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Abstract

Background: In the diagnosis of complex diseases such as neurological pathologies, a wealth of
clinical and molecular information is often available to help the interpretation. Yet, the pieces of
information are usually considered in isolation and rarely integrated due to the lack of a sound
statistical framework. This lack of integration results in the loss of valuable information about how
disease associated factors act synergistically to cause the complex phenotype.

Results: Here, we investigated complex psychiatric diseases as networks. The networks were
used to integrate data originating from different profiling platforms. The weighted links in these
networks capture the association between the analyzed factors and allow the quantification of their
relevance for the pathology. The heterogeneity of the patient population was analyzed by clustering
and graph theoretical procedures. We provided an estimate of the heterogeneity of the population
of schizophrenia and detected a subgroup of patients featuring remarkable abnormalities in a
network of serum primary fatty acid amides. We compared the stability of this molecular network
in an extended dataset between schizophrenia and affective disorder patients and found more
stable structures in the latter.

Conclusion: We quantified robust associations between analytes measured with different
profiling platforms as networks. The methodology allows the quantitative evaluation of the
complexity of the disease. The identified disease patterns can then be further investigated with
regards to their diagnostic utility or help in the prediction of novel therapeutic targets. The applied
framework is able to enhance the understanding of complex psychiatric diseases, and may give
novel insights into drug development and personalized medicine approaches.
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Background
Clinical bioinformatics is concerned with the analysis and
visualization of complex medical datasets [1]. In contrast
to the classical ‘main stream’ bioinformatics field which
focuses on the analysis of biological information (See
[2-4,1] for an introduction to Clinical Bioinformatics),
here the main focus is to collate heterogeneous data sets
from disparate data sources (e.g. patient clinical records,
proteomics and transcriptomics data) and develop novel
algorithms for the analysis of such heterogeneous data sets.
Thus, the key goal is the simultaneous evaluation of
clinical and basic research data with the aim to improve
medical care and care provision (See [5] for data
exploitation methods in cancer therapy development).
For complex diseases such as psychiatric disorders, a wealth
of information about patients is usually available. This
includes clinical data, standard laboratory evaluations,
genetic data, brain imaging data and data obtained from
molecular profiling experiments. The recent advance in
technological innovations allows to perform high through-
put experiments resulting in an enormous increase in the
amount of biomedical data generated. Yet, the different
sources of data are commonly kept separate which means
that valuable information is lost or neglected. Due to this
lack of integrated analysis, the importance and relation-
ships between clinical observations and the underlying
molecular mechanisms are not understood. In clinical
bioinformatics, a major aim is to combine these different
sources of information and identify emerging features of
the diseases under investigation. These features may reveal
links to other pathologies and uncover networks of
relationships between different diseases.

Novel clinical bioinformatics approaches could thus pro-
vide a better understanding and definition of complex
diseases resulting inmore accurate, improved diagnosis and
better therapies. Over the last years, a need for personalized
medicine is increasingly appreciated as it has been apparent
that standard treatment approaches are rarely efficient
across the entire patient population. Schizophrenia is a
good example for a disorder that presents with a broad
spectrum of different clinical manifestations which almost
certainly is due to the existence of diverse underlying
etiologies that happen to present clinically with similar
symptoms [6]. Difficult diagnosis and low success of current
drug regimes are an inevitable consequence. It would be
highly desirable to identify patient subgroups correspond-
ing exactly to the underlying disease pathology, thus
facilitating the choice of the most appropriate treatment.

Here, we present a clinical bioinformatics approach to
improve diagnosis and understanding of complex psychia-
tric diseases, which entails the application of a graph
theoretical approach that captures information about
patients and all disease associated data in a network. We

investigate the relationships between patient specific
variables and the disease and show how dependencies
between these variables can be used to obtain important
insights into disease pathologies and are directly related to
improved diagnostic approaches. We use this methodology
for an integrated assessment of data derived from different
profiling platforms and standard laboratory tests and show
how it can improve the understanding of highly hetero-
geneous disorders.

