, a realistic simulation of a biological system must be
constrained to operate in a thermodynamically feasible manner.

1.2. Basic principles of chemical thermodynamics
The basic laws of thermodynamics are familiar to most readers. The two laws most relevant
to systems biology may be stated as follow. (1) Energy is neither created nor destroyed; a net
change in energy of a system must be due to a net transport of energy in or out. (2) In systems
away from equilibrium, entropy is produced and never consumed; entropy may decrease only
if the rate of export exceeds the rate of import.
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By the second law, isolated systems move naturally in the direction of increasing entropy,
always heading toward a thermodynamic equilibrium where the entropy is maximized. Yet
biological systems are not isolated and, in the context of biology, equilibrium can be equated
with death. Thus increasing entropy does not provide a gauge to predict or constrain the
operation of biological systems that exchange material and energy with their environment. For
such systems the concept of free energy provides a useful metric for describing thermodynamic
status.

Various forms of free energy are defined for various sorts of systems. The most useful form
of free energy for biological systems is Gibbs free energy, which is defined

(2.1)

where E, P, V, T, and S, are the internal energy, pressure, volume, temperature, and entropy of
the system. Gibbs free energy is a useful metric for biological systems because it can be shown
that systems without import or export of chemical substances, held at constant pressure and
temperature, spontaneously move down the gradient in G (Beard and Qian, 2008b).

For a chemical reaction in dilute solution the change in Gibbs free energy per number of times
the reaction turns over is given by the well-known formula (Alberty, 2003; Beard and Qian,
2008b)

(2.2)

where ΔrGo is the equilibrium free energy for the reaction, which does not depend on the
concentrations of the chemical components, R is the gas constant, T is the absolute temperature,
υi is the stoichiometric number of species i for the reaction, Ci is the concentration of species
I, and Co is the reference concentration, taken to be 1 M. The summation in Eq. (2.2) is over
all species in the system; Ns is the number of species.

The equilibrium free energy for a reaction may be computed based on the values of free energy
of formation, , for the species involved in a reaction:

(2.3)

The value of  for a given species depends on the environmental conditions, most notably
temperature, pressure, and the ionic solution strength, as discussed later. Chemical equilibrium
is achieved when the driving force for the reaction ΔrG goes to zero. Equilibrium yields

(2.4)
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where Keq is the equilibrium constant for the reaction.

1.3. Simulating biochemical systems
In living systems operating away from equilibrium, each chemical process (including reactions
and transport processes) obeys the following relationship between flux and free energy:

(2.5)

where J = J+ − J− is the net flux for the process and J+ and J− are the forward and reverse
fluxes. For example, for an enzyme-catalyzed reaction, J+ and J− are the forward and reverse
rates of turnover for the enzyme’s catalytic cycle.

Equation (2.5) reveals that nonzero net flux occurs only when the free energy change for a
given process is nonzero. Also, it is apparent that the quantity

(2.6)

is always positive. In fact, −ΔG·J is the process’s rate of free energy dissipation. Thus it follows
that systems maintained away from equilibrium dissipate free energy. Dissipation of free
energy is a hallmark of nonequilibrium systems and thus a hallmark of life.

At the center of our biochemical systems modeling approach is an explicit accounting of the
fact that biochemical reactants (e.g., ATP) exist in solution as a number of rapidly
interconverting species (e.g., ATP4−, HATP3−, MgATP2−, and KATP3−)(Beard and Qian,
2008a, c). Accounting for all of these species for systems composed of many (tens to hundreds)
of reactants is theoretically straightforward, but practically messy. Notably, Wu and colleagues
(2007b) have detailed how a model of nontrivial complexity is constructed. However, before
going into computational details, the following list is a number of benefits of accounting for
this level of chemical detail in biochemical systems simulation.

1. Nonambiguous meaning. By tracking the species-level distribution of biochemical
reactants, model variables have a nonambiguous physical meaning. Because species
participate in enzyme-catalyzed reactions, a species-level model allows us to
represent chemical reactions with greater physical realism than is possible when the
species distributions of reactants are not calculated. By expressing enzyme
mechanisms in terms of species, changes in apparent kinetic properties brought on by
changes in pH and ion concentration are handled explicitly. More details on this point
are provided in Section 2.5 and in Beard et al. (2008).

2. Nonambiguous integration. In biosystems modeling it is common to track certain
species but not others. For example, some models of cellular energetics account for
Mg2+-bound and -unbound ATP (Korzeniewski, 2001; Vendelin et al., 2000, 2004).
However, in these cases the unbound state is a mixture of many states. Other modeling
applications may be based on treating all reactants, including ATP, as the total sum
of species (Zhou et al., 2005). As a result, there is often not one unique way to integrate
models that simulate different components of a larger system. By imposing a
formalism where model variables have nonambiguous meaning this problem of
nonuniqueness is resolved.

3. Resulting models are thermodynamically feasible. By computing species distribution
of reactants, we can track how changes in pH and cationic concentrations affect overall
thermodynamic driving forces and ensure that these changes are handled by our
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models. Thus simulation at this level of detail ensures thermodynamically validity,
an important requirement for model reliability.

4. Model uncertainty is reduced. One might imagine that imposing the level of detail
outlined previously may introduce unnecessary complexity and increase the number
of unknown parameters into biochemical systems models. However, the opposite is
true when ionic dissociation constants and basic thermodynamic data are available
for the reactions and reactants in a given model. The thermodynamic and dissociation
data constrain the enzyme mechanisms and reduce the number of adjustable
parameters necessary to describe their behavior.

In addition to these practical advantages related to model building and identification,
the major advantage is scientific.

5. Model reliability is improved. We have greater confidence in the behavior predicted
by physically grounded models than in models that invoke phenomenological
descriptions of components or in models that do not account for chemical species
distribution and/or biochemical thermodynamics. This is particularly important when
using models to predict behavior outside of the operational regime of the data set(s)
used for parameterization and validation.

2. Biochemical Conventions and Calculations
Equation (2.2) is the formula for Gibbs free energy for a chemical reaction. However,
biochemical reactions are not typically expressed as mass-and charge-balanced chemical
reactions Alberty (2003).

2.1. Thermodynamics of biochemical reactions
Metabolites in intracellular milieu exist as protonated, metal ion bound and free unbound forms
described by ionic equilibria in solution with multiple cations. Each metabolite concentration
is therefore described as a sum of its individual constituent species concentrations computed
by ionic equilibria principles. A biochemical reaction involves sums of species on both the
reactant and the product sides, which results in each reaction having effective proton and metal
ion stoichiometries due to binding changes across the biochemical reaction. The proton
generation stoichiometry of a biochemical reaction is the total difference of average proton
binding between the reactants and the products, plus the proton generation stoichiometry of
the reaction defined in terms of its most unbound species in the pH range of interest, also known
as the reference reaction. The apparent equilibrium constant of a biochemical reaction defined
in terms of sums of species for each metabolite therefore depends on proton and metal binding
of the reactants and products.

