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Abstract
For time-to-event data with finitely many competing risks, the proportional hazards model has been
a popular tool for relating the cause-specific outcomes to covariates [Prentice et al. Biometrics 34
(1978) 541–554]. This article studies an extension of this approach to allow a continuum of competing
risks, in which the cause of failure is replaced by a continuous mark only observed at the failure time.
We develop inference for the proportional hazards model in which the regression parameters depend
nonparametrically on the mark and the baseline hazard depends nonparametrically on both time and
mark. This work is motivated by the need to assess HIV vaccine efficacy, while taking into account
the genetic divergence of infecting HIV viruses in trial participants from the HIV strain that is
contained in the vaccine, and adjusting for covariate effects. Mark-specific vaccine efficacy is
expressed in terms of one of the regression functions in the mark-specific proportional hazards model.
The new approach is evaluated in simulations and applied to the first HIV vaccine efficacy trial.
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1. Introduction
It has been 30 years since Prentice et al. [15] introduced a Cox regression framework for the
analysis of failure time data in the presence of finitely many competing risks. Yet many
important applications of competing risks methodology involve continuous causes-of-failure
(marks). In HIV vaccine trials, for example, genetic divergence of infecting HIV viruses from
the HIV strain represented in the vaccine needs to be taken into account to properly assess
vaccine efficacy, but the mark variable is essentially continuous because of the large number
of mutations involved. Other examples of continuous mark variables include lifetime medical
cost or a quality of life score associated with survival time [14]. The grouping of continuous
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mark data into discrete marks is unsatisfactory because that amounts to a coarsening of the
data and the results will depend on the way the groups are defined. To address this problem,
we develop inference for a proportional hazards model in which both the regression parameters
and the baseline hazard function depend nonparametrically on a continuous mark.

The paper is motivated by the need for new methods to analyze data from HIV vaccine efficacy
trials. Approximately 15,000 new HIV infections occur each day [21], making development
of a protective HIV vaccine a top priority for biomedical science. In efficacy trials thousands
of HIV-negative volunteers are randomized to receive vaccine or placebo, and are monitored
for HIV infection. Four efficacy trials are ongoing (http://www.iavi.org). A primary objective
of each trial is to assess vaccine efficacy (VE) to prevent infection, where typically VE is
defined as one minus the hazard ratio (vaccine/placebo) of HIV infection. One of the greatest
barriers to achieving an efficacious vaccine is the extreme genetic heterogeneity of HIV [12,
7]. Although it may be possible to develop a vaccine that protects against HIV strains
genetically similar to the HIV virus or viruses represented in the vaccine, it may be quite
difficult to develop one to protect against HIV strains dissimilar from the vaccine material.
This phenomenon is well known for flu vaccines—moderate genetic mismatch between an
exposing flu virus and the virus represented in the vaccine causes vaccine failure, which has
necessitated development of a new vaccine each year that is closely matched to the
contemporary circulating flu strains. The genetic divergence (or distance) between two aligned
HIV sequences can be measured as the weighted percent mismatch of amino acids, and since
this distance may be unique for all infected subjects, it is natural to consider it as a continuous
mark variable. The formidable problem of HIV genetic diversity implies that an important
objective of an efficacy trial is assessment of if and how VE depends on the genetic divergence.

This problem can be addressed in terms of the conditional mark-specific hazard function,
defined as

(1)

where T is the failure (infection diagnosis) time, V is a continuous mark variable and Z(t) is a
(possibly time-dependent) p-dimensional covariate. Huang and Louis [8] developed the
nonparametric maximum likelihood estimator of the joint distribution of T and V in terms of
the unconditional mark-specific hazard function. Gilbert, McKeague and Sun [6] defined mark-
specific vaccine efficacy as VE(t, υ) = 1 − λ(t, υ|1)/λ(t, υ|0), with z being the indicator of
membership in the vaccine group; they developed several nonparametric and semiparametric
tests concerning VE(t, υ).

In this article, we develop the mark-specific proportional hazards (PH) model

(2)

where the baseline hazard function λ0(·, υ) and the p-dimensional regression parameter β(υ)
are unknown continuous functions of υ. As far as we know, this model has never been studied
in the literature, even though it is closely related to the discrete cause-of-failure models
discussed by Prentice et al. [15]. The approach in the continuous case departs from the discrete
case in that it is necessary to “borrow strength” from data in a neighborhood of υ, with the data
closest to υ contributing the most.
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For the HIV vaccine trial application, we partition the covariate as z(t) = (z1, z2(t))T, where
z1 is the treatment (vaccine) group indicator and z2(t) is a vector of possibly time-dependent
covariates. Then the vaccine efficacy defined above takes the simpler form VE(υ) = 1 − exp
(β1(υ)), without any dependence on t. By assuming proportional hazards, model (2) can provide
more powerful tests of mark-specific vaccine efficacy than the nonparametric procedures of
Gilbert, McKeague and Sun [6], and the model allows adjustment for covariate effects.
Furthermore, ignoring the mark variable and studying vaccine efficacy using the standard Cox
model, as is widely practiced in vaccine trials for many infectious diseases, can give misleading
results. In fact, even in the case of model (2) with z as the treatment indicator, the ordinary
(marginal) Cox model will be misspecified unless the baseline λ0(t, υ) factors into separate
functions of t and υ.

Indeed, consider the model λ(t, υ|z = 0) = γ0/2 + γ1tυ and λ(t, υ|z = 1) = γ0υ + γ1tυ2, for t ≥ 0,
0 ≤ υ ≤ 1, z ∈ {0, 1}. The corresponding marginal hazard functions are λ(t|z = 0) = γ0/2 +
γ1t/2 and λ(t|z = 1) = γ0/2 + γ1t/3, for t ≥ 0. It is clear that λ(t|z) is not a proportional hazards
model unless γ0 or γ1 is zero. If γ1 = 0, the resulting marginal hazards become proportional for
z = 0 and z = 1. However, in this example, the marginal vaccine efficacy VE = 1 − λ(t|z = 1)/
λ(t|z = 0) = 0 while the mark-specific vaccine efficacy is VE(υ) = 1 − 2υ. The ordinary Cox
model averages the mark-specific vaccine efficacy over its range, and important vaccine effects
may be missed. This issue will be further illustrated in our simulation study. In general, use of
the ordinary Cox model for studying hazard ratios can be misleading if an important mark
variable is ignored. The mark-specific PH model offers a way to correct for that deficiency.

