
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Enhanced protein fold recognition through a novel data integration
approach
Yiming Ying*1, Kaizhu Huang2 and Colin Campbell1

Address: 1Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1TR, UK and 2National Laboratory of Pattern Recognition,
Institute of Automation, The Chinese Academy of Sciences, 100190 Beijing, PR China

Email: Yiming Ying* - mathying@gmail.com; Kaizhu Huang - kzhuang@nlpr.ia.ac.cn; Colin Campbell - C.Campbell@bris.ac.uk

* Corresponding author

Abstract
Background: Protein fold recognition is a key step in protein three-dimensional (3D) structure
discovery. There are multiple fold discriminatory data sources which use physicochemical and
structural properties as well as further data sources derived from local sequence alignments. This
raises the issue of finding the most efficient method for combining these different informative data
sources and exploring their relative significance for protein fold classification. Kernel methods have
been extensively used for biological data analysis. They can incorporate separate fold
discriminatory features into kernel matrices which encode the similarity between samples in their
respective data sources.

Results: In this paper we consider the problem of integrating multiple data sources using a kernel-
based approach. We propose a novel information-theoretic approach based on a Kullback-Leibler
(KL) divergence between the output kernel matrix and the input kernel matrix so as to integrate
heterogeneous data sources. One of the most appealing properties of this approach is that it can
easily cope with multi-class classification and multi-task learning by an appropriate choice of the
output kernel matrix. Based on the position of the output and input kernel matrices in the KL-
divergence objective, there are two formulations which we respectively refer to as MKLdiv-dc and
MKLdiv-conv. We propose to efficiently solve MKLdiv-dc by a difference of convex (DC)
programming method and MKLdiv-conv by a projected gradient descent algorithm. The
effectiveness of the proposed approaches is evaluated on a benchmark dataset for protein fold
recognition and a yeast protein function prediction problem.

Conclusion: Our proposed methods MKLdiv-dc and MKLdiv-conv are able to achieve state-of-
the-art performance on the SCOP PDB-40D benchmark dataset for protein fold prediction and
provide useful insights into the relative significance of informative data sources. In particular,
MKLdiv-dc further improves the fold discrimination accuracy to 75.19% which is a more than 5%
improvement over competitive Bayesian probabilistic and SVM margin-based kernel learning
methods. Furthermore, we report a competitive performance on the yeast protein function
prediction problem.

Published: 26 August 2009

BMC Bioinformatics 2009, 10:267 doi:10.1186/1471-2105-10-267

Received: 16 April 2009
Accepted: 26 August 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/267

© 2009 Ying et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 18
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10/267
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19709406
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10:267 http://www.biomedcentral.com/1471-2105/10/267
Background
A huge number of protein coding sequences have been
generated by genome sequencing projects. In contrast,
there is a much slower increase in the number of known
three-dimensional (3D) protein structures. Determina-
tion of a protein's 3D structure is a formidable challenge
if there is no sequence similarity to proteins of known
structure and thus protein structure prediction remains a
core problem within computational biology.

Computational prediction of protein structure has
achieved significant successes [1,2]. Focusing on the fold
prediction problem of immediate interest to this paper,
one computational method known as the taxonomic
approach [3,4], presumes the number of folds is restricted
and focuses on structural predictions in the context of a
particular classification of 3D folds. Proteins are in a com-
mon fold if they share the same major secondary struc-
tures in the same arrangement and the same topological
connections [5,6]. In the taxonomic method for protein
fold classification, there are several fold discriminatory
data sources or groups of attributes available such as amino
acid composition, predicted secondary structure, and
selected structural and physicochemical properties of the
constituent amino acids. Previous methods for integrating
these heterogeneous data sources include simply merging
them together or combining trained classifiers over indi-
vidual data sources [3,4,7,8]. However, how to integrate
fold discriminatory data sources systematically and effi-
ciently, without resorting to ad hoc ensemble learning, still
remains a challenging problem.

Kernel methods [9,10] have been successfully used for
data fusion in biological applications. Kernel matrices
encode the similarity between data objects within a given
input space and these data objects can include graphs and
sequence strings in addition to real-valued or integer data.
Thus the problem of data integration is transformed into
the problem of learning the most appropriate combina-
tion of candidate kernel matrices, representing these het-
erogeneous data sources. The typical framework is to learn
a linear combination of candidate kernels. This is often
termed multiple kernel learning (MKL) in Machine Learn-
ing, and non-parametric group lasso in Statistics. Recent
trends in kernel learning are usually based on the margin
maximization criterion used by Support Vector Machines
(SVMs) or variants [11]. The popularity of SVM margin-
based kernel learning stems from its efficient optimiza-
tion formulations [11-14] and sound theoretical founda-
tion [11,15,16]. Other data integration methods include
the COSSO estimate for additive models [17], kernel dis-
criminant analysis [18], multi-label multiple kernel learn-
ing [19,20] and Bayesian probabilistic models [21,22].
These methods, in general, can combine multiple data
sources to enhance biological inference [21,23] and pro-

vide insights into the significance of the different data
sources used.

Following a different approach, in this paper we propose
an alternative criterion for kernel matrix learning and data
integration, which we will call MKLdiv. Specifically, we
propose an information-theoretic approach to learn a lin-
ear combination of kernel matrices, encoding informa-
tion from different data sources, through the use of a
Kullback-Leibler divergence [24-28] between two zero-
mean Gaussian distributions defined by the input matrix
and output matrix. The potential advantage of this
approach is that, by choosing different output matrices,
the method can be easily extended to different learning
tasks, such as multi-class classification and multi-task
learning. These are common tasks in biological data anal-
ysis.

To illustrate the method, we will focus on learning a linear
combination of candidate kernel matrices (heterogeneous
data sources) using the KL-divergence criterion with a
main application to the protein fold prediction problem.
There are two different formulations based on the relative
position of the input kernel matrix and the output kernel
matrix in the KL-divergence objective. For the first formu-
lation, although this approach involves a matrix determi-
nant term which is not convex in general, we elegantly
reformulate the learning task as a difference of convex
problem, which can be efficiently solved by a sequence of
convex optimizations. Hence we refer to it as MKLdiv-dc.
The second KL-divergence formulation for kernel integra-
tion, called MKLdiv-conv, is convex and can be solved by a
projected gradient descent algorithm. Experimental
results show that these formulations lead to state-of-the-
art prediction performance. In particular, MKLdiv-dc out-
performs the best reported performance on the important
task of protein fold recognition, for the benchmark data-
set used.

Methods
In the following we first revisit kernel learning approaches
based on SVMs [11] and kernel discriminant analysis [18].
Then, we introduce our novel information-theoretic
approach for data integration based on a KL-divergence
criterion. Finally we discuss how to solve the optimization
task efficiently. For brevity, we use the conventional nota-
tion �n = {1, 2, ..., n} for any n �.

Background and Related Work

Kernel methods are extensively used for biological data anal-

ysis. A symmetric function K : X × X � is called a kernel

function if it is positive semi-definite, by which we mean that,

for any n � and {xi X : i �n}, the Gram matrix
Page 2 of 18
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:267 http://www.biomedcentral.com/1471-2105/10/267
 is positive semi-definite. According to [29],

its corresponding reproducing kernel Hilbert space (RKHS),

usually denoted by K, can be defined to be the completion

of the linear span of the set of functions {Kx(·) := K(x, ·): x

 X} with inner product satisfying, for any x X and g K,

the reproducing property Kx, gK = g(x). By Mercer's theorem,

there exists a high dimensional (possible infinite) Hilbert

feature space with inner product ·,· and a feature map :

X such that K(x, t) = (x), (t), x, t X. Intuitively,

the kernel function K implicitly maps the data space X into a

high dimensional space, see [9,10] for more details.

Within the context of protein fold recognition, we have m
different fold discriminatory data sources where samples
across each data source can be represented by

 for �m and the outputs are denoted

by y = {yi : i �n}. For kernel methods, for any �m,

each -th data source can be encoded into a candidate ker-

nel matrix denoted by . Depending on

the different data sources used, the candidate kernel func-
tion K should be specified a priori by the practitioner. The

composite kernel matrix is given by

where { : �m} are real-valued kernel weights and typ-

ically they are restricted to be non-negative. In this con-
text, the problem of data integration is consequently
reduced to the problem of learning a convex combination
of candidate kernel matrices: more precisely learning the

kernel weights . Different optimization criteria over the
candidate kernels arise from the particular kernel learning
algorithm used. Cristianini et al. [30] proposed a kernel
learning approach which uses the cosine of the angle
between the two bi-dimensional vectors K and Ky repre-

senting the Gram matrices. This is achieved by maximiz-
ing the kernel alignment:

The above kernel learning formulation can be solved by a
semi-definite programming (SDP) approach (see Section
4.7 of [11]). However, an SDP formulation is computa-
tionally intensive.