Alberty developed these concepts in terms of transformed variables by using Legendre
transforms to gain a global view of biochemical systems by treating pH and free magnesium
ion concentrations as independent variables. Fundamental principles underlying this work are
reviewed in Alberty (2004). More detailed treatment of this subject matter and basic
biochemical data and calculations are given in Alberty (2003). Vinnakota et al. (2006) extended
the application of concepts developed by Alberty to a system with finite buffer capacity and
variable pH. The pH variation itself is computed from proton binding changes in each of the
biochemical reactions. Using mass balance constraint for protons and Mg2+ ions, we applied
these concepts to compute a pH time course while accounting for pH, Mg2+, and K+ effects
on kinetics and thermodynamics of the reactions. The methodology in Vinnakota et al.
(2006) was extended and improved by Wu et al. (2007b) and Beard and Qian (2008a) to account
for more metal ions and was applied to coupled electrophysiological and metabolic systems.
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During the past decade, tables of fundamental biochemical data have been generated by Alberty
(2003), which enabled the computation of standard free energies of many biochemical reactions
in terms of their reference species and therefore their apparent equilibrium constants at
specified pH and metal ion concentrations. The methods presented here demonstrate that the
thermodynamic analysis and the biochemical network representation are unified through
proton and other metal ion mass balance constraints.

2.2. Enzyme kinetics and the Haldane constraint
Thermodynamic analyses predict equilibria for pathways at specified pH, temperature, ionic
strength, ion concentrations, and cofactor concentrations. However, this gives only part of the
picture, because the kinetics govern the dynamics of approach of biochemical systems to these
equilibria in a closed system and in an open system the combined effect of kinetics constrained
by thermodynamics govern the fluxes and the metabolite transients. Likewise, kinetic models
with inappropriate thermodynamic constraints will not yield a realistic prediction of fluxes and
concentrations, as the apparent equilibrium constant can change by orders of magnitude per
unit pH depending on the proton stoichiometry of the biochemical reaction. These two
approaches can be combined by incorporating the apparent equilibrium constant computed by
biochemical thermodynamic principles into the Haldane relationship, which relates the forward
and reverse maximal velocities of the enzyme kinetic flux. This unified approach combining
both kinetics and thermodynamics is applied in Vinnakota et al. (2006), Wu et al. (2007b,
2008), and Beard and Qian (2008a). Alberty (2006) has demonstrated that the overall apparent
equilibrium constant of a biochemical reaction is independent of the internal enzyme kinetic
mechanisms for simple enzyme kinetic mechanisms.

While the study of the catalytic kinetics of enzymes represents one of the most established and
well-documented fields in biochemical research, the impact of the biochemical state (pH, ionic
strength, temperature, and certain cation concentrations) is typically not formally accounted
for in kinetic studies (Alberty, 1993, 2006). In vitro experiments using purified proteins and
controlled substrate concentrations to characterize enzyme kinetics are conducted under
conditions that do not necessarily match the physiological environment, but are determined
based on a number of factors, including the requirements of the assays used to measure the
kinetics. Therefore, it is difficult to compare results obtained from different studies and to use
available kinetic data to predict in vivo function without ambiguity.

Outlining these and other issues in somewhat greater detail, the following specific challenges
associated with interpreting in vitro kinetic data must be overcome to make optimal use of
them.

1. While a great deal of high-quality data may be available for a particular enzyme, much
of these data were obtained in the 1960s and 1970s when tools for proper analysis of
data were not available. As a result, the reported kinetic parameter values [typically
obtained from double reciprocal plots of inverse flux versus inverse substrate
(Lineweaver and Burk, 1934)] may not optimally match reported data.

2. Data on biochemical kinetics are typically obtained under nonphysiological pH and
ionic conditions. Therefore the reported kinetic constants must be corrected to apply
to simulations of physiological systems.

3. A third problem related to the second is that kinetic constants are associated with
apparent mechanisms that operate on biochemical reactants, which are sums of
biochemical species (Alberty, 1993). The result is that the reported mechanisms and
associated parameter values are dependent on the biochemical state and not easily
translated to apply to different biochemical states or to simulations in which the
biochemical state changes.
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4. The reported kinetic mechanisms and parameters are often not constrained to match
thermodynamic data for a given reaction. Since the basic thermodynamics of a given
reaction is typically characterized with greater precision than the kinetics of an
enzyme catalyzing the reaction, putative kinetic mechanisms should be constrained
to match the biochemical reaction thermodynamics.

A study on citrate synthase addressed and corrected these problems by posing reaction
mechanisms in terms of species and ensuring that mechanisms properly account for
thermodynamics. This basic approach was first introduced by Frieden and Alberty (1955), yet
has received little attention. By reanalyzing legacy data from a variety of sources of kinetic
data on citrate synthase, for example, we are able to show that data used to support the
consensus model of the mechanism for this enzyme (random bi-bi mechanism) are all
consistent with the compulsory-order ternary-complex mechanism and not consistent with the
random bi-bi model (Beard et al., 2008).

2.3. Multiple cation equilibria in solutions: Apparent equilibrium constant, buffering of
cations, and computing time courses of cations as a consequence of biochemical reaction
networks

Most metabolites in physiological milieu are anionic and bind to H+, Mg2+, K+, and Ca2+ ions
in rapid equilibrium. To compute the distribution of a metabolite into ion bound and unbound
species, we choose as a reference form the species with no dissociable protons or metal ions
in the pH range of 5–9 for physiological models. Based on this definition, the following steps
and calculations are needed to account for H+ and metal cation binding to metabolites, buffer
capacity and pH change, and the effects of these parameters on reaction equilibria.

1. Based on binding equilibria, the total concentration of a biochemical reactant is
defined in terms of its reference species concentration and the free concentrations of
ions and their binding affinities.

2. On the basis of the definition of reference and biochemical reactions, the reference
and apparent equilibrium constants of each biochemical reaction are computed. The
apparent equilibrium constant is a function of the reference equilibrium constant and
the binding polynomials of the reactants and the products. The apparent equilibrium
constant constrains the enzyme kinetic flux through the Haldane relationship.

3. The flux through each biochemical reaction is derived on the basis of a detailed
catalytic scheme. The reference reaction is balanced with respect to mass and charge
and has a reference proton stoichiometry.

4. The coupled differential equations for ion and biochemical reactant concentrations
are integrated to simulate the system dynamics.

2.3.1. Calculation of proton binding fraction for each metabolite using multiple
cation equilibria—A biochemical reactant in physiological milieu exists in different ion
bound species in rapid equilibrium. These ions include H+, Mg2+, K+, and other cations.
Multiple cation equilibria principles are used to describe the distribution of each biochemical
reactant in various ion bound species. For example, the reactant phosphocreatine (PCr) will
exist in the following forms:

(2.7)

Each ion bound species is in turn computed in terms of an equilibrium relationship between
the most unbound form of the reactant and the metal ion that it binds to. Detailed examples are
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provided in Sections 2.4 and 2.5. Table 2.1 defines the conventions and nomenclature used in
our biochemical models.