Results and discussion
Schizophrenia – a complex disease
The clinical data used in this study was derived from two
different profiling platforms and standard laboratory
tests. Metabolites in the CSF of 77 individuals (33 first
episode drug naive patients suffering from acute schizo-
phrenia (DSM-IV: 295.30 or 298.8) and 44 demogra-
phically matched healthy volunteers) were profiled by
H-NMR. Serum proteins of the same subjects were
investigated by LC mass spectrometry. For the NMR
dataset, signals corresponding to the same molecules
were averaged. In the mass spectrometric dataset, each
variable referred to a mass spectrometric peak including
adduct formation and isotopes. The study also includes
measurements of CSF and serum glucose levels derived
from a standard laboratory test on all patients.

The structure of the available data can be easily visualized
in the form of two layers of a network (Figure 1). The first

Figure 1
The complex disease network. Network representation
of the information available in complex diseases. The top
layer represents patient information and links between
patients reflect associations between patients such as family
relationships, sexual contact, ethical background or
geographical proximity. The lower layer contains
information about factors underlying the complex phenotype
as quantified in genetic studies, molecular profiling
experiments, clinical data etc. There is a strong dependency
structure between the two layers that connect individual
patients to abnormalities in the lower layer. The network
concept thus allows the representation of available
information in a patient specific manner.
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layer contains all patients and reflects the dependency
structure between them. These dependencies may arise
from common genetic backgrounds or similar endo-
phenotypes. In the present study, all patients were
unrelated. The second layer of the network comprises all
variables assessed in the patient population. In the present
study, these variables were levels of molecules in the serum
and CSF of the patients. Similarly, the layer could contain
information about the clinical state of the patients, e.g.
symptom severity, blood scans, brain imaging results etc.
The interactions in the lower layer reflect the dependency
structures between the variables, for example involvement
in related biochemical pathways.

Importantly, these associations may reveal disease relevant
features such as dependencies between symptom severity
and genetic background or levels of blood proteins. For
psychiatric disorders, dependency structures such as the
association between clinical features such as hallucinations
or delusions and respective molecular abnormalities are
not well understood.

In the first instance, we applied FANOVA to investigate
differences between the patient and control populations. In
clinical terms, this means to identify which individual
factors are associated with the disease state. To correct for
multiple hypothesis testing, the False Discovery Rate was
controlled and all p-values adjusted accordingly (Figure 2).
The determination of the relationship between individual
molecules and the disease state embodies an intuitive
connection between exploratory data analysis and the
investigation of dependencies between variables. In com-
plex diseases, interpretation is greatly improved if associa-
tions between disease associated variables are known and

sometimes correlated analytes can be of great help to
uncover abnormal pathway structures. We were able to
identify several variables that remained significant after
controlling the false discovery rate at a level of 0.05.

We aimed to use the links in the two-layer network to
assess the complexity of the disease by determining
whether all abnormalities were equally distributed
amongst the patient population or whether these abnorm-
alities are concentrated in particular systems of molecules
or subgroups of patients. Therefore, similar to Barabasi
et al. [7], a bipartite network was generated that included
all molecular analytes in one partition and all patients in
the other partition. We assessed the heterogeneity in the
network by Markov chain clustering. The algorithm was
expected to cluster patients that featured similar abnorm-
alities with the affected molecular compounds. The
clustering of patients and variables gives, therefore, an
estimation about the heterogeneity of information in the
network. Maximization of the bipartite modularity yielded
195 distinct clusters. One third of the patients could be
found in one cluster having profound abnormalities in
levels of serum primary fatty acid amides which were not
shared by the remaining patients (Figure 3). The identity of
the primary fatty acid amides was confirmed by re-analysis
of commercially available standard compounds.

The heterogeneity of the patient population is well
reflected in the distribution of the node degrees. It can be
seen that the patients co-clustering with the network of
primary fatty acid amides have a far higher average node
degree than the remaining patients (Figure 4A). The same
phenomenon can be observed for the primary fatty acid
amides which have a far greater average node degree than

Figure 2
Exploratory analysis – FANOVA. F-values and FDR
adjusted p-values of the variables contained in clinical
dataset. Several variables remain significant after controlling
the FDR.