We also consider a cumulative vaccine efficacy estimand defined as  where
a > 0. We develop distribution-free uniform confidence bands for CV(υ), which are useful for
inferential purposes. In addition we derive test statistics for evaluating mark-specific vaccine
efficacy based on the estimator of CV(υ).

The paper is organized as follows. Section 2 develops a local partial likelihood procedure for
estimating β(υ), leading to the construction of pointwise confidence intervals and formal tests
for various hypotheses of interest concerning vaccine efficacy. A simulation study evaluating
the performance of the proposed tests and the pointwise and simultaneous confidence intervals
for VE(υ) and CV(υ) is presented in Section 3. The proposed methods are applied to analyze
the data from the first HIV vaccine efficacy trial in Section 4. We discuss some general aspects
of mark-specific PH models in Section 5. Proofs of the main results are placed in the Appendix.

2. Mark-specific proportional hazards model
2.1. Local partial likelihood

We begin by stating some assumptions and notations that are used throughout the paper. The
mark variable V is assumed to have a known and bounded support; rescaling V if necessary,
this support is taken without loss of generality to be [0, 1]. The observations (Xi, δi, δi Vi, Zi),
i = 1,…,n, are assumed to be i.i.d. replicates of (X, δ, δV, Z), where X is the right-censored
failure time corresponding to T, which satisfies the model (2), and δ is the indicator of non-
censorship. The mark is assumed to be observed whenever the corresponding failure time is
uncensored; when δi = 0, Vi is undefined and is not meaningful. The censoring time is assumed
to be conditionally independent of (T, V) given Z.

We consider a localized version of the log partial likelihood function for β = β(υ) at a fixed υ:
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(3)

where Kh(x) = K(x/h)/h, K(·) is a kernel function with support [−1, 1], τ is the end of the follow-
up period and h = hn is a bandwidth. Here Yi(t) = I(Xi ≥ t) and Ni(t, υ) = I(Xi ≤ t, δi = 1, Vi ≤
υ) is the marked point counting process with a jump at an uncensored failure times Xi and the
associated mark Vi. For background on marked point processes see Brémaud [2] and
Martinussen and Scheike [11].

The log partial likelihood function (3) resembles that of Kalbfleisch and Prentice [9] in the
case of discrete marks, except that it borrows strength from observations having marks in the
neighborhood of υ. The kernel function is designed to give greater weight to observations with
marks near υ than those further away. The local maximum partial likelihood estimator of β
(υ) is a maximizer β̂(υ) of (3). A similar approach has been studied by Cai and Sun [3] for
estimating time-dependent coefficients in Cox regression models.

Denote μj = ∫ uj K (u) du, νj = ∫ uj K2(u) du for j = 0, 1, 2. For β ∈ ℝp, t ≥ 0, let

where for any z ∈ ℝp, we denote z⊗0 = 1, z⊗1 = z and z⊗2 = zzT. Define s(j)(t, β) = ES(j)(t, β)
and

Taking the derivative of l(υ, β) with respect to β gives the score function

(4)

The maximum partial likelihood estimator is a solution to U(υ, β̂(υ)) = 0, and can be computed
using a Newton–Raphson algorithm. The second derivative of l(υ, β) with respect to β yields

Although inference on β is usually of primary interest, the baseline function λ0(t, υ) can also
be estimated, by smoothing the increments of the following estimator of the doubly cumulative

baseline function :
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(5)

2.2. Asymptotic results
We make use of the following regularity conditions; not all of these conditions are required
for the proof of each theorem, nor are they the minimum required set of conditions.

CONDITION A
(A.1) β(υ) has componentwise continuous second derivatives on [0, 1]. The second partial

derivative of λ0(t, υ) with respect to υ exists and is continuous on [0, τ] × [0, 1]. The
covariate process Z(t) has paths that are left-continuous and of bounded variation,
and satisfies the moment condition E[‖Z(t)‖4 exp(2M‖Z(t)‖)] < ∞, where M is a
constant such that (υ, β(υ)) ∈ [0, 1] × (−M, M)p for all υ and ‖A‖ = maxk,l |akl| for a
matrix A = (akl).

(A.2) For j = 0, 1, 2, each component of s(j)(t, θ) is continuous on [0, τ] × [−M, M]p, and
supt∈[0,τ],θ∈[−M, M]p ‖S(j)(t, θ) − s(j)(t, θ)‖ = Op(n−1/2).

(A.3) s(0)(t, θ) > 0 on [0, τ] × [−M, M]p and the matrix

 is positive definite.

(A.4) E(Ni(dt, dυ)|ℱt−) = E(Ni(dt, dυ)|Yi(t), Zi(t)), where ℱt = σ{I (Xi ≤ s, δi = 1), I(Xi ≤
s, δi = 0), Vi I (Xi ≤ s, δi = 1), Zi(s); 0 ≤ s ≤ t, i = 1,…,n} is the (right-continuous)
filtration generated by {Ni(s, υ), Yi(s), Zi(s); 0 ≤ s ≤ t, 0 ≤ υ ≤ 1, i = 1,…,n}.

(A.5) The kernel function K(·) is symmetric with support [−1, 1] and of bounded variation.
The bandwidth satisfies nh2 → ∞ and nh5 → 0 as n → ∞.