In general, let [L] represent the concentration of unbound anionic form of biochemical reactant
L and [Ltotal] be its total concentration in all forms. The total concentration is expressed as

(2.8)

where [LHp] is L bound to p [H+] ions and Np is the highest number of protons that can bind
to L; [LMm] is L bound to the mth metal ion. The second term on the right refers to the sum of
the proton bound forms, and the third term refers to the sum of the metal bound forms. Any
number of cations can be included in this scheme if their dissociation constants are known for
a given reactant. For simplicity, we assume that at most only one metal ion of each type binds
to L. Note that the net charge on each of the species is not stated here for simplicity of notation,
but this quantity is equal to the sum of the charge of the reference species and the total charge
of the metal ions bound for each species. The concentration [LHp] is given by the equilibrium
relation:

(2.9)

where Ka,l is the dissociation constant for the reaction, [LHl] ⇌ [LHl − 1] + [H+] and

 at a given temperature and ionic strength.

For example, for phosphocreatine, .

The dissociation constants [usually expressed as pKa = −log10(Ka)] are obtained from sources
such as the NIST Database 46. Typically, these pK values must be recalculated for specific
temperature and ionic strength to be simulated. The following equation can be applied for the
temperature correction (Alberty, 2003):

(2.10)

where T1 is the temperature at which the pK was reported in the database, T2 is the temperature
at which pKaT2 is calculated, and R =8.314 JK−1 mol−1 is the universal gas constant.

The enthalpy of dissociation reactions is a function of ionic strength. The following empirical
equation (Alberty, 2003) gives ionic strength dependence of enthalpy at 298.15 K:

(2.11)
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The effects of ionic strength on pK can be approximated using the following empirical equation
(Alberty, 2003):

(2.12)

The numerical constants in Eqs. (2.11) and (2.12) are derived from Alberty’s fits to
experimental data from Clarke and Glew (1980) as described in Alberty (2003). In summary,
the pK at a given temperature and ionic strength is corrected for the desired ionic strength using
Eq. (2.12). A temperature-corrected value is then obtained from Eq. (2.10) in which the
dissociation enthalpy is first corrected for ionic strength using Eq. (2.11).

The concentration of each of the mth metal bound species [LMm] is given by

(2.13)

where KM,m is the dissociation constant for metal ion [Mm] binding to [L]. We assume in Eq.
(2.13) that each species binds at most one metal ion per molecule.

The concentration of bound protons due to each bound form [LHp] with p dissociable protons

is given by p[LHp]. The sum total of bound proton concentration is given by  for
the biochemical reactant L.

For example, for phosphocreatine, .

The average proton binding for biochemical reactant L is the ratio of bound proton
concentration to total concentration of L, which is given by

(2.14)

where PL is defined as the binding polynomial of L.
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(2.15)

For example, the binding polynomial for phosphocreatine would be written as

(2.16)

A similar expression can be written for average metal ion binding, where the numerator
contains metal ion binding equilibria instead of just proton binding equilibria. The number p
in Eqs. (2.8) and (2.14) denotes the number of dissociable protons bound in each proton bound
form of the metabolite L. Note that the product of [L] and PL gives [Ltotal] and that each term
the binding polynomial represents the ratio of the unbound, proton bound, and metal ion bound
forms of L to the unbound form of L.

2.3.2. Reference and biochemical reactions and the flux through an enzyme
catalyzed reaction—We define the reference species of the biochemical reactant as the most
deprotonated species in the pH range 5.5–8.5, which are used to calculate the average proton

binding  for each biochemical reactant L. As an example the creatine kinase reaction is
shown here in terms of its reference species to illustrate this point:

(2.17)

The biochemical reaction associated with this reference reaction is defined in terms of sums
of species constituting each of the reactants and products:

(2.18)

The average proton generation stoichiometry, ΔrNH of the biochemical reaction, is the
difference between the average proton binding of the reactants and the products plus the proton
generation stoichiometry, n, of the reference reaction:

(2.19)

Defined in this way, n is an integer but ΔrNH is not because the first two terms on the right-
hand side of Eq. (2.19), which are sums of average proton binding of the reactants and the
products computed from Eq. (2.14), are nonintegers. Note that the first two terms on the right-
hand side of Eq. (2.19) go to zero at highly alkaline pH values. For a system of reactions we
define  and nk as the proton generation stoichiometries of the biochemical and reference
reactions, respectively, for the kth reaction.

The proton generation flux through a reaction is given by the product of the proton
stoichiometry for that reaction and the flux through the reaction. For a set of reactions in a
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system, the total proton generation flux is given by a summation of the individual proton fluxes
for all biochemical reactions:

(2.20)

where Jk is the flux through the kth biochemical reaction.

2.3.3. Apparent equilibrium constant and the Haldane constraint—Changes in the
apparent equilibrium constant due to pH and other cations will impact the reverse Vmax as
defined in the model by the Haldane relationship. The standard free energy of the kth reference
reaction is the difference between the free energies of formation of the products and the
reactants in that reaction:

(2.21)

The free energy of formation of each reference species is a function of ionic strength:

(2.22)

Since the reference reaction is balanced with respect to protons, the free energy of the reference
reaction, , is independent of pH and therefore a constant at a given ionic strength and
temperature.

The equilibrium constant of the reference reaction is given by

(2.23)

The apparent equilibrium constant of a biochemical reaction is defined in terms of the
metabolite concentrations at equilibrium [indicated by the subscript “eq” in Eq. (24)], which
are sums of their constituent species:

(2.24)

where nk is the proton stoichiometry of the reference reaction and P is the binding polynomial
for a biochemical reactant as defined in Eq. (2.15).

The standard free energy for a biochemical reaction is given by

(2.25)
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2.3.4. Ion mass balance and the differential equations for ion concentrations—
The differential equation for a particular ion concentration is derived from a statement of mass
conservation for that ion. For metal ions, the total concentration (bound plus free) concentration
is

(2.26)

where [ ] is the jth free metal ion concentration and [ ] is the metabolite bound
dissociable metal ion concentration.

The conservation equation for protons includes an additional term for covalently bound protons
in reference species:

(2.27)

where [ ] denotes the protons in reference species.

In a closed system, the total proton pool is constant ( ). Differentiating Eq. (2.27) for
proton conservation with respect to time, we get

(2.28)

The second term in Eq. (2.28) can be expanded by using the chain rule:

(2.29)

The third term is obtained from summation of the product of proton stoichiometry of each of
the reference reactions with the flux through the reaction (generation of free protons from the
reference pool diminishes the reference pool):

(2.30)

Using Eqs. (2.29) and (2.30) in Eq. (2.28) and transposing terms, we obtain the following
equation for d[H+]/dt:

(2.31)
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When hydrogen ion is transported into and out of the system, this equation becomes

(2.32)

where  is the flux of [H+] transport into the system.