Another widely used criterion for kernel learning is based
on the margin concept in SVMs and variants. Denoting the

simplex set as = {=(1,2,...,m): },

Lanckriet et al [11] proposed the following formulation for
kernel learning:

where 1n is a column vector of all ones, C is a trade-off
parameter, and t = (t1, t2, ..., tn) denotes the binary outputs
with ti {1, -1} being the class label for i-th instance. This
task was reformulated as a quadratically constrained
quadratic programming (QCQP) problem and later
improved by Sonnenburg et al. [14] who reformulated it
as a semi-infinite linear programming (SILP) task. Moreo-
ver, it was pointed out in [12,13,17,31] that this is equiv-
alent to the following sparse L1-regularization
formulation:

The L1-regularization term encourages the

sparsity [32] of RKHS-norm terms, and thus indicates the
relative importance of data sources. It was shown in [13]

that the standard L2-regularization is

equivalent to the use of uniformly weighted kernel

weights , i.e. for any �m. Recently, Ye et al.

[18] proposed an appealing kernel learning approach
based on regularized kernel discriminant analysis. This
can similarly be shown to be equivalent to a sparse L1-reg-
ularization formulation with a least square loss, see
Appendix 1 for more details.

Information-theoretic Data Integration

In this paper we adopt a novel information-theoretic
approach to learn the kernel combinatorial weights. The
main idea is to quantify the similarity between K and Ky

through a Kullback-Leibler (KL) divergence or relative
entropy term [24-28]. This approach is based on noting
that these kernel matrices encode the similarity of data
objects within their respective input and label data spaces.
Furthermore, there is a simple bijection between the set of
distance measures in these data spaces and the set of zero-
mean multivariate Gaussian distributions [25]. Using this

((,)) ,K x xi j i j n∈

x = ∈{ : }x ii n

K
 = ((,))K x xi j ij

K K = ∈∑ m

K K

K K K K

,

, ,
.

y

y y

 = ≥∈∑ 1 0,
m

min () min max{ () () : ,
λ λ λ λα α α α

∈ ∈
= − ≤ ≤

Δ Δ
Ω K 1 t K t® ®

n C
1
2

0diag diag annd α ®t = 0},

(1)

min (())
,f

i i K
i

K m
n n

C t f x f

∈ ∈

∈
+

∈∈

− +
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∑ ∑

1
1
2

2

nn

∑ .

(2)

f
Km

 ∈∑

|| ||f K
m

2
∈∑

 = 1
m

Page 3 of 18
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:267 http://www.biomedcentral.com/1471-2105/10/267
bijection, the difference between two distance measures,
parameterized by K and Ky, can be quantified by the rel-

ative entropy or Kullback-Leibler (KL) divergence between
the corresponding multivariate Gaussians. Matching ker-
nel matrices K and Ky can therefore be realized by mini-

mizing a KL divergence between these distributions and
we will exploit this approach below in the context of mul-
tiple kernel learning.

Kernel matrices are generally positive semi-definite and
thus can be regarded as the covariance matrices of Gaus-
sian distributions. As described in [24], the Kullback-Lei-
bler (KL) divergence (relative entropy) between a
Gaussian distribution (0, Ky) with the output covari-

ance matrix Ky and a Gaussian distribution (0, Kx) with

the input kernel covariance matrix Kx is:

where, for any square matrix B, the notation Tr(B) denotes
its trace. The a priori choice of the output matrix Ky will be

discussed later. Though KL ((0, Ky)|| (0, Kx)) is non-

convex w.r.t. Kx, it has a unique minimum at Kx = Ky if Ky

is positive definite, suggesting that minimizing the above
KL-divergence encourages Kx to approach Ky. If the input

kernel matrix Kx is represented by a linear combination of

m candidate kernel matrices, i.e. ,

the above KL-divergence based kernel learning is reduced
to the following formulation:

where In denotes the n × n identity matrix and> 0 is a
supplemented small parameter to avoid the singularity of
K.

Since the KL-divergence is not symmetric with respect to
Ky and K, another alternative approach to matching ker-
nel matrices is given by

where parameter > 0 is added to avoid the singularity of
Ky. If there is no positive semi-definiteness restriction over

K�, this formulation is a well-known convex maximum-
determinant problem [33] which is a more general formula-
tion than semi-definite programming (SDP), its imple-
mentation is computationally intensive, and thus cannot
be extended to large-scale problems according to [33].

However, formulation (5) has a special structure here:

is non-negative and all candidate kernel matrices are pos-
itive semi-definite. Hence, we can solve this problem by a
simple projected gradient descent method, see below for
more details.

The KL-divergence criterion for kernel integration was also
successfully used in [27,28] which formulated the prob-
lem of supervised network inference as a kernel matrix
completion problem. In terms of information geometry
[34], formulation (4) corresponds to finding the m-pro-
jection of Ky over an e-flat submanifold. The convex prob-
lem (5) can be regarded as finding the e-projection of Ky
over a m-flat submanifold. In [26], formulation (4) was
developed for learning an optimal linear combination of
diffusion kernels for biological networks. A gradient-
based method was employed in [26] to learn a proper lin-
ear combination of diffusion kernels. This optimization
method largely relies on the special property of all candi-
date diffusion kernel matrices enjoying the same eigenvec-
tors and the gradient-based learning method could be a
problem if we deal with general kernel matrices. In the
next section, we propose to solve the general kernel learn-
ing formulation (4) using a difference of convex optimi-
zation method.

The formulation (4) also has a close relation with Gaus-
sian Process regression [35]. A Gaussian process f can be
fully specified by giving the covariance matrix for any
finite set of zero-mean random variables f = {f(xi): i
�m}. The relation between the inputs x = {xi : i �n} and
outputs y = {yi : i �m} is realized by the latent variable f
as follows:

where In denotes the n × n identity matrix and the latent

random variable f = (f (x1, ..., f (xn))) is distributed as a

Gaussian process prior. The Gaussian process prior can be
fully specified by a kernel K with a random covariance

matrix associated with random sam-

ples x = {xi: i �n}. Specifically, it can be written as f|x

~ (f| 0, K). We assume a uniform distribution over , i.e.

KL Tr((,) || (,)) : () log | | log | | . 0 0
1
2

1
2

1
2 2

1K K K K K Ky x y x x y= + − −− n

(3)

K K Kx = = ∈∑ m

arg min ((,) || (,))

arg min ((

∈

∈ ∈
= +∑

Δ

Δ

KL

Tr

 0 0K K

K K I

y

y n
m

))) log ,−
∈

+ +∑1
K In

m

(4)

arg min ((,) || (,))

arg min (()

∈

∈ ∈
−= +∑

Δ

Δ

KL

Tr

 0 0K K

K I

y

y n
m

11K K I
) log ,− +

∈∑ n
m

(5)

y f x y f In| , ~ (| ,)

K = ∈((,)) ,K x xi j i j n

Page 4 of 18
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:267 http://www.biomedcentral.com/1471-2105/10/267
a Dirichlet prior distribution with 0 = 1.

If we let Ky = yyT in the objective function of formulation

(4), then one can easily check that, up to a constant term,
the objective function in formulation (4) is the negative of
the log likelihood of Gaussian process regression, and max-
imizing the log likelihood is equivalent to the minimiza-
tion problem (4).

Optimization Formulation
We now turn our attention to optimization approaches
for the KL-divergence based kernel learning formulations
(4) and (5). In particular, we show that formulation (5)
can be approached by a projected gradient descent
method and (4) can be solved by a difference of convex
algorithm (DCA) [36] which, for linear constraint condi-
tions, reduces to the special case of a concave convex pro-
cedure (CCCP) [37]. To this end, let

and

Theorem 1 Let functions g and f be defined by (6) and (7).
Then, both f and g are convex with respect to . Moreover,
problem (5) is convex and problem (4) is a difference of convex
problem, i.e.

Proof It suffices to prove the convexity of f and g. To this
end, from [38] we observe that functions – log |C| and
Tr(KyC−1) are convex with respect to positive semi-defi-
nite matrices C. Hence, f and g are convex with respect to
 . This completes the proof of the theorem.

For simplicity we refer to the KL-divergence kernel learn-
ing formulation (4) as MKLdiv-dc since it is a difference of
convex problem and refer to formulation (5) as MKLdiv-
conv since it is a convex problem.

Projected Gradient Descent Method for MKLdiv-conv
We propose a projected gradient descent (PGD) method
to solve problem (5). The idea of this method is to alter-
nately implement a gradient descent and then a projec-
tion to the feasible domain, see e.g. [39]. Recall the
derivative of the log determinant,(see e.g. the matrix cook-
book http://matrixcookbook.com/

With a little abuse of notation, we also denote by L
the objective function of problem (5). Consequently, its
gradient is given by

Then, at iteration step t the gradient descent step is real-
ized by

where > 0 is a prescribed step size. The projection of
to the feasible domain can be written as the following
quadratic programming problem

The theoretical convergence rate of the projected gradient

descent method is generally of complexity where

t is the iteration number and L is the Lipschitz constant of
the gradient function defined by (10), see e.g. [39]. Here,
the Lipschitz constant L is bounded by the largest eigen-

value of the Hessian H(L) = of the objec-

tive function defined, for any i, j �m, by

Since H is convex, the Hessian (L) is positive semi-definite
and thus

where ||·||Fro denotes the Frobenious norm of a matrix.
Hence, the projected gradient descent algorithm could
take longer time to become convergent if the value of is
very small.