Figure 3
Disease network of a patient subgroup. The network
reflects a remarkable abnormality in serum levels of primary
fatty acid amides found in a subgroup of patients.
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the remaining molecules (Figure 4B). It can also be seen
that the degree distribution of the molecular compounds
follows power law indicating the presence of few highly
connected nodes (Figure 4C).

Interestingly, the abnormalities found for primary fatty
acid amides were not related to the significant differences

we observed in CSF Glucose and glutamate levels which
are a known feature of the schizophrenia pathology [8].

In an extended dataset (70 antipsychotic naive schizo-
phrenia patients, 39 affective disorder patients and 59
healthy individuals; considering mass spectrometric data
only), we confirmed the dependency structure of the
above mentioned fatty acid network and compared the
associations between schizophrenia and affective dis-
order. Figure 5 compares the stability of the fatty acid
network using the entropy measure during the clustering
procedure. For schizophrenia patients, the entropy
increased at a lower clustering coefficient and followed
a log-linear shape. For affective disorder patients, the
network was more stable and split apart at a higher
clustering coefficient. The shape of the entropy curve was
linear for affective disorder patients and reached a far
lower value than the network derived from schizophre-
nia patients. In affective disorder, the network of primary
fatty acid amides was strongly connected and very stable
due to a higher degree of alteration of the molecules in
this patient group.

Mapping patients on the “diseasome” network
The concept of encoding relationships between indivi-
duals, diseases or molecules into networks is called
network medicine [9] and has been shown to produce
biologically interesting results in the investigation of

Figure 4
Degree distributions of patient and molecular
networks. Bipartite modularity maximization guided by
Markov Clustering algorithm determined a subgroup of
patients (panel A) that hat highly increased node degrees
(blue line) as compared to the remaining patients (red line).
The associated molecules found in the same cluster (blue
line, panel B) featured the same increased node degree. The
node degree of the molecular analytes was found to follow a
power law distribution (panel C).

Figure 5
Stability of Networks in schizophrenia and affective
disorder. Comparison of the stability of the primary fatty
acid networks determined from schizophrenia and affective
disorder patients. The stability is measured using the
networks' entropy during the clustering procedure. The
entropy decreased at a lower rate in affective disorder,
reflecting higher stability and a stronger alteration of the
primary fatty acid network.
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disease gene associations [7]. As noted by Loscalzo et al,
the application of network concepts in complex diseases
can result in novel approaches for diagnosis and treatment
[10]. Here, we applied this concept to achieve an integrated
representation of complex disorders encoding all relevant
information simultaneously. Graph theoretical approaches
are suited to capture the complexity of human diseases
and provide a theoretical framework to easily incorporate
molecular readouts and patient information to give a
comprehensive description of a disease state.

Using the graph theoretical approach, the similarity of
patients can be readily determined from the integrated
patient information enabling the assessment of disease
similarity and possibly, the subclassification of patients.
This would be particularly desirable for psychiatric disorders
for which the highly heterogeneous symptoms may result
from different etiologies and possibly contribute to the
low efficacy of current drug regimes. Extending the concept
of subclassifying patient cohorts to the single patient
level leads to a conceptual framework often referred to as
personalized medicine. Patient specific information can be
incorporated into the network approach and may allow for
an individualized assessment of a given patient’s disease
state [10]. Besides facilitating more efficient treatment
approaches, a systemof robust yet patient specific hallmarks
of a complex disorder would be invaluable in the design of
clinical trials, the development of new drug candidates or
the identification of novel drug targets. In the context of
psychiatric disorders, a personalized diagnosis and treat-
ment approach would be of particular value as patients’
responsiveness to treatment can currently not be predicted,
impeding appropriate and successful therapy.