Similarly, the rate of change of each metal ion [ ] is written as

(2.33)

For a total of Nj metal ions, Eq. (2.33) plus either Eq. (2.31) or Eq. (2.32) results in Nj + 1
coupled differential equations for the ion concentrations. Solving for the time derivatives, we
can obtain Nj + 1 differential equations for the ion concentration time derivatives that may be
numerically integrated simultaneously with the NL differential equations for the biochemical
reactants [Ltotal, i].

The set of differential equations for biochemical reactant Li is given by

(2.34)

where  is the stoichiometry of the ith metabolite in the kth reaction and Jk is the flux through
the kth reaction.

As an example, we apply these general equations to treat muscle cell cytoplasm. The cation
species in cardiac and skeletal muscle cell cytoplasm that significantly influence the kinetics
and apparent equilibrium constants of biochemical reactions are H+, Mg2+, and K+. The
Ca2+ ion is also an important second messenger for cellular processes whose concentration
changes by at least two orders of magnitude during rest and mechanical contraction (Guyton
and Hall, 2006). However, the contribution of Ca2+ to the binding polynomial of most
metabolites is much smaller when compared to that of H+, Mg2+, and K+. For each reactant in
the cytoplasm, the binding polynomial is

(2.35)
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where , and  are the binding constants for H+, Mg2+, and K+. Here we consider
only one binding reaction per ion per reactant. Following Eqs. (2.32) and (2.33), we can write
the differential equations for the H+, Mg2+, and K+ concentrations:

(2.36)

(2.37)

(2.38)

These equations can be solved as a system of linear equations for the derivatives of [H+],
[Mg2+], and [K+]. We now define the expressions for partial derivatives and buffering terms
based on the binding polynomial defined in Eq. (2.35):

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)
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(2.44)

(2.45)

(2.46)

(2.47)

The flux terms for H+, Mg2+, and K+ are

(2.48)

(2.49)

(2.50)

where Nr is the number of reactants, Nf is the number of reactions, nk is the stoichiometric
coefficient of the kth reaction, Jk is the flux of the kth reaction, and  is the transport
flux of [H+]([Mg2+], [K+]) into the system.

The buffering terms are

(2.51)
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(2.52)

(2.53)

The time derivatives of [H+], [Mg2+], and [K+] obtained from solving Eqs. (2.36), (2.37), and
(2.38) are given in terms of the buffering terms and the flux terms defined in the preceding
equations:

(2.54)

(2.55)

(2.56)

where

(2.57)

2.4. Multiple cation equilibria in solutions: Proton, magnesium, and potassium ion binding
in the creatine kinase reaction

The creatine kinase reaction catalyzes the phosphorylation of ADP by PCr to produce ATP
and creatine (Cr). At given pH and free Mg2+ and K+ concentrations, ATP, ADP, PCr, and Cr
are distributed as a mixture of different ion bound forms. In a solution with given total amounts
of ions and metabolites, the free ion concentrations are determined by the simultaneous binding
equilibria of the metabolites with the cations. Experimentally, total concentrations of
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metabolites and ions are measured in solution and the free ion concentrations are calculated
from ion mass balance equations derived from multiple cation equilibria. Lawson and Veech
(1979) determined experimentally the effect of Mg2+ and pH on the creatine kinase equilibrium
constant at 38 °C by starting with known quantities of either ATP and Cr or PCr and ADP and
adding the creatine kinase enzyme to let the reaction proceed to equilibrium. The free
magnesium ion concentration was calculated by subtracting total bound magnesium from total
magnesium ion concentration. Ionic strength was maintained at 0.25 M in these solutions by
the addition of almost 250 mM of KCl. From the observed equilibrium constants and theoretical
calculations, they calculated the creatine kinase apparent equilibrium constant at pH 7, 1
mM Mg2+, and 0.25 M ionic strength to be 166. This is the number that is often used as the in
vivo creatine kinase equilibrium constant. However, they did not take potassium binding into
account, which was later shown to be comparable to magnesium binding to ATP at
physiological concentrations of the potassium ion by Kushmerick (1997). The consequence of
not accounting for potassium binding is the underestimation of free magnesium concentration.
The ionic strength of I = 0.25 M used in these experiments is also very high when compared
to values computed from the ionic composition of myoplasm. Godt and Maughan (1988)
estimated I = 0.18 M for frog myoplasm. Teague and Dobson (1992) studied the effect of
temperature on creatine kinase equilibrium experiment under similar conditions as in the
Lawson and Veech (1979) study, but varied the temperature. From binding polynomials of
metabolites, the reference equilibrium constant was computed at different temperatures. The
slope of the plot of log of apparent equilibrium constant versus 1/T was used to estimate the
reaction enthalpy from the van’t Hoff relationship. Subsequent computations of the creatine
kinase equilibrium as a function of temperature, Mg2+, and ionic strength (Golding et al.,
1995; Teague et al., 1996) were based on Teague and Dobson (1992) data. Vinnakota (2006)
reinterpreted data of Teague and Dobson (1992) with potassium binding in addition to
magnesium and proton binding and obtained the values of equilibrium constant and the
enthalpy change of the reference reaction.

The reference reaction for the creatine kinase reaction is written in terms of its most
deprotonated species in the physiological pH range:

(2.58)

The biochemical reaction is written in terms of sums of species as they exist in solution
governed by their individual equilibria with protons, magnesium, and potassium ions:

(2.59)

Table 2.2 lists the binding reactions, pK values, and dissociation enthalpies for each metabolite
in the experimental system of Teague and Dobson (1992).

The concentrations of free magnesium and potassium ions are calculated by solving ion mass
conservation relation equations at a given pH:

(2.60)
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(2.61)

At each temperature, Teague and Dobson’s (1992) data give the final equilibrium composition
in terms of total Mg2+ and K+ concentrations, total ATP, ATP, PCr and Cr concentrations, and
the final pH. We treat the measured final pH as the negative logarithm of [H+] activity
(−log10(γ[H+])) and compute the [H+] concentration and pH as −log10([H+]) using an
approximate activity coefficient γ calculated from the extended Debye-Huckel equation
(Alberty, 2003). Phosphate was added to the medium as one of the buffers. Therefore,
phosphate binding to ions is accounted in the overall ion mass balance.