Note that the condition (A.2) holds under the condition (A.1) given some additional moment
conditions on Z(t) − Z(s) and exp(bT Z(t)) − exp(bT Z(s)). If Z(t) = Z, not depending on t, then
(A.2) holds by the Donsker theorem (Theorem 19.5 of van der Vaart [20]). The condition (A.
4) assumes that the mark-specific instantaneous failure rate at time t given the observed
information up to time t only depends on the failure status and the current covariate value.
Under (A.4) and by the definition (1), E(Ni(dt, dυ)|ℱt−) = Yi(t)λ(t, υ|Zi(t)) dt dυ, and

 is a martingale with respect to ℱt for each
fixed υ ([11], page 31). Further, it follows by Aalan and Johansen [1] that Mi(·, υ1) and Mi(·,
υ2) − Mi(·, υ1) are orthogonal square integrable martingales with respect to ℱt for any 0 ≤ υ1
≤ υ2 ≤ 1. To avoid the problems at the boundaries υ = 0, 1, we shall study the asymptotic
properties of β̂(υ) for the interior values of υ ∈ [a, b] ⊂ (0, 1).

First we present the following result that is essential for proving the asymptotic normality of
β̂(υ) and provides insight into the constructions of the confidence bands and test statistics that
follow. Let

(6)

where A(u) is a deterministic p × p matrix with bounded components and 0 ≤ a < b ≤ 1.
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THEOREM 1: Assume that each component of the p × p matrix A(υ), υ ∈ [a, b], is continuous.
Under conditions (A.1)–(A.4), W ̃A(υ) converges weakly to a p-dimensional mean-zero
Gaussian martingale, WA(υ), with continuous sample paths on υ ∈ [a, b]. The covariance

matrix of WA(υ) is given by .

Let

(7)

where Â(υ) is a consistent estimator of A(υ) uniformly in υ ∈ [a, b] ⊂ [0, 1]. It can be shown
that Σ̂A(υ) is a consistent estimator of Cov(WA(υ)).

The consistency and asymptotic normality of β̂(υ) are established in the next two theorems.

THEOREM 2: Under conditions (A.1)–(A.5), β̂(υ) converges to β(υ) uniformly in υ ∈ [a, b]
⊂ (0, 1).

THEOREM 3: Under conditions (A.1)–(A.5),  for υ ∈
[a, b].

The proof of Theorem 3 uses a Taylor expansion of the score function, leading to

, where β*(υ) is on the line segment between β̂(υ) and β
(υ). The asymptotic variance of n−1/2h1/2U (β(υ)) is shown to be ν0Σ(υ), which is the in

probability limit of . It can also

be shown that . Thus, the asymptotic variance of

(nh)1/2 × (β̂(υ) − β(υ)) can be estimated by .

An alternative estimator is . It is easy to check that ν0 = 3/5 for

Epanechnikov’s kernel . Simulations indicate that the two estimators
have similar finite sample performance.

Theorem 3 will lead to the construction of pointwise confidence intervals for VE(υ).
Simultaneous inference over υ ∈ [a, b] will be possible in terms of the estimate

 of the cumulative regression coefficient . We have the
following weak convergence result for B̂(υ).

THEOREM 4: Under conditions (A.1)–(A.5), n1/2(B̂(υ) − B(υ)) converges weakly to a p-
dimensional mean-zero Gaussian martingale WΣ−1(υ) with continuous sample paths on υ ∈

[a, b]. The covariance matrix of WΣ−1(υ) is , which can be consistently estimated
by Σ ̂Â(υ) defined by (7) with A(υ) = (Σ(υ))−1 and Â(υ) = (Σ ̂(υ))−1.

2.3. Confidence bands for vaccine efficacy

Let . Then the vaccine efficacy can be expressed as VE(υ) = 1 − exp
(β1(υ)). The estimated vaccine efficacy is . By Theorem 3 and the delta
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method,  for υ ∈ [a, b], where  is

the first element on the diagonal of Σ−1(υ). Let  be the first element on the diagonal of
Σ ̂1(υ). By the discussions on the consistent estimators for the asymptotic variance following

Theorem 3,  is a consistent estimator for . A pointwise 100(1 − α)% confidence
band for VE(υ) is given by

(8)

where zα/2 is the upper α/2 quantile of the standard normal distribution.

To derive simultaneous confidence bands for the cumulative vaccine efficacy

, we consider the point estimator . Then

Note that . From the proof of Theorem
4, it can be shown that  converges weakly to a mean-zero Gaussian process,

, with continuous paths and independent increments, where A(υ) = exp
(β1(υ))Σ(υ)−1 and e1 is the first column of the p × p identity matrix. The variance of 

equals  by Theorem 1, which can be conveniently estimated by

, where  is the first element of the diagonal of Σ ̂(υ)−1. We suspect
that this estimator may ignore the finite sample correlations of β1(υ) − β̂1(υ) at different values
of υ, thus over- or underestimating the true variance. We propose to use  as
the estimator of the asymptotic variance of , where Σ ̂Â(υ) is obtained from
(7) with Â(υ) = exp(β̂1(υ))Σ ̂(υ)−1, which is uniformly consistent by Theorem 1. Consequently,
a pointwise 100(1 − α)% confidence band for CV(υ) is given by

(9)

Let  be a set of values of υ in [a, b]. We may take  = [a, b] or  = {υk, k = 1,…,K} with
υ1 < ··· < υK. Note that if U(υ) is a Gaussian martingale with variance ρ2(υ), for a ≤ υ ≤ b, then
U(υ)ρ(b)[ρ2(b) + ρ2(υ)]−1 has the same distribution as B0(ρ2(υ)/(ρ2(b) + ρ2(υ))), a ≤ υ ≤ b,
where B0(·) is a Brownian bridge. By the weak convergence of , the uniform
consistency of ρ̂2(υ) to ρ2(υ) and the continuous mapping theorem, we have

Thus a simultaneous 100(1 − α)% confidence band for CV(υ), υ ∈ , is given by

(10)
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where uα is the upper α-quantile of the distribution of supυ∈ |B0(ρ2(υ)/(ρ2(b) + ρ2(υ)))|. The
uα is the upper α-quantile of sup0≤υ≤1/2|B0(υ)| if  = [a, b], which has been tabulated by
Schumacher [16] for some α values. In the simulation study presented in the next section, we
estimate uα by the upper α-quantile of the distribution of supυk∈ |B0(ρ ̂2(υk)/(ρ̂2(b) + ρ̂2(υk)))|
in both cases when  = [a, b] or  = {υk, k = 1,…,K}, which can be obtained by simulating a
Brownian bridge for given ρ̂2(υ).