 ~
0

1

1−

=∏m

g n

m

() : log = − +
∈
∑

K I

(6)

f n

m

() : (()). = +
∈

−∑Tr K K Iy

1
(7)

min () : () ().

∈

= −
Δ

 f g (8)

∂
∂

= − +
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

∈

−∑g

j
n j

m

()
() .

 Tr

K I K

1 (9)

∂
∂

= +
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−

∈

−∑()
() .

j

n j n j

m

Tr((+))-TrK I K K I Ky
1 1

(10)

 () () ()(),t t t= − ∇

() ()arg min .t t+

∈
= −1 2

Δ
(11)

O L
t()

((())) ij m∈

(()) :
()

(() ()
ij n i n j

i j
m

= ∂
∂

= + +−

∈

−∑

 Tr

K I K K I K1 1

 ∈∈
∑
m

).

L n n j
j m mm

≤ + +

=

∈
−

∈
−

∈∈ ∑ ∑∑sup (() ())

su

 Δ Tr
K I K K I K1 1

pp ||() ||

sup ||(

∈ ∈
−

∈

∈ ∈

+

≤ +

∑∑Δ

Δ

K I K

K I

n j
j

n

mm

1 2
Fro

mm mm
j j

jj
n∑ ∑∑ −

∈∈
≤) || || || || || / ,1 2 2 2 2

Fro Fro FroK K

(12)
Page 5 of 18
(page number not for citation purposes)

http://matrixcookbook.com/

BMC Bioinformatics 2009, 10:267 http://www.biomedcentral.com/1471-2105/10/267
Difference of Convex Algorithm for MKLdiv-dc
By Theorem 1, problem (4) is a difference of convex prob-
lem. We propose to solve this problem by a concave con-
vex procedure (CCCP) [36,37]. This procedure iteratively
solves the following convex problem:

where, for any j �m, the derivative of the log determi-
nant is given by equation (9). Before we continue the
main discussion, let us first note an interesting property of
CCCP. By the definition of (t+1), we know that

Since g is convex, we have that

Consequently,

which means that the objective value ((t)) monotonically
decreases with each iteration. Consequently, we can use
the relative change of the objective function as a stopping
criterion. Local convergence of the DCA algorithm is
proven in [36] (Lemma 3.6, Theorem 3.7). Tao and An
[36] state that the DCA often converges to the global solu-
tion. Overall, the DC programming approach to MKLdiv-
dc can be summarized as follows.

• Given a stopping threshold

• Initialize (1), e.g. for any � �m

• Given the solution (t) at step t, for step t + 1, first
compute ág((t)) by equation (9). Then, compute solu-
tion (t+1) of convex subproblem (13).

• Stop until the relative change

where is a stopping threshold

SILP Formulation for the Convex Subproblem (13)
We now turn to the solution of the convex subproblem
(13). To see this, first decompose the output matrix Ky
into the form Ky = AA>, e.g. by eigen-decomposition. Here,

A is an n × r matrix with r = rank(A) which always exists
since Ky is positive semi-definite. Hence, by introducing
an auxiliary matrix �n × r, we observe, for any positive
definite matrix C, that

Applying the above equality with ,

up to a constant, equation (13) is equivalent to the aug-
mented problem:

Equivalently, by the min-max theorem (see e.g. [38])

To solve the subproblem (15), we can formulate it as a
quadratically constrained quadratic programming
(QCQP) problem as in [11]. Here we formulate the prob-
lem in (15) as a semi-infinite linear programming (SILP)
problem [14,40] since SILP usually has better scalability
compared to QCQP. To see this, let

, and

. Then, letting

, we can rewrite (15) as a SILP problem:

In (16), there are an infinite number of constraints
(indexed by a), indicative of a semi-infinite linear program-
ming (SILP) problem. The SILP task can be solved by an
iterative column generation algorithm (or exchange
method) which is guaranteed to converge to a global opti-
mum. A brief description of the column generation
method is illustrated in Appedix 2.

Alternatively we could apply the projected gradient
descent (PGD) method in the above subsection directly to
the convex subproblem (13). However, the gradient func-
tion of its objective function involves the matrix

() () () ()arg min () () ()(),t t t tf g g+

∈
= − − ∇ −1

Δ

(13)

() () () () () ()(() () () () () () () () t t t t t t t tf g f g g= − = − − ∇ −))

min () () ()()

() ()

() () ()

() ()

≥ − − ∇ −

= − − ∇
∈
+

Δ f g g

f g

t t t

t t1 gg t t t()().() () () + −1

− − ∇ − ≥ −+ +g g gt t t t t() ()() ().() () () () () 1 1

 () () () () () (),() () () () () () t t t t t tf g f g= − ≥ − =+ + +1 1 1

(14)

()1 1= m

(()) (())

(())

t t

t
− +

+ ≤
1

1

max () () () ().
α

α α α2 1 1Tr Tr Tr Tr® ® ® ®A A A AA− = =− −C C C

C K I= +∈∑ n
m

min max () (()) () .()

λ α
α α λ σ α λ λ

∈
∈

− + − ∇∑Δ
2Tr Tr® ®A gn

t

m

K I

max min () (()) () .()

λ α
α α λ σ α λ λ

∈
∈

− + + + ∇∑Δ
2Tr Tr® ®A gn

t

m

K I

(15)

S K g t

() () (())α αα λ

λ= + ∂
∂Tr ®

S A0 2() () ()α α σ α α= − +Tr Tr® ®

γ α α λ σ α λ λα= − + + + ∇∈∑min () (()) ()()2Tr Tr® ®A gn
t

m
 K I

max

. . ,

() (),

,

s t

= ≥

− ≤ ∀

=

=

∑
∑

1 0
1

0
1

m

m
S S

(16)
Page 6 of 18
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:267 http://www.biomedcentral.com/1471-2105/10/267
. In analogy to the argument of ine-

quality (12), the Lipschitz constant of the gradient of the
objective function in (13) is very large when the value of

 is very small, and thus the projected gradient descent
algorithm could take longer to become convergent.
Hence, this could make the overall DC programming
unacceptable slow. In contrast, in the SILP formulation

(16) we introduce the auxiliary variables to avoid the

matrix . In addition, the gradient

descent algorithm generally needs to determine the step

size according to the value of , see also discussion in
the experimental section.

Prior Choice of the Output Kernel Matrix
The choice of the output kernel matrix Ky will depend on
the problem considered. We first consider a multi-class
classification for the specific task of protein fold recogni-
tion. In this case, we preprocess the output labels using a
one-against-all strategy. In particular, for a C-class classifi-
cation we recast the outputs y = {yi : i �n} as (yi1, ..., yiC)
such that yip = 1 if xi is in class p and otherwise −1. Hence
the outputs are represented by an n × C indicator matrix Y
= (yip)i, p whose p-th column vector is denoted by yp. Then,
taking Ky = YY>, formulation (4) can be extended to the
joint optimization problem

and formulation (5) can be written as

For the protein fold recognition and yeast protein func-
tion prediction projects discussed below, we choose Ky =
YY® as stated.

In general, though, Ky might encode a known structural

relationship between labels. For example, in supervised
gene or protein network inference (see e.g. [41,42]) the out-
put information corresponds to an adjacency (square)
matrix A where Aij = 1 means there is an interaction

between gene or protein pair (ei, ej) of an organism, other-

wise Aij = 0. In this case, the output kernel matrix Ky can

potentially be chosen as the graph Laplacian defined as L =

diag(A1) − A, where 1 is the vector of all ones. It can also be

formulated as a diffusion kernel [43] defined by

, where hyper-parame-

ter > 0. Other potential choices of Ky can be found in

[19,20] for multi-labeled datasets.

Results and Discussion
We mainly evaluate MKLdiv methods (MKLdiv-dc and
MKLdiv-conv) on protein fold recognition, and then con-
sider an extension to the problem of yeast protein func-
tion prediction. In these tasks we first compute the kernel
weights by MKLdiv and then feed these into a one-against-
all multi-class SVM to make predictions. The trade-off
parameter in the multi-class SVM is adjusted by 3-fold
cross validation over the training dataset. For all experi-

ments with MKLdiv-dc, we choose = 10−5 and for MKL-

div-conv, we tune = {10−5, ..., 10−1} using cross

validation. In both methods, we use a stopping criterion

of = 10-5 and initialize the kernel weight by setting

 for any � �m where m is the number of candi-

date kernel matrices.