The apparent equilibrium constant of the creatine kinase reaction is given by

(2.62)

Each species of a metabolite can be expressed in terms of the most unbound species through
ionic equilibrium relationships defined by binding reactions in Table 2.2. For example,
ATP4− is given by

(2.63)

The denominator of the RHS of Eq. (2.63) is known as the binding polynomial (PATP) for ATP:

(2.64)

Therefore, [ATP]eq = [ATP4−]eq PATP. Similarly, other metabolite concentrations can be
expressed in terms of their most unbound forms and binding polynomials. From Eqs. (2.62),
(2.63), and (2.64), the apparent equilibrium constant of creatine kinase reaction can be
expressed as

(2.65)

Binding equilibria were corrected to experimental ionic strength and temperature using the
methods described in Section 2.3.1. These constants are also corrected to experimental
temperatures using the van’t Hoff relationship. We analyzed the equilibrium compositions of
solutions in Teague and Dobson’s study to compute the reference equilibrium constant of
creatine kinase plotted as a function of 1/T in Fig. 2.1. From our analysis, we estimate the

equilibrium constant of the reference reaction, , to be 9.82e8 at 298.15 K and 0.25 M ionic
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strength, whereas the value of this constant was estimated to be 3.77e8 by Teague and Dobson
(1992). From the slope of the plot in Fig. 2.1, we estimate the enthalpy of the reference reaction
to be −17.02 ± 3.32 kJ/mol as opposed to the estimate of −16.73 kJ/mol by Teague and Dobson
(1992).

After estimating the , we then compute the apparent equilibrium constant of the creatine
kinase reaction as a function of pH at physiological conditions found in muscle, that is, 310.15
K, 0.18 M ionic strength, 1 mM free magnesium (Konishi, 1998), and 140 mM free potassium
(Kushmerick, 1997)(Fig. 2.2). At pH 7 the apparent equilibrium constant under physiological
conditions is 166.2. This is very close to the previous estimates of 166 by Lawson and Veech
(1979) and Teague and Dobson (1992) at −log10(γ[H+]) = 7 under unphysiological
experimental conditions at a high potassium concentration and a high ionic strength. Errors in
the analyses by Lawson and Veech (1979) and Teague and Dobson (1992)(ignoring potassium
binding and underestimating free magnesium ion concentration and the effect of high ionic
strength) tended to cancel out, resulting in an estimate of  at −log10(γ[H+]) = 7 similar to
ours at pH 7. Under the experimental conditions of the previous studies (Lawson and Veech,
1979; Teague and Dobson, 1992), that is, 0.25 M ionic strength and 250 mM K+ concentration,
we compute the apparent equilibrium constant at pH 7 to be 99.3, which is very low compared
to the physiological value.

2.5. Example of detailed kinetics of a biochemical reaction: Citrate synthase
Here we present details of modeling a single-reaction system—citrate synthase—applying the
principles detailed in the preceding sections. The biochemical reaction is

(2.66)

If we denote the flux of this reaction as a function of reactant concentrations by the variable
J, then the concentration kinetics of the reactants is governed by the differential equation:

(2.67)

What remains is to impose an appropriate mathematical expression for J that effectively models
the kinetics of the reaction in Eq. (2.66). Such expressions are the domain of enzyme kinetics,
in which mechanisms are proposed and data are fit to obtain estimates of associated parameters.
In searching the literature, we are likely to discover that the existing kinetic models for the
enzyme are parameterized from in vitro experiments conducted at nonphysiological pH, ionic
strength, and [Mg2+]. Furthermore, the given mechanism will either violate the Haldane
constraint or, if it does not, obey the constraint with a value of the apparent equilibrium constant
that matches the nonphysiological conditions of the in vitro assay. Accounting and correcting
for these facts require treating the detailed biochemical thermodynamics of the reaction system.

To do this we, define reactions in terms of the reference stoichiometry, which in contrast to
the biochemical reaction of Eq. (2.66) conserves mass (in terms of elements) and charge:

(2.68)
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Reference species associated with reactants in Eq. (2.66) are listed in Table 2.3. A
thermodynamically balanced model for the kinetics of this reaction relies on a calculation of
the thermodynamic properties of the reaction. Using data in Table 2.3, the thermodynamic
properties are computed:

(2.69)

(2.70)

where  is the apparent equilibrium constant for the reaction of Eq. (2.66). In other words,
in chemical equilibrium , where these
concentrations correspond to sums over all species associated with each reactant. The binding
polynomials in Eq. (2.71) depend on pH and binding ion concentration through the following
relationships:

(2.71)

Setting pH = 7, [K+] = 150 mM, and [Mg2+] = 1 mM, we obtain the apparent thermodynamic
properties:

(2.72)

The relationships between the reference species concentrations and the reactant concentrations
are

(2.73)

The computed species concentrations and thermodynamic values are used in the kinetic model
of this enzyme.

The enzyme kinetic flux, which is based on a compulsory-order ternary-complex mechanism,
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(2.74)

where E denotes the enzyme and is tested and parameterized against experimental data in Beard
et al. (2008). In addition to treating the enzyme kinetic mechanism explicitly in terms of
biochemical species, the Beard et al. (2008) model also accounts for pH dependence of enzyme
activity by treating the enzyme as a monobasic acid with the unbound form of the enzyme as
the active form. The following expression for Vmax as a function of [H+] concentration accounts
for the pH dependence of enzyme activity:

(2.75)

where  is the maximum enzyme velocity attained when all of the enzyme is unbound and
KiH is the proton dissociation constant.

3. Application to Physiological Systems
3.1. pH dynamics and glycogenolysis in cell free reconstituted systems and in skeletal
muscle

Intracellular pH is an important physiological variable that is regulated within a narrow range.
The preceding sections showed that pH significantly affects enzyme activities and apparent
equilibrium constants of biochemical reactions. These in turn may influence the energetic state
of muscle and the metabolic fluxes. Computational models of biochemical pathways with the
capability to predict the metabolic proton load and the consequent changes in muscle pH are
useful tools for investigating pH regulation during physiological situations such as exercise
and pathological conditions such as ischemia/reperfusion. The models of glycogenolysis
developed by Vinnakota (2006) and Vinnakota et al. (2006) compute the metabolic proton load
due to glycogenolysis in isolated cell free reconstituted systems and in intact mouse skeletal
muscle during anoxia/reperfusion. Vinnakota et al. (2006) considered H+, Mg2+, and K+ ion
binding to the metabolites in the pathways modeled. However, the K+ concentration was kept
constant because of its low relative change during the transients modeled.