Alternatively, other resampling techniques such as the Gaussian multiplier method of Lin, Wei
and Ying [10] can be used to estimate the critical value uα. This method can be briefly outlined
as follows. Let ξ1,…,ξn be i.i.d. standard normal random variables and

(11)

Then the distribution  can be approximated by the conditional distribution

of  given the observed data sequence, where Â = exp(β̂1(υ)) × (Σ ̂(υ))−1. Consequently,

the distribution of  can be approximated by

the conditional distribution of  given the observed
data sequence. Let  be the (1 − α)-quantile of the copies of U* obtained by repeatedly
generating sets of i.i.d. standard normal random variables. A simultaneous 100(1 − α)%
confidence band for CV(υ), υ ∈ , is given by

(12)

This resampling technique is also applicable to the hypothesis tests for vaccine efficacy
developed in the next subsection.

2.4. Testing vaccine efficacy
We are interested in testing the following two sets of hypotheses. The first set of hypotheses
is

The second set of hypotheses is

Let β1(υ) be the first component of β(υ). Then the null hypothesis H10 is equivalent to β1(υ) =
0 and the null hypothesis H20 is equivalent to β1(υ) does not depend on υ. The null hypothesis
H10 implies the vaccine affords no protection against any infecting strain of virus. The
alternative H1m indicates that the vaccine provides protection for at least some of the infecting
strains, while H1a states that the vaccine provides either protection or increased risk for some
infecting strains. The null hypothesis H20 implies there is no difference in vaccine protection
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for different infecting strains, measured by their distance υ to the strains contained in the
vaccine. The ordered alternative H2m states that vaccine efficacy decreases with υ and the
alternative H2a indicates that the vaccine efficacy changes with υ.

In this section, we develop some test procedures for detecting departures from H10 in the
direction of H1m and H1a and for detecting departures from H20 in the direction of H2m and
H2a. By Theorem 4 and the discussions in Section 2.3, the process

, converges weakly to a Gaussian martingale with predictable
variation ρ2(υ). Let . It follows from Theorem 4 that

, where W(·) is a Wiener process and t(υ) = ρ2(υ)/ρ2(b).

To test H10, let . Consider the following test
statistics:

These test statistics have somewhat complicated null distributions (see below) so we consider
the following simpler test statistic based on a finite grid, which leads to a standard normal null
distribution:

where a ≤ υ1 < … < υK ≤ b are the grid points in [a, b]. A similar test statistic with a standard
normal null distribution is also proposed for H20 later. Under H10,

. The distributions of  under H10 can also be approximated by those of

 for given t̂(υ), respectively, which are used in the
numerical studies for better finite sample approximations. We denote the upper α-quantiles of

these two distributions by , respectively.

The test statistic  captures general departures H1a, while the test statistics  are

sensitive to the monotone departure H1m. Both test statistics  are likely to be
positive when VE(υ) ≥ 0 for all υ with strict inequality for some υ. Hence the tests based on

 reject H10 if , respectively.

To test H20, let . Note that, under H20,

. By Theorem 4 and the

continuous mapping theorem, under H20,  for
υ ∈ [a1, b], where a < a1 < b. We propose the following test statistics for evaluating H20:
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where a1 ≤ υ1 < … < υK ≤ b are K grid points in [a1, b],  is an estimate of the variance

 is an estimate of the variance

. By the covariance of the Wiener process, it is easy to
show that

for υi ≤ υj. Thus, . Let Γ = (τi,j)K×K and

It follows that ΠK = ξTΓξ. The estimates  are obtained by replacing t(υ) with t̂(υ).

By the weak convergence of Ẑ(2)(υ) to Z(2)(υ), and the convergence in probability of t̂(υ) to t

(υ), a1 ≤ υ ≤ b, we have  under H20. It also follows that

, and  under H20. The distributions of

 under H20 can be approximated by those of

for given t̂(υ), respectively, which are used in the numerical studies for better finite sample

approximations. We denote the upper α-quantiles of these two distributions by ,
respectively.

The test statistic  captures general departures H2a while the test statistics  are

sensitive to the monotone departure H2m. Both  are expected to be positive when

VE(υ) decreases as υ increases, that is, when H2m holds. Hence the tests  reject

H20 if , respectively.

3. Simulation study
In this section, we conduct a simulation study to check the finite sample performance of the
proposed estimation and hypothesis testing procedures using the simple mark-specific
proportional hazards model:

(13)
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where α, β and γ are constants and the treatment indicator z takes value 0 or 1 with probability
of 0.5 for each value. Under model (13), the mark-specific baseline function is λ0(t, υ) = exp
(γ υ) and VE(υ) = 1 − exp(α + β υ). The null hypothesis H10 of no vaccine efficacy holds if
both α = 0 and β = 0, and the null hypothesis H20 that vaccine efficacy does not depend on the
type of infecting strain is true if β = 0. Various choices of α and β specify different alternatives
for H10 and H20.

We consider the following simulation models:

(M1)

(M2)

(M3)

(M4)

(M5)

(M6)

(M7)

(M8)

The models (M2) to (M4) are considered as the alternatives for H1m and H1a. The departure
from H10: VE(υ) = 0 increases as the simulation model moves from (M2) to (M4). The models
(M6) to (M8) are considered as the alternatives for H2m and H2a. The departure from H20
increases as the simulation model moves from (M6) to (M8).