Synthetic Data

We first validated the proposed MKLdiv algorithms on a
simple three-class dataset illustrated in subfigure (a) of
Figure 1. As in [11], we use a Gaussian kernel with unit
variance, a polynomial kernel of order two and a linear
kernel. In this case we demonstrate the effect of our
approaches on combining kernel matrices derived from a
single data source. Subfigures (e) and (f) of Figure 1 illus-
trate the kernel weights learned by MKLdiv-dc and MKL-
div-conv. In particular, MKLdiv-dc successfully picked up
the Gaussian kernel as the most dominant kernel, which
is more reasonable than MKLdiv-conv. Subfigures (b) and
(c) of Figure 1 show the relative change of objective func-

tion values versus iteration, i.e. (((t−1)) − ((t)))/((t)), of

MKLdiv-dc and MKLdiv-conv. We can see that the DC
algorithm of MKLdiv-dc converges quickly to a local min-
imum while the projected gradient descent algorithm con-
verges a little slower to a global minimum. However,
MKLdiv-dc needs more time per iteration than MKLdiv-
conv since MKLdiv-dc needs to solve the subproblem (13)
at each iteration. As mentioned before, the subproblem
(13) can be solved by either semi-infinite linear program-
ming (SILP) or a projected gradient descent (PGD)
method. To see their convergence, in subfigure (d) of Fig-

() K I+ −
∈∑ n

m

1

() K I+ −
∈∑ n

m

1

min () : () log .
λ

λ λ σ λ σ
∈

−

∈∈∈

= + + +∑∑∑Δ
 y K I y K Ip n p n

p mmC

®

1

(17)

min () : ((()) log
λ

λ λ σ λ σ
∈

−

∈∈

= + − +∑∑Δ
 y K I K y K Iy yp n p n

mm

®

Tr 1

pp C∈
∑

.

(18)

e L L LL = + + + +I
2

2

3

3
2 3

!

 = 1
m

Page 7 of 18
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:267 http://www.biomedcentral.com/1471-2105/10/267
ure 1 we plot the relative changes of the objective function

in subproblem (13) when for � �m. We can

see from subfigure (d) that the PGD approach converges
faster in the beginning but stalls at a higher precision and
the SILP method converges faster at higher precision.

Protein Fold Recognition
Next we evaluated MKLdiv on a well-known protein fold
prediction dataset [3]. This benchmark dataset (based on
SCOP PDB-40D) has 27 SCOP fold classes with 311 pro-
teins for training and 383 for testing. This dataset was
originally proposed by Ding and Dubchak [3] and it has
313 samples for training and 385 for testing. There is less
than 35% sequence identity between any two proteins in
the training and test set. We follow Shen and Chou [4]
who proposed to exclude two proteins from the training
and test datasets due to a lack of sequence information.

We compare our MKLdiv methods with kernel learning
based on one-against-all multiclass SVM using the Sim-
pleMKL software package [44], kernel learning for regular-
ized discriminant analysis (MKL-RKDA) [18]http://
www.public.asu.edu/~jye02/Software/DKL/ and a proba-
bilistic Bayesian model for kernel learning (VBKC) [21].
The trade-off parameters in SimpleMKL and MKL-RKDA
were also adjusted by 3-fold cross validation on the train-
ing set.

Description of the Fold Discriminatory Data Sources
As listed in Table 1, there are a total of 12 different fold
discriminatory data sources available: Amino Acid Com-
position (C), Predicted Secondary Structure (S), Hydro-
phobicity (H), Polarity (P), van der Waals volume (V),
Polarizability (Z), PseAA = 1 (L1), PseAA = 4 (L4),
PseAA = 14 (L14), PseAA = 30 (L30), SW with

() /t m= 1

Synthetic data verificationFigure 1
Synthetic data verification. Synthetic data verification of MKLdiv: (a) depiction of the three-circle dataset; (b) relative
change of objective values of MKLdiv-dc versus iteration number of CCCP; (c) relative change of objective values of MKLdiv-
conv versus iteration number of projected gradient descent (PGD) method; (d) relative change of objective values of subprob-
lem (13) by SILP (dish-line) and PGD methods; (e) kernel weights learned by MKLdiv-dc; (f) kernel weights learned by MKLdiv-
conv.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

0 50 100 150 200 250 300
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Iteration
C

h
a

n
g

e
 o

f
O

b
je

c
ti
v
e

 V
a

lu
e

MKLdiv−dc

(b)

0 50 100 150 200 250 300 350 400 450 500

10
−4

10
−3

10
−2

10
−1

10
0

Iteration

C
h

a
n

g
e

 o
f

O
b

je
c
ti
v
e

 V
a

lu
e

MKLdiv−conv

(c)

0 10 20 30 40 50 60 70 80 90 100

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Iteration

C
h

a
n

g
e

 o
f

O
b

je
c
ti
v
e

 V
a

lu
e

SILP
PGD

(d)

Gaussian Polynomial Linear
0

0.2

0.4

0.6

0.8

1

K
e
rn

e
l
w

e
ig

h
ts

MKLdiv−dc

(e)

Gaussian Polynomial Linear
0

0.1

0.2

0.3

0.4

0.5

K
e

rn
e

l
W

e
ig

ts

MKLdiv−conv

(f)
Page 8 of 18
(page number not for citation purposes)

http://www.public.asu.edu/~jye02/Software/DKL/
http://www.public.asu.edu/~jye02/Software/DKL/

BMC Bioinformatics 2009, 10:267 http://www.biomedcentral.com/1471-2105/10/267
BLOSUM62 (SW1) and SW with PAM50 (SW2). The first
six data sources were originally from [3]. Four data sources
using different dimensions of pseudo-amino acid compo-
sition (PseAA) were introduced in [4] to replace the
amino-acid composition. The last two data sources used
in [21] are derived from a pairwise kernel [45] for local
sequence alignment based on Smith-Waterman scores.

As in [21], we employ linear kernels (Smith-Waterman
scores) for SW1 and SW2 and second order polynomial
kernels for the other data sources. Ding and Dubchak [3]
conducted an extensive study on the use of various multi-
class variants of standard SVMs and neural network classi-
fiers. For these authors the best test set accuracy (TSA) was
56%, and the most informative among their six data
sources (CSHPVZ) were amino-acid composition (C), the
predicted secondary structure (S) and hydrophobicity
(H). Shen and Chou [4] introduced four additional PSeAA
data sources to replace the amino acid composition (C)
and raised test performance to 62.1%. The latter authors
used an ad hoc ensemble learning approach involving a
combination of multi-class k nearest neighbor classifiers
individually trained on each data source. Recently, test
performance was greatly improved by Damoulas and
Girolami [21] using a Bayesian multi-class multi-kernel
algorithm. They reported a best test accuracy of 70% on a
single run.

Performance with Individual and All Data Sources
We ran MKLdiv-dc, MKLdiv-conv, SimpleMKL and MKL-
RKDA on the overall set of 12 data sources, also evaluating
performance on a uniformly weighted (averaged) com-
posite kernel in addition to individual performance on
each separate data source. In Table 1 we report the test set

accuracy on each individual data source. The performance
of MKLdiv-dc and MKLdiv-conv inclusive of all data
sources achieves a test set accuracy of 73.36% and 71.01%
respectively, consistently outperforming all individual
performances and the uniformly weighted composite ker-
nel (68.40%). Moreover, individual performance for
MKLdiv-dc, SimpleMKL and MKL-RKDA indicates that the
most informative data sources are local sequence align-
ments (SW1 and SW2) and the amino acid composition
(C). The performance with individual data sources for
MKLdiv-dc, MKLdiv-conv, and SimpleMKL are almost the
same since, for a fixed kernel, they use the same one-
against-all multi-class SVM.

From Table 1, performances of MKLdiv-dc and MKLdiv-
conv with all the available data sources achieve test set
accuracies of 73.36% and 71.01%, both of which outper-
form the state-of-art performance 70% on a single run
reported in [21] and other kernel learning methods
including SimpleMKL (66.57%) and MKL-RKDA
(68.40%). The performance of the uniformly weighted
kernel is 68.14% which is better than the performance
66.57% of SimpleMKL. This indicates that sparse L1-regu-
larization does not necessarily yield better performance.
The kernel weights of MKLdiv-dc, SimpleMKL, and
MKL-RKDA are shown in subfigures (b), (e) and (g) of
Figure 2 which indicates that Amino Acid Composition
(C), predicted secondary structure (S), Hypdrophobicity
(H), and the last two data sources SW1 and SW2 are the
most informative data sources, and the remaining data
sources of H, P, V, and PseAA are less informative. As
depicted in the subfigure (b) of Figure 2, MKLdiv-dc and
MKLdiv-conv include some less informative data sources
such as P, Z, L1, L4, L14, L30 etc., with small (but not