Scopes (1974) simulated postmortem glycogenolysis in a reconstituted system with rabbit and
porcine enzymes from the glycogenolysis pathway, breaking down glycogen into lactate.
ATPase and AMPdeaminase were added to this system with an initial concentration of PCr at
24 mM and an initial pH of 7.25. Figures 2.3 and 2.4 show pH time course data and model
simulation and the computed proton generation fluxes due to biochemical reactions from the
study of Vinnakota et al. (2006). The pH time course shows a slight initial rise in pH and
thereafter a nearly linear decline until a final pH is reached near 5.5 at 190 min that continues
until 300 min. The proton fluxes due to CK, ATPase, glycogenolysis, and AMP deaminase are
plotted along with the sum total of all fluxes in Fig. 2.4. These fluxes identify the role of each
biochemical reaction in shaping the pH transient. The creatine kinase flux initially consumes
protons, which explains the initial rise in pH. The sum of proton fluxes due to the ATPase
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reaction and the glycogenolysis pathway has a flat time course, which explains the nearly linear
decline of pH from 20 to 190 min. However, the important features that emerge from these
computations are that (1) the ATPase proton flux is acidifying in the physiological pH range
7.2—6.8 and (2) the contribution of proton fluxes from the glycogenolysis pathway is relatively
small during this pH range. The sharp decline in glycogenolysis at the end is due to a reduction
in glycogen and a degradation of the adenine nucleotide pool. In summary, near-normal resting
pH ATP hydrolysis is the source of metabolic acid load during anaerobic glycogenolysis.
However, it is important to note that proton stoichiometries of biochemical reactions are
variable with pH, which means that ATP hydrolysis is not always acidifying and that the
combined proton stoichiometry of all biochemical reactions in the pathway breaking down
glycogen into lactate is not always slightly alkalinizing at all pH values. These results are
important for computing metabolic acid load during ischemia and anoxia in cardiac and skeletal
muscle, where oxidative ATP generation is impaired, and the creatine kinase and the ATP
generation from glycogenolysis work toward maintaining energy balance. Calculations
following the principles outlined here provide mechanistic and accurate answers to continued
discussions in the physiological literature on the source of protons in muscle glycogenolysis
and glycolysis.

3.2. Cardiac energetics
The heart in healthy mammals is a highly oxidative organ in which normal function is tightly
coupled with energetic state, which is maintained by a continuous supply of substrates to fuel
energy metabolism (Katz, 2006). When under stresses or disease, such as ischemia or chronic
heart failure, impaired cardiac function is associated with the altered energetic state of the heart
(Ingwall and Weiss, 2004; Stanley et al., 2005; Zhang et al., 1993, 2001).

3.2.1. The gibbs free energy of ATP hydrolysis in the heart—The Gibbs free energy
of ATP hydrolysis reaction, ΔrGATPase, represents an effective marker of the cardiac energetic
state. Based on the chemical reference reaction of the ATP hydrolysis,

(2.76)

the standard Gibbs free energy of ATP hydrolysis, , can be calculated from Eq. (2.3)
as

(2.77)

with the corresponding equilibrium constant

(2.78)

For the biochemical reaction of ATP hydrolysis,

(2.79)
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the transformed equilibrium constant and standard Gibbs free energy can be calculated as

(2.80)

and

(2.81)

where PATP, PADP, and PPI are the binding polynomials as functions of ionic concentrations
(e.g., [H+], [Mg2+], and [K+]) and ΔrGATPase is obtained from the definition stated in Eq. (2.2),

(2.82)

3.2.2. Calculations of  and ΔGATPase in the heart in vivo—Cardiomyocytes
contain multiple subcellular organelles (Katz, 2006), including myofibrils, mitochondria,
sarcoplasmic reticulum, and nuclei, among which myofibrils and mitochondria occupy the
largest fractions of intracellular volume (Vinnakota and Bassingthwaighte, 2004 ). Most
metabolites and ions require specific protein carriers to traverse the inner mitochondrial
membrane (LaNoue and Schoolwerth, 1979; Nelson and Cox, 2005), which constitutes a
compartment. To account for this compartmentation, we divide the cellular volume of
cardiomyocytes into cytoplasm and mitochondria, where the local concentrations of
metabolites drive local biochemical reactions. The free energies for a biochemical reaction are
generally different in different intracellular compartments (Gibbs, 1978). Since most of the
most energy-consuming processes coupled to ATP hydrolysis, such as mechanical contraction
due to myosin ATPase, calcium handling, and maintenance of ion gradients across the
sarcolemma, are located in the cytoplasm, the cytoplasmic ΔrGATPase provides the driving
force for normal cardiac function (Gibbs, 1985).

Under the physiological conditions with assumed temperature T = 310.15 K, ionic strength I
= 0.17 M, pHc = 7.1, [Mg2+]c = 1 mM, and [K+]c = 130 mM, we are able to compute

 in the cytoplasm of the cardiomyocytes based on thermodynamic
data listed in Table 2.2. Here the subscript “c” denotes cytoplasm. A more detailed process for
estimating  is given later.

3.2.3. Example 1: Calculating cytoplasmic  in the heart under in vivo
physiological conditions—Step 1: Based on basic thermodynamic data and computational
algorithm presented elsewhere (Alberty, 2003; Beard and Qian, 2007; Golding et al., 1995;

Teague et al., 1996),  under the physiological conditions (T = 310.15 K and I = 0.17
M ) is calculated to be 1.16 − 10−1.

Step 2: Using the binding constants presented in Table 2.2, we can calculate the binding
polynomials under the environmental conditions and cytoplasmic ion concentrations to be
PADP = 2.82, PPI = 1.58, and PATP = 9.28, respectively.

Vinnakota et al. Page 22

Methods Enzymol. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Step 3: From Eq. (2.80),

(2.83)

Step 4: From Eq. (2.81),

(2.84)

3.2.4. Example 2: Calculating Δr GATPase at basal work rate in the heart in vivo
—The values of basal [ATP]c, [ADP]c, and [PI]c are 9.67 × 10−3, 4.20 × 10−5, and 2.90 ×
10−4 M, respectively, as reported previously (Wu et al., 2008). Thus,

(2.85)

[Note that in Wu et al.2008 this value was reported as −70.0 kJ mol −1 because  was
computed based on slightly different dissociation constants.] A previous computational
analysis (Wu et al., 2008) showed that ΔrGATPase changes from −70 kJ mol−1 at the basal work
rate to −64 kJ mol−1 at the maximal work rate in the normal dog heart in vivo, which means
that the threefold of work increase results in an increase of around 2.5 RT in ΔrGATPase. The
values of ΔrGATPase over the threefold increase of workload are calculated by assuming pHc,
[Mg2+]c, and [K+]c fixed at the basal values.