We generate the censoring times from an exponential distribution, independent of (T, V), with
the censoring rates ranging from 20% to 30%. We set the interval of analyses for υ as [a, b] =
[0.1, 0.9] and bandwidths are chosen as h = 0.05, 0.1, 0.15. The observed failure times with
marks outside the interval [a, b] can also be used since the smoothing at υ takes the cases with
marks in its h-neighborhood. The Epanechnikov kernel K(x) = 0.75(1 − x2)I{|x| ≤ 1} is used
throughout. Sample sizes of n = 500 and 800 are studied.
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For the tests , we take the grid of eight evenly spaced points in [a, b] from 0.196

to 0.868. Table 1 lists the empirical sizes and powers of the test statistics  and

Table 2 for the test statistics . The significance levels of these tests are given
at α = 0.05. Both tables also list the coverage probabilities of the 95% simultaneous confidence
intervals for CV(υ), for υ ∈ [a, b] and for υ in the grid. The critical values for the tests

 at α = 0.05 are zα = 1.645. The critical values for the tests ,

 are obtained by generating 10,000 Wiener processes W(·) with time parameter
equal to t̂(υ) and calculating the corresponding functionals of W(t̂(υ)), as described in the
previous section. Each entry in Tables 1 and 2 is based on 1000 repetitions.

Most tests have appropriate sizes close to 5%. The test  seems to be conservative for the

simulation models used in the study. The test  has better power than the tests .

The test  has better power than the tests . Therefore the tests that incorporate
 over the entire range [a, b] present greater power than the simpler tests based on
 over the grid. We also observed that the powers of the tests seem to be influenced by

the selection of bandwidth, with greater power for a larger bandwidth. Similar plots (not
included here) to Figure 1 and Figure 2 but with larger bandwidth h = 0.2 show that the
estimated standard errors of  become smaller for larger h while the biases stay
approximately the same, resulting in increased power for the larger bandwidth. We suspect
that this phenomenon is associated with the sample size and the convergence rate of the
normalized  to a Wiener process. The dependence of the power on the bandwidth should
become small as the sample size increases. Further study on the bandwidth selection is
warranted.

The coverage probabilities of the simultaneous confidence intervals for CV(υ) are closer to the
95% nominal level for υ on the grid than on [a, b]. This may be explained by the fact that the
convergence for υ over the entire range [a, b] is slower than the convergence on the grid. The
evaluations of the proposed estimators for β(υ), VE(υ) and CV(υ) and their respective
estimators of the standard deviations under some of the simulation models are presented in
Figure 1 and Figure 2. The plots of the pointwise coverage probabilities for VE(υ) and for CV
(υ) are given in Figure 3. These plots are based on n = 500 and h = 0.1.

Now we demonstrate with a simulation example that the adoption of a standard method for
testing the vaccine efficacy that ignores the mark is inefficient and can be misleading. We
consider a special case of the model discussed in the Introduction, with λ(t, υ|z = 0) = 1 and λ
(t, υ|z = 1) = 2υ, for t ≥ 0, 0 ≤ υ ≤ 1. The covariate z is again a treatment indicator taking values
0 and 1 with probability of 0.5 for each value. The marginal hazards model ignoring the mark
is therefore λ(t|z = 0) = 1 and λ(t|z = 1) = 1, for t ≥ 0. The rest of the simulation setup such as
the percentage of censorship, the kernel function and the bandwidth is the same as for the
previous models. The model considered here represents both a proportional mark-specific
hazards model for λ(t, υ|z) and a proportional hazards model for λ(t|z) = λ0(t) exp(βz), with the
mark-specific vaccine efficacy VE(υ) = 1 − 2υ and the marginal VE = 1 − exp(β) = 0. The
standard Wald test, denoted by Tw, under the marginal Cox model is often used to test for the
vaccine efficacy. As expected, the standard Wald test shows no power (Table 3). It is incapable
of revealing any vaccine efficacy or that the vaccine efficacy depends on the mark, thus missing
the important scientific finding that the vaccine protects against viruses with smaller mark
values (V < 0.5) and increases risk of infection with viruses with larger mark values (V > 0.5).
The example we constructed here shows the weakness of using the standard approach that
ignores the mark and is what motivates the present research.
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4. Application
The first preventive HIV vaccine efficacy trial was carried out in North America and The
Netherlands, and enrolled 5403 HIV-negative volunteers at risk for acquiring HIV infection
[4]. Volunteers were randomized in a 2:1 ratio to receive a recombinant glycoprotein 120
vaccine (AIDSVAX) or placebo, and were monitored for HIV infection at semi-annual HIV
testing visits for 36 months. The primary objective was to assess VE using the standard Cox
model, and a secondary objective was to test H10: VE(t, υ) = 0 and H20: VE(t, υ) = VE(t) for
three different mark variables V defined in terms of the percent mismatch of aligned amino
acid sequences (for each infecting HIV sequence compared to the HIV sequence [named
GNE8] contained in the AIDSVAX construct) in three subregions of HIV-gp120. For brevity,
in this article we consider only one mark V, defined as the percent mismatch of amino acids in
the whole gp120 region (581 amino acids long), where all possible mismatches of particular
pairs of amino acids (e.g., A versus C) are weighted by the estimated probability of interchange
[13]. The distance is based on the gp120 region because this region contains neutralizing
epitopes that potentially can induce anti-HIV antibody responses that prevent HIV infection
[22]; the vaccine was designed to protect by stimulating high titer antibodies that neutralize
exposing HIVs. Of the 368 individuals infected during the trial, 32 had missing marks. Of the
remaining 336 samples, all marks were unique (217 vaccine; 119 placebo).