Table 1: Performance with individual and all data sources

Data sources MKLdiv-dc MKLdiv-conv SimpleMKL VBKC MKL-RKDA

Amino acid composition (C) 51.69 51.69 51.83 51.2 ± 0.5 45.43
Predicted secondary structure (S) 40.99 40.99 40.73 38.1 ± 0.3 38.64
Hypdrophobicity (H) 36.55 36.55 36.55 32.5 ± 0.4 34.20
Polarity (P) 35.50 35.50 35.50 32.2 ± 0.3 30.54
van der Walls volume (V) 37.07 37.07 37.85 32.8 ± 0.3 30.54
Polarizability (Z) 37.33 37.33 36.81 33.2 ± 0.4 30.28
PseAA = 1 (L1) 44.64 44.64 45.16 41.5 ± 0.5 36.55
PseAA = 4 (L4) 44.90 44.90 44.90 41.5 ± 0.4 38.12
PseAA = 14 (L14) 43.34 43.34 43.34 38 ± 0.2 40.99
PseAA = 30 (L30) 31.59 31.59 31.59 32 ± 0.2 36.03
SW with BLOSUM62 (SW1) 62.92 62.92 62.40 59.8 ± 1.9 61.87
SW with PAM50 (SW2) 63.96 63.96 63.44 49 ± 0.7 64.49

All data sources 73.36 71.01 66.57 68.1 ± 1.2 68.40
Uniform weighted 68.40 68.40 68.14 - 66.06

The results of VBKC are cited from [21]. The results not employed there are denoted by '-'. The best result for each kernel learning method is
marked in bold.
Page 9 of 18
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:267 http://www.biomedcentral.com/1471-2105/10/267

Page 10 of 18
(page number not for citation purposes)

Performance with all data sources on protein fold recognitionFigure 2
Performance with all data sources on protein fold recognition. Test set accuracy of individual (bars) and all data
sources (horizontal lines) on the protein fold recognition dataset: (a) MKLdiv-dc and MKLdiv-conv, where the solid line is the
performance of MKLdiv-dc and the star-dashed line is the performance of MKLdiv-conv; (d) SimpleMKL; (f) MKL-RKDA. Ker-
nel weights: (b) MKLdiv-dc, (c) MKLdiv-conv, (e) SimpleMKL and (g) MKL-RKDA.

C H P Z S V L1 L4 L14 L30 SW1 SW2
0

10

20

30

40

50

60

70

80

T
S

A

(a)

C H P Z S V L1 L4 L14 L30 SW1 SW2
0

0.05

0.1

0.15

0.2

K
e

rn
e

l
w

e
ig

h
ts

 λ

MKLdiv−dc

(b)

C H P Z S V L1 L4 L14 L30 SW1 SW2
0

0.05

0.1

0.15

0.2

0.25

K
e
rn

e
l
W

e
ig

h
ts

MKLdiv−conv

(c)

C H P Z S V L1 L4 L14 L30 SW1 SW2
0

10

20

30

40

50

60

70

T
S

A

(d)

C H P Z S V L1 L4 L14 L30 SW1 SW2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

K
e

rn
e

l
w

e
ig

h
ts

SimpleMKL

(e)

C H P Z S V L1 L4 L14 L30 SW1 SW2
0

10

20

30

40

50

60

70

T
S

A

(f)

C H P Z S V L1 L4 L14 L30 SW1 SW2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

K
e
rn

e
l
w

ie
g
h
ts

MKL−RKDA

(g)

BMC Bioinformatics 2009, 10:267 http://www.biomedcentral.com/1471-2105/10/267
zero) kernel weights. In contrast, as shown in (e) and (g)
of Figure 2, SimpleMKL and MKL-RKDA completely dis-
card these less informative data sources. However, as
shown in (d) and (f) of Figure 2, SimpleMKL and MKL-
RKDA achieve poorer performance, less than 70%, while
MKLdiv-dc achieves 73.36% and MKLdiv-conv achieves
71.01%. This suggests that MKLdiv-dc provides a more
reasonable balance over the entire set of data sources. This
observation also suggests that achieving a sparsity among
kernel weights does not necessarily guarantee good gener-
alization performance since some available data sources
may be weakly informative but may still carry some useful
additional information.

Performance with Sequential Addition of Data Sources
As mentioned above, the kernel weights learned by MKL-
div on all the data sources can provide useful insights into
the significance of informative data sources. Hence, we
further investigated the effect of sequentially adding data
sources based on information from learned kernel
weights in Tables 2 and 3. Without loss of generality, we
take the kernel weights learned by MKLdiv-dc as an exam-
ple.

We first report in Table 2 the effect of sequentially adding
the sources in the order which was used in [3] and [21]
and MKLdiv-dc and MKLdiv-conv consistently outper-
form the competitive kernel learning methods VBKC,

Table 2: Effects of sequentially adding data sources

Data sources MKLdiv-dc MKLdiv-conv VBKC SimpleMKL MKL-RKDA

C 51.69 51.69 51.2 ± 0.5 51.69 47.25

CS 56.39
(20.23 s)

55.35
(0.32 s)

55.7 ± 0.5
(-)

55.61
(14.67 s)

48.30
(0.15 s)

CSH 57.70
(50.35 s)

58.22
(2.44 s)

57.7 ± 0.6
(-)

56.91
(10.40 s)

55.61
(0.12 s)

CSHP 58.48
(39.02 s)

53.52
(72.14 s)

57.9 ± 0.9
(-)

57.96
(17.84 s)

56.65
(0.18 s)

CSHPV 60.05
(75.05 s)

53.26
(86.39 s)

58.1 ± 0.8
(-)

57.96
(15.05 s)

55.87
(0.17 s)

CSHPVZ 59.26
(135.08 s)

53.52
(99.64 s)

58.6 ± 1.1
(-)

59.00
(20.02 s)

57.70
(0.20 s)

CSHPVZL1 60.05
(221.75 s)

52.74
(122.74 s)

60.0 ± 0.8
(-)

61.35
(27.38 s)

57.70
(0.21 s)

CSHPVZL1L4 62.14
(315.70 s)

52.74
(129.08 s)

60.8 ± 1.1
(-)

61.61
(151.38 s)

58.22
(0.25 s)

CSHPVZL1L4L14 62.14
(450.57 s)

61.09
(57.09 s)

61.5 ± 1.2
(-)

60.05
(42.81 s)

59.53
(0.25 s)

CSHPVZL1L4L14L30 62.14
(612.72 s)

62.14
(67.29 s)

62.2 ± 1.3
(-)

62.40
(64.74 s)

55.61
(0.25 s)

CSHPVZL1L4L14L30SW1 71.80
(620.16 s)

71.54
(17.97 s)

66.4 ± 0.8
(-)

65.79
(78.94 s)

66.84
(0.31 s)

CSHPVZL1L4L14L30SW1SW2 73.36
(805.11 s)

71.01
(84.21 s)

68.1 ± 1.2
(-)

66.57
(196.42 s)

68.40
(0.31 s)

SHPVZL1L4L14L30 60.57
(438.89 s)

61.09
(67.92 s)

61.1 ± 1.4
(-)

59.00
(44.79 s)

54.56
(0.25 s)

The result of Bayesian kernel learning model (VBKC) is cited from [21]. The results not employed there are denoted by '-'. The term inside the
parenthesis is the CPU running time (seconds). The best test set accuracy of each kernel learning method is marked in bold.
Page 11 of 18
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:267 http://www.biomedcentral.com/1471-2105/10/267
SimpleMKL, MKL-RKDA and the best performing SVM
combination methodology stated in [3]. As suggested by
the kernel weights of MKLdiv-dc in the subfigure (b) of
Figure 2, the sequence alignment based data source SW1
is most informative, then S, then SW2 and so on. Hence,
in Table 3 we further report the effect of sequentially add-
ing data sources in this rank order. As shown in Table 3,
there is a significant improvement over SW1SW2 in MKL-
div-dc when we sequentially add the data sources of
amino acid composition (C) and predicted secondary
structure (S). The performance of MKLdiv-dc keeps
increasing until we include CSHPZ, giving the best per-
formance of 75.19%. Although according to [4], the
PseAA data sources are believed to contain more informa-
tion than the conventional amino acid composition. The
same behaviour appears for MKLdiv-conv. However, the
MKLdiv-dc performance degenerates if we continue to add
PseAA composition data sources and the same behaviour

appears for MKLdiv-conv. Similar observations were
made by [21] which suggests that PseAA measurements
may carry non-complementary information with the con-
ventional amino acid compositions.

With regard to the best performance of MKLdiv-dc with
the feature set SW1SW2CSHPZ, we display the corre-
sponding kernel weights in Figure 3. We can see in Figure
3 that SimpleMKL and MKL-RKDA almost eliminate the
informative feature set HPZ while MKLdiv-dc and MKL-
div-conv include them into the composite kernel. The
sparse L1-regularization of SimpleMKL and MKL-RKDA
accounts for the sparse weights of SimpleMKL and MKL-
RKDA.