3.2.5. Effects of changes in ion concentrations on Δr G′o of biochemical
reactions in the mitochondrial matrix—The preceding sections showed that the standard
free energy of a biochemical reaction is a function of the binding polynomials of the
biochemical reactants and is therefore dependent on free ion concentrations. In the
mitochondrial matrix, the temporal changes in free ion concentrations are determined by ion
transport fluxes across the mitochondrial inner membrane and the ion fluxes are due to
biochemical reactions. The differential equations for the time derivatives of ion concentrations
derived based on the principles and methods described in the preceding sections are presented
in detail elsewhere (Beard and Qian, 2007; Vinnakota, 2006). Figure 2.5 shows the changes in
ion concentrations in the mitochondrial matrix (A) and the resulting changes in standard free
energies of selected biochemical reactions (B). In Fig. 2.5A, steady-state values of
[H+]matrix, [Mg2+]matrix, and [K+]matrix are plotted against an increased in vivo cardiac work
rate, that is, oxygen consumption rate (MVO2). As MVO2 increases from its baseline workload
value [3.5 μmol min−1 (g tissue)−1] to its maximal workload value [10.7 μmol min−1 (g
tissue)−1], [H+]matrix increases from 5.77 × 10−7 to 6.12 × 10−8 M, [Mg2+]matrix decreases from
1.18 to 0.80 × 10−3 M, and [K+]matrix increases from 9.45 × 10−2 to 1.00 × 10−1 M, respectively.
Since the K+/H+ antiporter on the inner mitochondrial membrane is operated near equilibrium
in the computational model (Wu et al., 2007b), the increase of [K+]matrix is almost linearly
proportional to that of [H+]matrix. Figure 2.5B shows that changes in [H+]matrix, [Mg2+]matrix,
and [K+]matrix impact the values of Δr G′o of mitochondrial ATP hydrolysis (ATPase), α-
ketoglutarate dehydrogenase (AKGD), and citrate synthase (CITS) differently over the range
of the in vivo work rate. When the workload is elevated from the baseline value to the maximal
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value,  decreases from 20.70 to 19.77,  decreases from 15.47 to
15.42, and  decreases from 20.46 to 20.15.  changes the most by around
1 RT unit (i.e., 2.58 kJ mol−1), which means that the apparent equilibrium constant of the
mitochondrial ATP hydrolysis varies around threefold. For a biochemical reaction operating
near equilibrium, the ratio of forward and reverse reaction fluxes is closely coupled to changes
in the apparent equilibrium constants via the mass action law (Beard and Qian, 2007). Equation
(81) shows that a small change in  results in a large change in  due to
exponentiation. For example, the reaction catalyzed by aconitase in the citric acid cycle, which
converts citrate into isocitrate, is maintained near equilibrium under physiological conditions
(Wu et al., 2007b) with  at the baseline work rate and

 at the maximal work rate. The decrease of  by 0.43 kJ mol−1

leads to the increase of corresponding  by about 18 %.

3.3. Physiological significance of multiple ion binding equilibria, reaction kinetics, and
thermodynamics in cardiac energetics

The advantages of accounting for multiple ion binding equilibria, reaction kinetics, and
thermodynamics are demonstrated in recent cardiac energetics studies by Wu et al. (2007b,
2008). As shown in Wu et al. (2007b), the enzyme mechanisms are presented in terms of
chemical species, Δr G′o of the biochemical reactions are computed by explicitly accounting
for effects of ion concentrations, and the corresponding apparent equilibrium constants are
used to establish the Haldane constraints for modeling the enzyme kinetics. Accurate
estimation of the free energy of ATP hydrolysis is important for determining the energetic state
of the heart under various conditions.

The application of the methodologies explained in this chapter in a detailed computational
model of cardiac energetics (Wu et al., 2008) has resulted in the first estimates of free energy
of ATP hydrolysis in the heart in vivo at rest and during increased workloads that account for
intracellular compartmentation. The capability of the heart to maintain its “energy
homeostasis” in a wide range of cardiac workloads has been a puzzle since the mid-1980s
(Balaban et al., 1986). The 31P magnetic resonance spectroscopy (31P-MRS) technique has
been applied widely and successfully as a noninvasive technique in studying in vivo cardiac
energetics, albeit with difficulties in detecting subcellular concentrations of chemical species
and low concentrations of phosphate metabolites, such as ADP and resting Pi. Because of these
limitations, the 31P-MRS experimental observations may not provide quantitative
measurement on concentration changes of certain metabolites (e.g., cytosolic [Pi]) and may
lead to an inaccurate estimation of energy states in the heart in vivo. Thus, it is necessary to
use a computational tool to unambiguously determine the concentrations and energetic states
based on the experimental observations. Also, modeling reveals details of the underlying
mechanisms that are not amenable to direct experimental observation and quantification.

The model of Wu et al. (2008) predicts significant changes in cytosolic [Pi] from the basal
work rate to the maximal work rate and leads to two novel conclusions that will be contentious
and inspire more thinking and experimenting. The first conclusion is that oxidative
phosphorylation is controlled by Pi feedback in the heart in vivo; the second conclusion is that
decreased ATP hydrolysis potential—caused by increased cytoplasmic Pi and ADP
concentrations—limits ATP utilization rates at a high workload and during ischemia. These
two hypotheses are supported by agreement between the model predictions and experimental
observations on independent experimental data on transient changes and steady states in
ischemic heart in vivo (Wu et al., 2008).
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4. Discussion
4.1. Integrating thermodynamic information in biochemical model building

We have described the methods for accounting for detailed thermodynamics in kinetic
simulations of biochemical systems. These methods are crucial for a number of applications,
including identifying and parameterizing catalytic mechanisms for enzymes based on in
vitro data and translating from in vitro experiments to predicting in vivo function of enzymes.
In addition, in analyzing ex vivo data (such as from purified mitochondria) or simulating
extreme in vivo states (such as ischemia/hypoxia), even normally irreversible reactions
approach or go to equilibrium. Thus it is always important to accurately account for
thermodynamics.

Studies of specific enzymes and transporters (Beard et al., 2008; Dash and Beard, 2008; Qi et
al., 2008) have shown that raw data in the literature are very useful because they are consistent
and may be explained with consensus mechanistic models. However, the kinetic parameters
originally reported based on those raw data are not always consistent. By reanalyzing raw data
from several kinetic studies for enzymes and transporters, we have been able to show that data
introduced to support competing hypotheses (different mechanisms) are actually consistent
with one consensus mechanism for each enzyme or transporter, and obtain associated kinetic
parameter estimates. In general, it is necessary to reanalyze reported data and determine a
mechanism (or mechanisms) and associated parameter estimates that account for biochemical
state and the kinetic data for each enzyme and transporter.

4.2. Databases of biochemical information
Simulation of large-scale systems will require the development of databases of kinetic and
thermochemical data from which models can be assembled. Recently developed models of
glycolysis (Vinnakota, 2006; Vinnakota et al., 2006) and mitochondrial energetics (Wu et
al., 2007a, b, 2008) have been built in part based on thermodynamic data complied by Alberty
(2003). Analysis and simulation of larger scale systems will require extending Alberty’s
thermodynamic database for species and reactions not currently included and developing and
parameterizing mechanistic models for large numbers of enzymes and metabolite transporters.

In addition to data on thermodynamic constants, databases of kinetic mechanisms and
parameters are needed. For many enzymes, detailed mechanistic models have been previously
developed based on kinetic measurements made using purified enzymes in vitro. However, in
nearly all cases much work remains to adapt and extend these mechanistic models to account
for the biochemical state (pH, ionic strength, etc.) so that each enzyme model may be
incorporated into an integrated system model in a rigorous way. Therefore, it will be necessary
to collect kinetic mechanisms and associated parameters.