The vaccine efficacy is estimated and tested by adjusting for two covariates: age (ranging 18–
62 years with mean of 36.5) and behavioral risk score (taking values 0–7) as defined in [4]. It
is relevant to adjust for these covariates because they predict infection rate and because trial
participants with different values of these covariates may be exposed to HIV strains with
different distributions of V. Both covariates are considered as continuous variables. The
histograms of the rescaled mark values, ages in years and behavioral risk scores are plotted in
Figure 4. We denote the treatment indicator by z1 (z1 = 1 for the vaccine and z1 = 0 for the
placebo), age by z2 and behavioral risk score by z3, and denote the corresponding coefficient
functions by β1(υ), β2(υ) and β3(υ). Fitting model (2) with h = 0.3, the plots of the estimates
for β1(υ), β2(υ) and β3(υ) and their pointwise confidence bands are given in Figure 5. The plots
of  with their corresponding pointwise confidence bands adjusting for the two
covariates z2 and z3 are given in Figure 6.

Adjusting for age and behavioral risk score, the Wald test statistic for testing the marginal VE
= 0 using the standard Cox model is −0.978, yielding a p-value of 0.328 for the two-sided
alternative and 0.164 for the monotone alternative. Our test with the test statistic  for H10:
VE(υ) = 0 for all υ versus the general alternative H1a yields a p-value of 0.1532. The p-values

for testing against the monotone alternative H1m are 0.0916 for  and 0.0228 for . These
results give some, albeit weak, evidence of nonzero vaccine efficacy for at least one mark
value; see Figure 6.

In addition, adjusting for age and behavioral risk score, we conducted the tests to evaluate
whether the vaccine efficacy varies with the mark. The p-value for testing H20 that VE(υ) does
not depend on υ versus the general alternative H2a is 0.2067 for the test statistic . The p-

value for testing for the monotone alternative H2m is 0.9363 for the test statistic  and 0.9047

for the test statistic . These p-values are expected given the plots in Figure 6 where 
shows some tendency to increase with υ.
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5. Discussion
This article developed inference techniques for the proportional hazards model with a
continuous mark variable, including nonparametric methods for estimation and testing of mark-
specific regression functions. These techniques can be used to estimate mark-specific vaccine
efficacy (VE(υ)) and cumulative mark-specific vaccine efficacy (CV(υ)) with simultaneous
confidence bands, and to test hypotheses for VE(υ), while adjusting for time-dependent

covariate effects. The testing procedures based on the statistics  showed greatest
power in simulations and are recommended for testing VE(υ) = 0 for all υ and for testing VE
(υ) independent of υ, respectively.

An alternative approach to the continuous mark-specific PH model would be a similar model
that treats the mark variable as ordinal categorical. We focused on a continuous mark because
(i) it most naturally suits the HIV vaccine application, as the choice of K bins for categorizing
the marks would be arbitrary and (ii) testing β(υ) = β can often be done with greater power
than testing equality of the cause-specific regression coefficients β1 = … = βK.

As is well known for a discrete mark-specific hazard function, the interpretation of the
continuous mark-specific hazard function λ(t, υ) is restricted to actual study conditions, that
is, it is the instantaneous rate of failure in the presence of all of the circulating competing risks
(i.e., is a “crude” hazard in the terminology of Prentice et al. [15]). However, often the main
scientific interest is in the “net” mark-specific hazard, the instantaneous rate of failure by mark
υ in the absence of any other competing risks, but unfortunately this parameter is not identified
except under untestable assumptions such as mutual independence of all of the notional (latent)
mark-specific failure times [19]. This problem necessitates careful interpretation of inferences
in the mark-specific PH model.

For the HIV vaccine trial example, the crude mark-specific hazard can be factored as

(14)

where λE(t, υ|z) is the intensity of exposure to strain υ for participants with covariates z and
λPC(t|υ, z) (the “per-contact” transmission hazard) is the same as λ(t, υ|z) except that it further
conditions on the (unobserved) presence of exposure to a virus with genetic distance υ during
[t, t + dt). Exposure can arise from unprotected sex or sharing a needle with an individual
infected with strain υ. Therefore the identified parameter measures a mixture of vaccine/
placebo-group differences in mark-specific exposure rates and in conditional mark-specific
per-exposure transmission probabilities, whereas biological interest is in

as a measure of vaccine efficacy. However, as data are not available for estimating the relative
intensity λE(t, υ|1, z2)/λE(t, υ|0, z2), our approach is to use

as the target estimand, and assume identical exposure rates between the two groups, so this
target has the same interpretation as VEPC(t|υ, z2). Reliance on this assumption demonstrates
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the value of including covariates z2 that predict mark-specific exposure into the mark-specific
PH model: the richer the covariate information the more likely VE(t, υ|z2) reflects biological
vaccine efficacy. Gilbert, McKeague and Sun [6] provided further discussion of the
interpretation of mark-specific hazard ratios.

The usefulness of our approach relies on the validity of the mark-specific proportional hazards
model. Lin, Wei and Ying [10] developed goodness-of-fit tests for the standard Cox model
based on martingale residuals, and their tests can be extended to the present setting by using
the mark-specific martingale residuals

(15)

for i = 1,…, n. These residuals may be interpreted as the difference at time t between the
observed and the predicted number of events with mark less than υ for the ith subject, and are

informative about model misspecification. It can be checked that .
This property is similar to that in the standard Cox model, where the sum of the martingale
residuals is exactly zero. The difference here is caused by the kernel smoothing in a
neighborhood of υ. Because β(υ) is treated nonparametrically, the checking of the model (2)
needs further development and has additional issues related to the bandwidth. This would need
a thorough treatment that is beyond the scope of the present paper.

Finally, we caution that the method proposed here requires large sample sizes to work well as
demonstrated in the simulation study. This is the result of β(υ) being treated nonparametrically:
the estimation of β(υ) utilizes only the observed failures with marks in a neighborhood of υ.
Although this does not cause a problem in our application to the first preventive HIV vaccine
trial (which has a sample size of 5403), one needs to be careful in applying the method to
situations with small sample sizes.