Networks are an intuitive concept of visualizing disease
related information. Importantly, they may allow the
investigation of relationships between related diseases
such as schizophrenia and depression which may share
parts of their biochemical underpinnings. Often, the
consideration of clinical information only is not sufficient
to diagnose these diseases unambiguously. In fact, no single
symptom is specific for schizophrenia [6]. The presence of
certain symptoms or molecular abnormalities ultimately
results in the diagnosis of a certain disease. In other words,
the spectra of symptoms and other possible abnormalities
such as molecular alterations form a ‘disease space’ in
which every illness has a particular location (Figure 6). It is
important to note that finding a patients location in this
disease space is by nomeans bound to be a ‘black andwhite’
process in which a particular individual either has a disease
or no disease.Wewould rather be able to replace this binary
thinking by a continuous scale in which intermediate states
between being ill and being healthy are possible. From a
network point of view, the disease space can be imagined as
a graph in which the diseases form the nodes and the
relatedness between them the links. Finding the patient’s
exact location in this network or disease space is at the heart
of personalized medicine and has many important implica-
tions for treatment approaches as a treatment of the patient
ultimately results in a ‘movement’ of the patient across the
network. Mathematical formalization will be described in a
separate manuscript.

Conclusion
In this study, we analyzed complex psychiatric diseases
in the form of disease networks. We quantified robust

Figure 6
Mapping patients on the “diseasome” network. The spectrum of available data in complex diseases can be imagined as
forming a “disease space” within which every disease occupies a particular location (left panel). In terms of networks, each
disease forms a node and related diseases are connected by links reflecting the strength of association. The diagnostic process
can be imagined as mapping a patient on the disease space or the “diseasome” network.
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associations between analytes measured with different
profiling platforms and standard laboratory tests and
were able to determine a subgroup of patients that
featured remarkable abnormality in a molecular system
of primary fatty acid amides. The results were validated
in an extended dataset of schizophrenia patients and the
network properties compared to the ones present in
affective disorder. We found that in affective disorder,
the molecular networks were more profoundly altered
when compared to schizophrenia. The methodology
helps to statistically assess the complexity of a given
disease and disease associated patterns can then be
further investigated with regards to their diagnostic
utility or help in the prediction of novel therapeutic
targets. The applied framework is able to enhance the
understanding of complex psychiatric diseases and may
give valuable insights into drug development and
personalized medicine approaches.

Methods
State of the arts methods in clinical bioinformatics
There is currently a tremendous growth in the amount of
life science high through-put data which has been
paralleled by similar growths of electronic storage of
clinical data. Bioinformatics is experiencing a period of
great capability in providing the methodologies comple-
menting life science experimental research and they are
keeping the pace with the growing availability of a variety
of molecular biology high through-put data. Physicians
and biologists are now pressing with more challenging
requests. The most important issue is about the integration
of the different types of high throughput data (omics), the
second is the integration of molecular biology data with
clinical data. The integration of such large heterogeneous
amount of data is representing the start of a new golden
age for artificial intelligence and in particular for machine
learning techniques related to clinical bioinformatics.

In clinical bioinformatics for complex diseases, data
from multiple sources are integrated constituting a
multiscale challenge. Data integration on large scale
datasets has been successfully applied for gene function
prediction (see [11] and references therein). A different
approach tried to derive more informative data from
heterogeneous datasets by means of consensus clustering
[12,13]. In the clinical context, a kernel method based on
Support Vector Machines was introduced to combine
microarray data with clinical data for diagnosing breast
cancer patients [14]. The method has recently been
applied for the combination of proteomics and micro-
array datasets derived from rectal cancer patients [15]. So
far, methods used in clinical bioinformatics approaches
focussed on the improvement of predictive power by
integrating additional information.

Here, we follow a different approach by setting up a
comprehensive analysis framework reaching from the
initial stage of consistent data collection to integrated
disease investigation. The basic procedure is as follows:
First, we combine data from disparate sources such as
molecular, clinical or phenotypological data into a
compound dataset. Then, exploratory data analysis is
performed to determine the relevance of single variables
for a given pathology. If significant dependencies are
found, we proceed towards an investigation of these
relationships by means of graph theory and clustering
methods. These methods were applied to determine
robust, disease associated patters or molecular/clinical
abnormalities. Such patterns can then be used to
determine the disease state of a given individual, e.g.
to assist diagnosis or evaluate treatment success [10].