A number of databases on enzyme kinetics currently exist, with BRENDA
(www.brenda.uni-koeln.de) being perhaps the most widely recognized. BRENDA is a
clearinghouse of a vast amount of information on enzymes, including estimates of functional
parameters (i.e., apparent kinetic constants) and pointers to the primary literature. A recent
effort called System for the Analysis of Biochemical Pathways (SABIO-RK, sabio. villa-
bosch.de) aims to collect kinetic models and data from the literature. While these tools are
useful, much more focused and specialized tools are needed as well. Along these lines we have
begun construction of a Biological Components Databank (www.biocoda.org) to provide an
online clearinghouse of mechanistic models of functional biological components to use as
building blocks to construct computational models of biological systems. Here, rather than
compiling the reported estimates of kinetic constants obtained from the original sources, we
are reanalyzing reported data and determining mechanisms and associated parameter estimates
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for a number of enzymes and transporters. As pilot studies, we have gone through this process
for several components.

Our goal is to build a data bank where each entry meets detailed validation and mechanistic
standards. However, it is important to realize that it is unavoidable that each entry will pose a
unique challenge, requiring a critical assessment of the literature and an expert analysis of data.
Therefore, building this data bank will be a huge effort, requiring widespread collaboration
within the community. Information on how to contribute to the data bank can be found on the
Web site.
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Figure 2.1.
lnKref of creatine kinase reaction vs 1/T. −R times the slope of this plot gives the enthalpy of
the reference reaction.
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Figure 2.2.
Apparent equilibrium constant of creatine kinase reaction as a function of pH at 310 K, 1
mM free magnesium, and two different ionic strength and potassium concentrations: I = 0.18
M, K+ = 140 mM; I = 0.25 M, K+ = 250 mM.
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Figure 2.3.
pH transient during simulated postmortem glycogenolysis and model-derived proton fluxes.
Reproduced from Vinnakota et al. (2006) with permission.

Vinnakota et al. Page 31

Methods Enzymol. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.4.
Proton generation fluxes during simulated postmortem glycogenolysis in a cell free
reconstituted system. Reproduced from Vinnakota et al. (2006) with permission.
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Figure 2.5.
Model-predicted steady-state cation concentrations in the mitochondrial matrix and
corresponding  of ATP hydrolysis, AKGD, and CITS at various work rates in the heart
in vivo. (A) Changes in [H+]x, [Mg2+]x, and [K+]x, where subscript “x” denotes the

mitochondrial matrix. (B) Changes in  of ATP hydrolysis (ATPase), AKGD, and CITS.

Vinnakota et al. Page 33

Methods Enzymol. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Vinnakota et al. Page 34

Table 2.1
Terminology

Symbol Definition Unit

I Ionic strength M

Ka,l Dissociation constant for the lth protonation reaction M

pKal −log10 (Ka,l/c0) Dimensionless

KM,m Dissociation constant for metabolite binding to metal M M

pKaM,m −log10 (KM,m/c0) Dimensionless

c0 Reference concentration for all species (1 M) M

Pi Binding polynomial for ith metabolite Dimensionless

N̄ H
i Average proton binding of ith metabolite at specified T, P, pH, pMg, and I Dimensionless, noninteger

nk Proton generation stoichiometry of the kth reference reaction Dimensionless

ΔrNH
k Proton generation stoichiometry of the kth biochemical reaction at specified T, P, pH, pMg, and I Dimensionless, noninteger

NH(j) Number of H atoms in species j Dimensionless, integer

zj Charge on species j Dimensionless, integer

Δ f G j
0(I = 0)

Gibbs energy of formation at zero ionic strength of species j kJ/mol

v j
k Stoichiometric coefficient of species j in the kth reference reaction

Kref
k Equilibrium constant of kth reference reaction Dimensionless

ΔrGk
0 Standard free energy of kth reference reaction kJ/mol

Kapp
k Apparent equilibrium constant of kth biochemical reaction Dimensionless

ΔrG ′
k
0 Standard free energy of kth biochemical reaction kJ/mol

ΔrGk Free energy span of kth biochemical reaction kJ/mol

ΔrH j
0 Standard Enthalpy of jth proton dissociation reaction at a given ionic strength kJ/mol

Jr
k Flux through reaction kth biochemical reaction M/min

[Li] Concentration of biochemical reactant i M
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Table 2.2
Binding reactions and equilibrium constants

Metabolite Binding reaction pK (T = 298.15K, I = 0.1) ΔH (I = 0) kJ/mol

ATP HATP3− ⇋ ATP4− + H+ 6.48 −5

MgATP2− ⇋ ATP4− + Mg2+ 4.19 −18

MgHATP2− ⇋ HATP3− + Mg2+ 2.32 —

Mg2ATP ⇋ MgATP2− + Mg2+ 1.7 —

KATP3− ⇋ ATP4− + K+ 1.17 −1

ADP HADP2− ⇋ ADP3− + H+ 6.38 −3

MgADP− ⇋ ADP3− + Mg2+ 3.25 −15

Mg2ADP+ ⇋ MgADP− + Mg2+ 1 —

KADP2− ⇋ ADP3− + K+ 1 —

PCr H2PCr− ⇋ HPCr2− + H+ 4.5 2.66

MgHPCr ⇋ HPCr2− + Mg2+ 1.6 8.19

KHPCr− ⇋ HPCr2− + K+ 0.31 —

Cr H2Cr+ ⇋ HCr + H+ 2.3 —

Pi H2Pi− ⇋ HPi2− + H+ 6.75 3

MgHPi ⇋ HPi2− + Mg2+ 1.65 −12

MgH2Pi+ ⇋ H2Pi− + Mg2+ 1.19 —

KHPi− ⇋ HPi2− + K+ 0.5 —
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Table 2.3
Reactants, reference species, Gibbs free energy of formation, and binding constants for Eqs. (2.66) and (2.76) (298.15
K, 1 M reactants, I = 0.17 M, P = 1 atm)

Reactant Reference species ΔfG
o (kJ/mol) Ion bound species pKa

Water H2O −235.74 — —

Oxaloacete OAA2− −794.41 MgOAA0 0.8629b

Acetyl-co- enzyme A ACCOA0 −178.19 — —

Citrate CIT3− −1165.59 HCIT2− 5.63

MgCIT− 3.37b

KCIT2− 0.339b

Coenzyme A COAS− −0.72 COASH0 8.13

Adenosine triphosphate (ATP) ATP4− −2771.00 HATP3− 6.59

MgATP2− 3.82

KATP3− 1.01

Adenosine diphosphate (ADP) ADP3− −1903.96 HADP2− 6.42

MgADP− 2.79

KADP2− 0.882

Inorganic phosphate (Pi) HPO4
2− −1098.27 H2PO4

− 6.71

MgHPO4
0 1.69

KHPO4
− −0.0074

a
All values from Alberty (2003) unless otherwise noted.

b
NIST Database 46: Critical Stability Constants.
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