APPENDIX
The following lemma is an extension of Theorem 5.7 of Van der Vaart [20] and will be used
to prove the uniform consistency of β̂(υ).

LEMMA A.1
Let Qn(υ, θ) be random functions and let Q(υ, θ) be a fixed function of (υ, θ) ∈ [a, b] × Θ, Θ
⊂ ℝp. Let β(υ) be a fixed function of υ ∈ [a, b] taking values in Θ. Assume that

 and that for every ε > 0 there exists an η > 0 such that
sup‖θ−β(υ)‖>ε Q(υ, θ) < Q(υ, β(υ)) − η for υ ∈ [a, b]. Then for any sequence of estimators β̂(υ),

with Qn(υ, β̂(υ)) > Qn(υ, β(υ)) − op(1) uniformly in υ ∈ [a, b], we have  uniformly
in υ ∈ [a, b].

PROOF
For every ε > 0, there exists an η > 0 such that
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Since , uniformly in υ ∈ [a, b], we have Qn(υ,
β̂(υ)) > Q(υ, β(υ)) − op(1), uniformly in υ ∈ [a, b]. It follows that

whose probability goes to 0 by the uniform convergence of Qn(υ, θ) to Q(υ, θ). Hence P
{supυ ‖β̂(υ) − β(υ)‖ > ε} → 0.

The following lemma is used to prove Theorem 3 and Theorem 4. Let

.

LEMMA A.2

Under conditions (A.1)–(A.4), , uniformly in (t, u) ∈ [0, τ] × [0, 1],
and n−1/2 M(t, υ) converges weakly to a mean-zero continuous Gaussian random field G(t, υ),
(t, υ) ∈ [0, τ] × [0, 1], with independent increments and

.

PROOF
We treat ωi = (Xi, δi, Vi), i = 1,…, n, as a random sample from a probability distribution P on
a measurable space ( , ), with  = [0, ∞) × {0, 1} × [0, 1] and  its Borel σ-field. Let ℱ
be the class of all indicator functions ft, υ:  → R, where ft, υ(ωi) = I([0, t] × {1} × [0, υ])(ωi)

= I(Xi ≤ t, δi = 1, Vi ≤ υ), for 0 ≤ t ≤ τ, 0 ≤ υ ≤ 1. Then . Let
‖ft, υ‖P,r = (P|ft, υ|r)1/r be Lr(P)-norm of ft, υ.

Let 0 = t0 < t1 < … < tK = τ and 0 = υ0 < υ1 < … < υJ = 1 be partitions of the intervals [0, τ]
and [0, 1]. Define the bracketing functions lkj = Ni(tk−1, υj−1) and ukj = Ni(tk, υj), for k = 1,…,
K, j = 1,…, J. Then for any ft, υ ∈ ℱ, there is a bracket [lkj, ukj] such that ft, υ ∈ [lkj, ukj]. And

where C1 and C2 are some positive constants. For any ε > 0, choose the grid points such that
tk − tk−1 < ε and υj − υj−1 < ε. Then ‖ukj − lkj‖P,1 ≤ [C1 + C2]ε. Hence, the bracketing number
N[·](ε, ℱ, L1(P)) is of the polynomial order (1/ε)2. By the Glivenko–Cantelli theorem (Theorem

19.4 of van der Vaart [20]), , uniformly in (t, υ) ∈ [0, τ] × [0, 1].
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Next, consider the processes {Mi(t, υ), 0 ≤ t ≤ τ, 0 ≤ υ ≤ 1}, i = 1,…, n, as a random sample
from a probability distribution P on a measurable space ( , ). Let ℱ be the class of
coordinate projections ft, υ:  → R, where ft, υ(Mi) = Mi(t, υ), for 0 ≤ t ≤ τ, 0 ≤ υ ≤ 1. The process
{Mi(t, υ), 0 ≤ t ≤ τ, 0 ≤ υ ≤ 1} is determined by the {Xi, δi, δi Vi, Zi}.

Again, let 0 = t0 < t1 < … < tK = τ and 0 = υ0 < υ1 < … < υJ = 1 be the partitions of the intervals
[0, τ] and [0, 1]. Define the bracketing functions

, for k = 1,…, K, j = 1,…, J. Then for any ft, υ ∈ ℱ, there is a bracket [lkj, ukj] such that ft, υ ∈
[lkj, ukj]. The bracket size is

where C1 and C2 are some positive constants. For any ε > 0, choose the grid points such that
tk − tk−1 < ε and υj − υj−1 < ε. Then ‖ukj − lkj‖P,2 ≤ [C1 + C2]1/2ε1/2. Hence, the bracketing
number N[·](ε1/2, ℱ, L2(P)) is of the polynomial order (1/ε)2. Thus, N[·](ε, ℱ, L2(P)) is of the
polynomial order (1/ε)4. So the bracketing integral J[·](1, ℱ, L2(P)) < ∞. By the Donsker
theorem (Theorem 19.5 of Van der Vaart [20]),

 converges weakly to a mean-zero Gaussian
process G(t, υ), (t, υ) ∈ [0, τ] × [0, 1], which can be constructed to have continuous paths by
Theorem 18.14 and Lemma 18.15 of van der Vaart [20].

Now we show that G(t, υ) has independent increments. Note that for t1 ≤ t2 and υ1 ≤ υ2, the
covariance of G(t1, υ1) and G(t2, υ2) − G(t1, υ1) is E{Mi(t1, υ1) × (Mi(t2, υ2) − Mi(t1, υ1))}. By
Aalan and Johansen [1], Mi(t, υ1) and Mi(t, υ2) − Mi(t, υ1), 0 ≤ t ≤ τ, are orthogonal square
integrable martingales for 0 ≤ υ1 ≤ υ2 ≤ 1. It follows that

Hence G(t1, υ1) and G(t2, υ2) − G(t1, υ1) are independent.