Comparison of Running Time
To investigate the run-time efficiency of MKLdiv on pro-
tein fold recognition dataset, we list their CPU time in

Table 3: Effects of sequentially adding data sources (continued)

Data sources MKLdiv-dc MKLdiv-conv SimpleMKL MKL-RKDA

SW1 62.92 62.92 62.40 61.87

SW1S 65.27
(24.72 s)

66.31
(10.49 s)

64.22
(40.60 s)

64.75
(0.12 s)

SW1SW2S 67.10
(48.79 s)

66.05
(4.65 s)

64.75
(61.71 s)

64.49
(0.15 s)

SW1SW2CS 73.36
(40.65 s)

72.32
(23.43 s)

65.01
(62.81 s)

67.62
(0.17 s)

SW1SW2CSH 74.67
(72.19 s)

72.32
(8.69 s)

66.31
(75.11 s)

67.88
(0.15 s)

SW1SW2CSHP 74.93
(123.98 s)

74.41
(11.63 s)

66.31
(74.85 s)

69.71
(0.18 s)

SW1SW2CSHPZ 75.19
(189.91 s)

73.36
(15.00 s)

68.92
(109.09 s)

66.05
(0.20 s)

SW1SW2CSHPZV 74.41
(278.47 s)

74.41
(17.47 s)

66.31
(117.14 s)

69.19
(0.25 s)

SW1SW2CSHPZVL1 73.10
(404.82 s)

73.32
(49.41 s)

66.84
(101.01 s)

68.66
(0.25 s)

SW1SW2CSHPZVL1L4 72.84
(576.29 s)

72.06
(57.83 s)

67.10
(107.88 s)

67.62
(0.25 s)

SW1SW2CSHPZVL1L4L14 72.58
(748.72 s)

72.36
(19.43 s)

66.84
(163.85 s)

69.19
(0.28 s)

SW1SW2CSHPZVL1L4L14L30 73.36
(811.54 s)

71.01
(83.93 s)

66.57
(197.57 s)

68.40
(0.31 s)

Test set accuracy of sequentially adding fold discriminatory data sources (continued) according to the ranking of kernel weights obtained by
MKLdiv-dc over all data sources. The results of the Bayesian kernel learning method were not employed in [21], hence we do not list in the table.
The term inside the parenthesis is the CPU running time (seconds). The best test set accuracy of each kernel learning method is marked in bold.
Page 12 of 18
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:267 http://www.biomedcentral.com/1471-2105/10/267
Tables 2 and 3. The running time (in seconds) is the term
inside the parenthesis. The SILP approach for MKL-RKDA
is very efficient while SimpleMKL takes a bit longer. The
reason could be that MKL-RKDA essentially used the least-
square loss for multi-class classification in contrast to the
one-against-all SVM used in SimpleMKL. Generally, more
time is required to run the interior method for one-

against-all SVM than directly computing the solution of
the least-square regression. The projected gradient descent
method for MKLdiv-conv is also slower than MKL-RKDA.
It is to be expected that MKLdiv-conv converges faster than
MKLdiv-dc since the DC algorithm for MKLdiv-dc is non-
convex and it needs to solve the subproblem (13) in each
iteration of CCCP. Nevertheless, the price we paid in run-

Kernel weights on dominant data sources for protein fold recognitionFigure 3
Kernel weights on dominant data sources for protein fold recognition. Kernel weights on the dominant data sources
SW1SW2CSHPZ which yields the best prediction on the protein fold recognition dataset: (a) MKLdiv-dc, (b) MKLdiv-conv, (c)
SimpleMKL and (d) MKL-RKDA.

C S SW1 SW2 H P Z
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

K
e

rn
e

l
w

e
ig

h
ts

MKLdiv−dc

(a)

C S SW1 SW2 H P Z
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

K
e

rn
e

l
W

e
ig

h
ts

MKLdiv−conv

(b)

C S SW1 SW2 H P Z
0

0.1

0.2

0.3

0.4

0.5

K
e
rn

e
l
w

e
ig

h
ts

SimpleMKL

(c)

C S SW1 SW2 H P Z
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

K
e
rn

e
l
w

e
ig

h
ts

MKL−RKDA

(d)
Page 13 of 18
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:267 http://www.biomedcentral.com/1471-2105/10/267
ning time for MKLdiv-dc is worthwhile given its signifi-
cantly better performance on the protein fold prediction
problem.

Sensitivity against Parameter
The initial purpose of introducing is to avoid the singu-
larity of the input kernel matrix or the output kernel
matrix. However, in practice we found that, in the convex
formulation MKLdiv-conv, values of have a great influ-
ence on performance for protein fold recognition. Hence,
when we ran MKLdiv-conv, we always did cross validation
over the training set to select the parameter . To see how
sensitive the test set accuracy is with respect to , in Figure
4 we depicted the test set accuracy versus values of . In
Figure 4 we can observe that the test set accuracy of MKL-
div-dc is relatively stable for small values of 's. However,
this is not the case for MKLdiv-conv and generally suggests
that the parameter has a great impact on performance of
MKLdiv-conv. This could be because the output kernel
matrix Ky = YY> is of low rank (rank one in binary classifi-
cation) and thus adding a small matrix In in the formu-
lation MKLdiv-conv could dramatically change the
information of the output kernel matrix. In contrast, we
can reasonably assume the input kernel matrices are non-
singular or not of low rank and the effect of adding a small
matrix In in the formulation MKLdiv-dc can be ignored.

Extension of Investigation to Yeast Protein Classification
We next extend our investigation of MKLdiv-dc and MKL-
div-conv on a yeast membrane protein classification prob-
lem [23]. This binary classification task has 2316
examples derived from the MIPS comprehensive Yeast
Genome Database (CYGD) (see [46]). There are eight ker-
nel matrices http://noble.gs.washington.edu/proj/sdp-
svm/. The first three kernels (KSW, KB, and KPfam) are
respectively designed to measure the similarity of protein
sequences using BLAST, Smith-Waterman pairwise
sequence comparison algorithms and a generalization of
pairwise comparison method derived from hidden
Markov models. The fourth sequence-based kernel matrix
(KFFT) incorporates information about hydrophobicity
which is known to be useful in identifying membrane
proteins, computed by Fast Fourier Transform. The fifth
and sixth kernel matrices (KLI, KD) are respectively derived
from linear and diffusion kernels based on protein-pro-
tein interaction information. The seventh kernel matrix
(KE) is a Gaussian kernel encoding gene expression data.
Finally, we added a noise kernel matrix KRan generated by
first generating random numbers and then using a linear
kernel.

The performance of MKLdiv-dc and MKLdiv-conv is eval-
uated by 10 random partitions of the data into a training
and test set in a proportion of 4: 1. We report the receiver

Sensitivity against parameter for protein fold recognitionFigure 4
Sensitivity against parameter for protein fold recognition. Test set accuracy versus different values of on the pro-
tein fold recognition dataset: (a) MKLdiv-dc and (b) MKLdiv-conv.

1e−6 1e−5 1e−4 1e−3 1e−2 1e−1 1 10
40

45

50

55

60

65

70

75

Parameter σ

T
S

A

MKLdiv−dc

(a)

1e−6 1e−5 1e−4 1e−3 1e−2 1e−1 1 10
45

50

55

60

65

70

75

Parameter σ

T
S

A

MKLdiv−conv

(b)
Page 14 of 18
(page number not for citation purposes)

http://noble.gs.washington.edu/proj/sdp-svm/
http://noble.gs.washington.edu/proj/sdp-svm/

BMC Bioinformatics 2009, 10:267 http://www.biomedcentral.com/1471-2105/10/267
operating characteristic (ROC) score, which measures the
overall quality of the ranking induced by the classifier,
rather than the quality of a single point in that ranking.
The first subfigure of Figure 5 shows the performance with
individual kernels and the performance of MKLdiv-dc
(the third to last bar), MKLdiv-conv (the next to last bar),
and the uniformly weighted kernel (last bar). Specifically,
MKLdiv-dc yields a ROC score of 0.9189 ± 0.0171 which
is competitive with the result in [23]. MKLdiv-conv, how-
ever, achieved a ROC score of 0.9016 ± 0.0161 which is
worse than MKLdiv-dc. The performance of MKLdiv-dc is
also slightly better than the performance of the uniformly
weighted kernel 0.9084 ± 0.0177 excluding the noise ker-
nel and 0.8979 ± 0.0120 including the noise kernel. We
also plot the kernel weights on (b) and (c) of Figure 5. As
expected, in MKLdiv-dc the BLAST kernel (KB) derived
from the protein sequence similarity comparison is very
informative which is consistent with [23]. The derived
kernel weights also show that the interaction-based diffu-
sion kernel is more informative than the expression ker-
nel, which is consistent with [23]. Also, it is interesting to
note that MKLdiv-dc shows that the noise kernel (KRan) is
least informative. This is indicated by its individual ROC
score: a ROC score around 0.5 corresponds to random
ranking. The kernel weights of MKLdiv-conv indicate that
the diffusion kernel (D) is the most important data
source, and also suggest that Pfam and FFT are almost
non-informative regardless of their good individual per-
formances. For the kernel weights, MKLdiv-dc is more rea-
sonable than MKLdiv-conv since MKLdiv-dc is more
consistent with the individual data source's performance
and MKLdiv-dc outperforms MKLdiv-conv using all data
sources.