Statistics for complex diseases
Given the compound data matrix, we investigate the
importance of single variables for the disease by means
of ANOVA which is one of the most widely used tools in
applied statistics. Functional analysis of variance
(FANOVA) is a functional data analysis (FDA) form of
the classical ANOVA [16-18] which has a strong link to
multivariate analyses, such as principal component
analysis, and to multivariate linear modeling and
regularization methods that assume a particular class
of smooth functions for the estimators. We give a brief
description of the technique we implemented. Let Yij(t)
denote the signal j in the i-th experiment. Observations
are modeled by a fixed effect ANOVA model

y t u t a t e tij i ij( ) ( ) ( ) ( )= + + (1)

where i = 1,....,p, l = 1,....,ni; n nii

p ==∑ 1
, u(·) is the

grand mean, ai(·) is the deviation of the mean in
experiment i from the grand mean, and eij(·) are i.i.d.
zero-mean normal random variables with variance s2.
Here we use standard functional ANOVA setting as in
[18]. Following the standard ANOVA treatment [18], for
each t step, the function

F t
ni yi t y t pi

yil t yi t n pi l
( )

[ .( ) ..( )] /( )

[ ( ) .( )] /( ),
=

− −∑

− −∑

2 1
2 (2)

is distributed as non central

F
ni yi t y t

p n p

i

− − = −∑1

2

2,
[ .( ) ..( )]

.
s

(3)

This powerful methodology is quite general and would
be ideal for preliminary data exploration of the mean-
ingful variables for the different disease phenotypes. In
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our case, the F statistics gives us information about
the link between measurement response and disease
phenotype.

Caution has to be taken to account for multiplicity
problems as it gets increasingly likely to determine
significant F statistics as the number of investigated
variables increases. Multiple methods exist to adjust for
multiple hypothesis testing. A widely accepted method is
the control of the False Discovery Rate (FDR) which
controls the ratio of false positive findings among all
rejected hypotheses [19]. This procedure is more power-
ful than more classical approaches such as the bonfer-
roni correction, as it based on the rationale that few false
positive findings are not too problematic if the number
of positive findings is high.

Furthermore, FDR procedures do not assume that
variables are independent and in fact, is has been proven
that the FDR procedure is applicable to datasets contain-
ing dependencies between the variables [20]. Here we
adjust p-values resulting from FANOVA using the FDR
procedure suggested by Benjamini and Hochberg [19]. If
single features were significant after the multiplicity
adjustment, dependencies between the features were
investigated. The dependency structure contains valuable
information about the relationships between the inves-
tigated variables that is not apparent from exploratory
analysis.

To analyze the dependencies between the different
variables, we first encoded the data matrix into a directed
graph of N patients and Mmolecules. Here, every patient ni
is connected to a variablemj if this patient has an abnormal
state of the variable. The ‘abnormality’ of the state of a
variable is defined with respect to the distribution of the
same variable in the control population and a link between
a patient and a variable was only built if the value of the
variable was outside three standard deviations of the
control mean. This procedure generated a directed graph in
which one partition contained all variables and the other
partition all patients.

In the present study, we use clustering procedures on the
directed graph to investigate the dependencies between
molecular compounds. Based on the directed graph, a
graph with m nodes can be constructed that reflects
which variables are altered in patients simultaneously.
This procedure is performed for all pairs of variables
setting the weight of the respective links equal to the
number of patients in which the variables have
abnormal levels. The resulting graph contains informa-
tion about the joint relevance of the variables for the
disease state.

Network analysis
We use a clustering algorithm that does not need
information on the number of clusters which is often
unknown in large-scale comparisons. Although there is
now a wide range of clustering algorithms, only a
restricted number can successfully handle a network
with the complete and weighted graph properties.
Among them, we cite the recent method proposed by
[21] that is based on simulated annealing to obtain
clustering by direct maximization of the modularity. The
modularity has been introduced by [22] and it is a
measure of the difference between the number of links
inside a given module and the expected value for a
randomized graph of the same size and degree distribu-
tion. The modularity Q of a partition of a network is

defined as Q ls
L

ds
Ls

= − ( )⎡
⎣⎢

⎤
⎦⎥∑ 2 where the sum is over all

modules of the partition. ls and ds describe the number of
links and the total degree of the nodes inside module s
and L the total number of links of the network [23]. In a
recent work on resolution limits in community detection
[23] the authors give evidence that modularity optimiza-
tion may fail to identify modules smaller than a certain
scale, depending on the total number of links in the
network and on the number of connections between the
clusters. Because of its properties, at the end, we
implemented the Markov Clustering Algorithm (MCL,
[24]). Its input is a stochastic matrix where each element
is the probability of a transition between adjacent nodes.
The weights between mi and mj were given the frequency
of variables mi and mj being altered, i.e. an abnormality
of molecule mj recorded in patient mi.