Conclusion
In this paper we developed a novel information-theoretic
approach to learning a linear combination of kernel
matrices based on the KL-divergence [24-28], especially
focused on the protein fold recognition problem. Based
on the different position of the input kernel matrix and
the output kernel matrix in the KL-divergence objective,
there are two formulations. The first one is a difference of
convex (DC) problem termed MKLdiv-dc and the second
formulation is a convex formulation called MKLdiv-conv.
The sparse formulation for kernel learning based on dis-
criminant analysis [18] was also established. Our pro-
posed methods are able to achieve state-of-the-art
performance on the SCOP PDB-40D benchmark dataset
for protein fold recognition problem. In particular, MKL-
div-dc further improves the fold discrimination accuracy
to 75.19% which is a more than 5% improvement over a
competitive Bayesian probabilistic approach [21], SVM
margin-based kernel learning methods [11], and the ker-
nel learning based on discriminant analysis [18]. We fur-
ther extended the investigation to the problem of yeast
protein function prediction.

Generally, it is difficult to determine which criterion is
better for multiple kernel combination since this problem
is highly data-dependent. For the information-theoretic
approaches MKLdiv-dc and MKLdiv-conv, although MKL-
div-dc is not convex and its DC algorithm tends to find a
local minima, in practice we would recommend MKLdiv-
dc for the following reasons. Firstly, as mentioned above
MKLdiv-dc has a close relation with the kernel matrix
completion problem using information geometry [27,28]
and the maximization of the log likelihood of Gaussian

Performance of MKLdiv on yeast membrane proteinFigure 5
Performance of MKLdiv on yeast membrane protein. Performance on the yeast membrane protein function dataset: (a)
average ROC score for individual data sources, using MKLdiv-dc and MKLdiv-conv, where the third bar to last (All-dc) is MKL-
div-dc, the second bar to last (All-conv) is MKLdiv-conv and the last bar (Averg) is the performance using uniformly weighted
kernels. Kernel weights: (b) MKLdiv-dc and (c) MKLdiv-conv.

B SW Pfam FFT LI D E Ran All−dc All−conv Averg
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e

ra
g

e

R
O

C

(a)

B SW Pfam FFT LI D E Ran
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

K
e

rn
e

l
w

e
ig

h
ts

MKLdiv−dc

(b)

B SW Pfam FFT LI D E Ran
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K
e

rn
e

l
W

e
ig

h
ts

MKLdiv−conv

(c)
Page 15 of 18
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:267 http://www.biomedcentral.com/1471-2105/10/267
Process regression [35], which partly explains the success
of MKLdiv-dc. Secondly, we empirically observed that
MKLdiv-dc outperforms MKLdiv-conv in protein fold rec-
ognition and yeast protein function prediction. Finally, as
we showed in Figure 4, the performance of MKLdiv-conv
is quite sensitive to the parameter and the choice of
remains a challenging problem. MKLdiv-dc is relatively
stable with respect to small values of and we can fix to
be a very small number e.g. = 10−5. In future, we are
planning to empirically compare performance with other
existing kernel integration formulations on various data-
sets, and discuss convergence properties of the DC algo-
rithm for MKLdiv-dc based on the theoretical results of
[36].

Authors' contributions
YY and CC conceived the project. YY proposed and imple-
mented the method, drafted the manuscript. KH joined
the project and participated in the design of the study. All
authors read and improved the manuscript.

Appendix
Appendix 1 – Column generation method for SILP
Here we briefly describe the column generation method
(see e.g. [40]) for SILP (16) to solve the subproblem (15),
i.e.

where , and S0() = -2Tr(>

A)Tr(>). The basic idea is to compute the optimum

(,) by linear programming for a restricted subset of con-
straints, and update the constraint subset based on the

obtained suboptimal (,). More precisely, given

restricted constraints {p : p = 1, ..., P}, first we find the

intermediate solution (,) by the following linear pro-
gramming optimization with P linear constraints

This problem is often called the restricted master problem.
Then, we find the next constraint with the maximum vio-
lation for the given intermediate solution (,), i.e.

If the optimizer * of the above equation satisfies

 then the current intermediate

solution (,) is optimal for the optimization (19). Oth-

erwise * should be added to the restriction set. We repeat
the above iteration until convergence which is guaranteed
to be globally optimal, see e.g. [14,40]. In a similar fash-
ion to the convergence criterion in [14], the algorithm
stops when

For instance, the threshold is usually chosen to be 5 × 10-4.

Appendix 2 – Sparse formulation of kernel learning based
on discriminant analysis
In this appendix we show that kernel learning for regular-
ized discriminant analysis [18] is closely related to sparse
regularization. To see this, consider the following algo-
rithm

Using the fact [31] that min

, the above

equation is identical to

The equivalence between the above algorithm and RKDA
kernel learning becomes clear if we formulate its dual
problem as follows:

max

. . ,

() (),

,

s t

= ≥

− ≤ ∀

=

=

∑
∑

1 0
1

0
1

m

m
S S

(19)

S K g t

() () (())α αα λ

λ= + ∂
∂Tr ®

max

. . ,

() (), , , .

,

s t

= ≤ ≤

− ≤ ∀ =

∑
∑

1 0 1

10S S p Pp p

(20)

min () ().

S S

d

d

+
∈
∑ 0

(21)

 S S(*) ()+ ≥∑ 0

1

1
0

1
−

− +∑

− ≤

() (()) (())

()
.

t S t S t

t

min (()) (|| ||)

. .

,f b

s t

y f x b f

f

i i

i m mn

− − +

∈
∈ ∈∈
∑ ∑∑

2 21
2

 ,, ∈m

{ || || / : } || ||f fK K
m

2
2

 ∈ =
⎛

⎝
⎜

⎞

⎠
⎟∈∑ ∑Δ

min (())
|| ||

. .

, ,f b

s t

y f x b

f c
i i

i m mn

− − +
∈ ∈∈
∑ ∑∑

2 1
2

2

 ∈ ∈ ∀ ∈Δ, , .f m

(22)
Page 16 of 18
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:267 http://www.biomedcentral.com/1471-2105/10/267
Theorem 2 Let , In be the

identity matrix and 1n be an n-dimensional column vector of all

ones. Define , and

for any i �n. Then, the dual problem of

algorithm (22) can be written as

where .

Proof: Taking the minimization of b first, algorithm (22)

yields . Then, algorithm

(22) can be further rewritten as

Here, for any � and i,

which can be further represented by

. Then, let-

ting for any i and solving the

standard Lagrangian formulation of (23) with Lagrangian

variables yields

Now, replacing i by i and letting completes the

argument. �

Let n- and n+ denote the number of samples in class +1 and

−1. If we redefine the class indicator output y, for any i

�n by yi = if xi is in class +1 otherwise - , then

the class indicator output reduces to the vector a

defined in [18] for binary classification, i.e.

Now we turn our attention to multiclass classification. To
this end, consider

Using the above argument for binary classification it is
easy to check its dual problem is as follows

where . Let nc denote the number of

samples in class c. If we redefine the class indicator matrix

Y, for any i �n and c �C by if yi = c, oth-

erwise , then the class indicator matrix

reduces to the matrix H defined in [18] for multi-class
classification, i.e.

Now we can see that the dual problem of algorithm (24)
is exactly the same as the formulation (see equation (36)
in [18]) of RKDA kernel learning.

Acknowledgements
We would like to thank the referees for their constructive comments and
suggestions which greatly improve the paper. We also thank Prof. Mark
Girolami, Dr. Theodoros Damoulas and Dr. Simon Rogers for stimulating
discussions. This work is supported by EPSRC grant EP/E027296/1.

References
1. Baker D, Sali A: Protein structure prediction and structural

genomics. Science 294:93-96.
2. Jones DT, et al.: A new approach to protein fold recognition.

Nature 1992, 358:86-89.
3. Ding C, Dubchak I: Multi-class protein fold recognition using

support vector machines and neural networks. Bioinformatics
2001, 17:349-358.

K = ∈ ∈∑((,))

 K x xi j ij
m n

P P Pn
n n
n= − =I K K1 1® , λ λ

y y yi i j
n

= − ∈∑

min max (,),
,

 ∈ − − ∑∑∑Δ i i i i j i j
i jii

y K x x
1
4

1
4

2

 = 1
2

b y f xn i ii mn
= − ∈∈ ∑∑1 (())

min (())
|| ||

. . ,

,f

s t

y f x
f

f

i i

i m mn

− +

∈
∈ ∈∈
∑ ∑∑

2 1
2

2

Δ ∈ ∀ ∈ , . m

(23)

f x f x f xi i jjn n

() () ()= − ∈∑1

f x K x K x fi i jj Kn n

() (,) (,),= ⋅ − ⋅∈∑1

 i i iy f x
m

= − ∈∑ ()

min max (,).
,

∈
− −∑ ∑ ∑Δ

i i

i

i

i

i j i j

i j

y K x x
1

4
1
2

2

 = 1
2

n
n n2 − +

n
n n2 − +

y

y a
n

x

n

i i

i

= = +
+

−
−

⎧

⎨
⎪⎪

⎩
⎪
⎪

1
1

1

,

, .

if is in class

otherwise

min (()) (|| ||)
,f b

 y f x b f cic c i c

c cmC C

− − +
∈∈ ∈
∑∑ ∑

2
1
21

2
2

∈∈∈
∑∑

∈ ∀ ∈ ∈

mni

c C mf cs t . . , ,

min max (,)
, ,,,

 ∈ − − ∑∑∑Δ ic ic ic ic jc i j
i j ci ci c

y K x x
1
4

1
4

2

(24)

y y yic ic jcj n
= − ∈∑

yic
n

nc
= 1

2

− 1
2

n
nc

Y

y h j

n
nc

nc
n

y c

nc
n

ic i

i

= =
− =

−

⎧

⎨
⎪
⎪

⎩
⎪
⎪

()

,

, .

if

otherwise
Page 17 of 18
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11588250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11588250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1614539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11301304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11301304

BMC Bioinformatics 2009, 10:267 http://www.biomedcentral.com/1471-2105/10/267
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

4. Shen HB, Chou KC: Ensemble classifier for protein fold pattern
recognition. Bioinformatics 2006, 22:1717-1722.

5. Andreeva A, et al.: SCOP database in 2004: refinements inte-
grate strucuture and sequence family data. Nucleic Acids Res
2004, 32:226-229.

6. Lo Conte L, et al.: SCOP: a structural classification of protein
database. Nucleic Acids Res 2000, 28:257-259.

7. Chou K, Zhang C: Prediction of protein structural classes. Crit
Revi Biochem Mol Biol 1995, 30:275-349.

8. Dubchak I, et al.: Prediction of protein folding class using global
description of amino acid sequence. Proc Natl Acad Sci 1995,
92:8700-8704.

9. Schölkopf B, Smola AJ: Learning with Kernels The MIT Press, Cam-
bridge, MA, USA; 2002.

10. Shawe-Taylor J, Cristianini N: Kernel Methods for Pattern Analysis Cam-
bridge university press; 2004.

11. Lanckriet GRG, Cristianini N, Bartlett PL, Ghaoui LE, Jordan ME:
Learning the kernel matrix with semidefinite programming.
J of Machine Learning Research 2004, 5:27-72.

12. Bach F, Lanckriet GRG, Jordan MI: Multiple kernel learning, conic
duality and the SMO algorithm. Proceedings of the Twenty-first
International Conference on Machine Learning (ICML) 2004.

13. Rakotomamonjy A, Bach F, Canu S, Grandvalet Y: More efficiency
in multiple kernel learning. Proceedings of the 24th International
Con- ference on Machine Learning (ICML) 2007.

14. Sonnenburg S, Rätsch G, Schäfer C, Schölkopf B: Large scale mul-
tiple kernel learning. J of Machine Learning Research 2006,
7:1531-1565.

15. Bach F: Consistency of the group Lasso and multiple kernel
learning. J of Machine Learning Research 2008, 9:1179-1225.

16. Ying Y, Zhou DX: Learnability of Gaussians with flexible vari-
ances. J of Machine Learning Research 2007, 8:249-276.

17. Lin Y, Zhang H: Component selection and smoothing in multi-
variate nonparametric regression. Annals of Statistics 2006,
34:2272-2297.

18. Ye J, Ji S, Chen J: Multi-class discriminant kernel learning via
convex programming. J of Machine Learning Research 2008,
9:719-758.

19. Ye J, et al.: Heterogeneous data fusion for Alzheimer's disease
study. The Fourteenth ACM SIGKDD International Conference On Knowl-
edge Discovery and Data Mining (SIGKDD) 2008.

20. Ji S, Sun L, Jin R, Ye J: Multi-label multiple kernel learning. The
Twenty-Second Annual Conference on Neural Information Processing Sys-
tems (NIPS) 2008.

21. Damoulas T, Girolami M: Probabilistic multi-class multi-kernel
learning: On protein fold recognition and remote homology
detection. Bioinformatics 2008, 24(10):1264-1270.

22. Girolami M, Zhong M: Data integration for classification prob-
lems employing gaussian process priors. In Advances in Neural
Information Processing Systems Cambridge, MA: MIT Press; 2007.

23. Lanckriet GRG, De Bie T, Cristianini N, Jordan MI, Noble WS: A sta-
tistical framework for genomic data fusion. Bioinformatics 2004,
20(16):2626-2635.

24. Lawrence ND, Sanguinetti G: Matching kernels through Kull-
back-Leibler divergence minimization. In Technical Report CS-
04–12 Department of Computer Science, University of Sheffield;
2004.

25. Davis JV, Kulis B, Jain P, Sra S, Dhillon IS: Information-theoretic
metric learning. Proceedings of the 24th International Conference on
Machine Learning 2007.

26. Sun L, Ji S, Ye J: Adaptive diffusion kernel learning from biolog-
ical networks for protein function prediction. BMC Bioinformat-
ics 2008, 9:162.

27. Tsuda K, Akaho S, Asai K: The em algorithm for kernel matrix
completion with auxiliary data. Journal of Machine Learning
Research 2003, 4:67-81.

28. Kato T, Tsuda K, Asai K: Selective integration of multiple bio-
logical data for supervised network inference. Bioinformatics
2005, 21:2488-2495.

29. Aronszajn N: Theory of reproducing kernels. Trans Amer Math
Soc 1950, 68:337-404.

30. Cristianini N, Shawe-Taylor J, Elisseeff A: On kernel-target align-
ment. In Advances in Neural Information Processing Systems 14 Cam-
bridge, MA: MIT Press; 2002.

31. Micchelli CA, Pontil M: Learning the kernel function via regular-
ization. J of Machine Learning Research 2005, 6:1099-1125.

32. Hastie T, Tibshirani R, Friedman J: Elements of Statistical Learning: Data
Mining, Inference, and Prediction New York, Springer; 2001.

33. Vandenberghe L, Boyd S, Wu S: Determinant maximization with
linear matrix inequality constraints. SIAM J Matrix Analysis and
Applications 1998, 19:499-533.

34. Amari S: Information geometry of the EM and em algorithms
for neural networks. Neural Networks 1995, 8:1379-1408.

35. Rasmussen CE, Williams C: Gaussian Processes for Machine Learning the
MIT Press; 2006.

36. Tao PD, An LTH: A D.C. optimization algorithm for solving
the trust region subproblem. SIAM J Optim 1998, 8:476-505.

37. Yuille AL, Rangarajan A: The concave convex procedure. Neural
Computation 2003, 15:915-936.

38. Borwein JM, Lewis AS: Convex Analysis and Nonlinear Optimization: The-
ory and Examples CMS Books in Mathematics, Springer-Verlag, New
York; 2000.

39. Nesterov Y: Introductory Lectures on Convex Optimization: A Basic Course
Springer; 2003.

40. Hettich R, Kortanek KO: Semi-infinite programming: theory,
methods, and applications. SIAM Review 1993, 3:380-429.

41. Bleakley K, Biau G, Vert JP: Supervised reconstruction of biolog-
ical networks with local models. Bioinformatics 2007, 23:57-65.

42. Yamanishi Y, Vert J-P, Kanehisa M: Protein network inference
from multiple genomic data: a supervised approach. Bioinfor-
matics 2004, 20:363-370.

43. Kondor RI, Lafferty JD: Diffusion kernels on graphs and other
discrete structures. Proceedings of the Nineteenth International Con-
ference on Machine Learning 2002.

44. The SimpleMKL Toolbox [http://asi.insa-rouen.fr/enseignants/
~arakotom/code/mklindex.html]

45. Liao L, Noble WS: Combining pairwise sequence similarity and
support vector machine for detecting remote protein evolu-
tionary and structural relationships. J Comput Biol 2003,
6:857-868.

46. Mewes HW, et al.: MIPS: a database for genomes and protein
sequences. Nucleic Acids Res 2000, 28:37-40.
Page 18 of 18
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16672258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16672258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7568000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7568000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18378524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18378524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18378524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18366736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18366736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15728114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15728114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12689392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17062589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17062589
http://asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html
http://asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592176
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Background and Related Work
	Information-theoretic Data Integration
	Optimization Formulation
	Projected Gradient Descent Method for MKLdiv-conv

	Difference of Convex Algorithm for MKLdiv-dc
	SILP Formulation for the Convex Subproblem (13)

	Prior Choice of the Output Kernel Matrix

	Results and Discussion
	Synthetic Data
	Protein Fold Recognition
	Description of the Fold Discriminatory Data Sources
	Performance with Individual and All Data Sources
	Performance with Sequential Addition of Data Sources
	Comparison of Running Time
	Sensitivity against Parameter s

	Extension of Investigation to Yeast Protein Classification

	Conclusion
	Authors' contributions
	Appendix
	Appendix 1 – Column generation method for SILP
	Appendix 2 – Sparse formulation of kernel learning based on discriminant analysis

	Acknowledgements
	References