For the clustering of the bipartite network, we incorpo-
rated the modularity measure into the MCL algorithm.
The result of the clustering procedure is largely domi-
nated by the choice of the contraction parameter r; low
values of r result in large clusters whereas the network is
decomposed into single nodes at high values of r. For
each arising cluster, we increased r until the cluster was
split into at least two sub-clusters; we then used the
modularity of a bipartite network [25] to compare
whether the split increased the modularity across all
clusters or not. If the modularity was improved, the
clustering procedure was continued at the respective
community; otherwise it was continued at the next
community until no cluster remained.

We modified the Java version of the MCL algorithm [26]
to include the strategy of Gfeller et al., [27] which allow
detecting unstable nodes and compare results obtained
with different contraction parameters. In this algorithm,
the starting matrix is modified to produce a novel matrix
with a certain amount of noise added. The noise is

BMC Bioinformatics 2009, 10(Suppl 12):S6 http://www.biomedcentral.com/1471-2105/10/S12/S6

Page 7 of 9
(page number not for citation purposes)



homogeneously distributed between -swij and swij

where wij is the edge weight and s a fixed noise
parameter, 0 ≤ s ≤ 1. The noise was added randomly
to edges and the MCL clustering was performed on many
noisy realization of the matrix. At each ‘noisy’ repetition,
the algorithm recorded all the nodes belonging to the
same cluster. After the prefixed number of repetitions has
been concluded we ended up with a matrix storing Pij
values corresponding to the fraction of times nodes i and
j have been grouped together. Unstable nodes can be
identified as those having edges with less than a fixed
values θ. We then calculated several distinct measures
informing on the clustering and its stability such as the
following clustering entropy:

S L P log P P log Pij ij ij ij

ij

= − + − −∑1 1 12 2/ [ ( ) ( )] (4)

where the sum is over all edges and the entropy is
normalized by the total number of edges, L [28]. This
might be used to detect the best clustering obtained after
a long series of clusterings with different granularity
parameters each time.

The entropy can also be used to study the stability of
communities obtained from the clustering procedures.
Due to the repeated noisy realizations of the original
matrix, nodes may be attached to different communities
after the clustering procedure. However, if the investi-
gated system is very stable, nodes tend to cluster with the
same communities regardless of the added noise. The
stability of the different communities can be investigated
by analyzing the entropy as a function of the clustering
parameter r as the network breaks down into increasingly
separated clusters as r increases.

Schizophrenia data used in this study
In this study, Cerebrospinal Fluid (CSF)and serum
samples from a large cohort of 77 individuals were
used (for a detailed characterization of the patient
population see [29]). CSF surrounds the brain and is
besides its functions regarding mechanical protection, a
transport medium for important molecules. Due to its
close proximity to the brain, it is likely that pathological
abnormalities of the brain are reflected in the CSF.
Serum samples most body tissues and fluids and is also
an important carrier of signalling molecules. In both
serum and CSF samples, a global metabolic profiling was
conducted. CSF samples were profiled using proton
NMR spectroscopy, serum samples using Liquid Chro-
matography Mass Spectrometry. The profiled samples
(CSF and serum) included 33 samples from drug naive
first onset schizophrenia patients and 44 samples taken
from healthy volunteers. In an extended analysis we

profiled serum samples from 91 additional samples
comprising 33 antipsychotic naive first onset schizo-
phrenia patients, 39 samples obtained from patients
suffering from affective disorder and 15 controls. We
assessed glucose concentrations in the serum and CSF of
all individuals and integrated the information with mass
spectrometric and NMR data. The ethical committees of
the Medical Faculty of the University of Cologne
approved the protocols of this study. Informed consent
was given in writing by all participants and clinical
investigations were conducted according to the princi-
ples expressed in the Declaration of Helsinki.
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