PROOF OF THEOREM 1—It is easy to check that the conditions of Lemma 1 of Sun and
Wu [18] are satisfied under Condition A. It follows that W ̃A(υ) converges weakly to a vector
of continuous mean-zero Gaussian random processes, WA(υ), υ ∈ [a, b]. Now we show that
WA(υ) has independent increments. Let

. Then .
For a ≤ υ1 ≤ υ2 ≤ b, the covariance matrix of WA(υ1) and WA(υ2) − WA(υ1) is equal to E{wi(τ,
υ1)(wi(τ, υ2) − wi(τ, υ1))T}. Since Mi(t, υ1) and Mi(t, υ2) − Mi(t, υ1), 0 ≤ t ≤ τ, are orthogonal
square integrable martingales, it follows that wi(t, υ1) and wi(t, υ2) − wi(t, υ1), 0 ≤ t ≤ τ, are
orthogonal square integrable martingales. Hence E{wi(τ, υ1)(wi(τ, υ2) − wi(τ, υ1))T} = 0. So
WA(υ), υ ∈ [a, b], is a vector of mean-zero Gaussian random processes with independent
increments.

Further, the covariance matrix of WA(υ) is
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This completes the proof of Theorem 1.

PROOF OF THEOREM 2—We shall prove Theorem 2 by verifying the conditions of Lemma
A.1.

Let

Then by Condition A, ηn(υ, θ) = ξn(υ, θ) + Op(n−1/2) and

uniformly in (υ, θ) ∈ [0, 1] × [−M, M], for M > 0. By application of the Glivenko–Cantelli and
Donsker theorems, similarly to the proofs of Lemma A.2 and Theorem 1, ξn(υ, θ) = ξ(υ, θ) +
Op(n−1/2), uniformly in (υ, θ) ∈ [0, 1] × [−M, M], with

It follows that Qn(υ, θ) = Q(υ, θ) + Op(n−1/2 h−1), uniformly in (υ, θ) ∈ [a, b] × [−M, M], where

Now we show that β(υ) is the well-separated point of maximum of Q(υ, θ) for υ ∈ [0, 1]. Note
that
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We have ∂Q(υ, β(υ))/∂θ = 0, and for every ε > 0 there exists an η > 0 such that sup‖θ−β(υ)‖>ε Q
(υ, θ) < Q(υ, β(υ)) − η for υ ∈ [a, b], under condition (A.3), by Taylor expansion and continuity.
Further, since

uniformly in (υ, θ) ∈ [a, b] × [−M, M], and −M ̃ < β(υ) < M ̃ for a ≤ υ ≤ b for some M ̃ < M, we
have for every α > 0 there exists an n0 such that P(−M ≤ β̂(υ) ≤ M, a ≤ υ ≤ b) > 1 − α for n ≥
n0.

Therefore, for every ε > 0,

as n → ∞, by the previous checking of the conditions of Lemma A.1 together with Qn(υ, β̂(υ))
≥ Qn(υ, β(υ)). Since α is arbitrary, we have P(supa≤υ≤b ‖β̂(υ) − β(υ)‖ > ε) → 0.

PROOF OF THEOREM 3—In the proof of this theorem, we set β = β(υ) for simplicity. Note
that under Condition A, using a second-order Taylor expansion for λ(t, u|Zi(t)) in the
neighborhood of υ, we have

uniformly in υ ∈ [0, 1]. It follows that

uniformly in υ ∈ [0, 1].

Next, we show that for each υ, n−1/2 h1/2U(υ, β) converges weakly to a normal distribution. By
Lemma A.2, n−1/2 M(t, υ) converges weakly to a mean-zero Gaussian process. By Condition
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A, ‖S(j)(t, β) − s(j)(t, β)‖ = op(n−1/2+δ), uniformly in t for j = 0, 1, for 0 < δ < 1/2. Note that
n−1/2+δ h−1/2 = o(1) for δ = 1/4 as nh2 → ∞. We have h1/2 Kh(u − υ) ‖S(j)(t, β) − s(j)(t, β)‖ goes
in probability to zero. Applying Lemma 2 of Gilbert, McKeague and Sun [6], we have

(16)

where W ̃I(υ) is defined in (6) with A = I and a = 0.

Since  by Theorem 1, by the almost sure representation theorem ([17], page
47), there exist  on some probability space that have the same distributions

and sample paths as W ̃I(υ) and WI(υ), respectively, such that  uniformly in υ

∈ [0, 1]. Hence  by integration by
parts since K(·) has bounded variation. It follows that

Since  is a Gaussian martingale with covariance matrix of

 is a mean-zero Gaussian random vector with

covariance matrix equal to . Hence,

. By the Slut-sky theorem,
n−1/2h1/2U(υ, β) converges weakly to N(0, ν0∑(υ)) as nh2 → ∞ and nh5 → 0.

Note that , where β*(υ) is on the line segment
between β̂(υ) and β(υ). By Condition A and the uniform consistency of β̂(υ) on υ ∈ [a, b] ⊂

(0, 1), we have , uniformly in υ ∈ [a, b] for 0 < δ < 1/2. Hence,

(17)

uniformly in υ ∈ [a, b]. It follows that  as nh2 → ∞
and nh5 → 0.

PROOF OF THEOREM 4—From (16) and the first line of (17), we have, for υ ∈ [a, b],
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Exchanging the order of integration and by the compact support of the kernel function K(·) on
[−1, 1], we have

(18)

By Theorem 1, the process W ̃I(x) converges weakly to a mean-zero Gaussian process with

continuous paths. Under the assumption (A.4),  has bounded variation
and converges uniformly to ∑(x)−1 for x ∈ (a + h, υ − h). By Lemma 2 of Gilbert, McKeague

and Sun [6], the first term in (18) is . Similar arguments lead to the
second and the third terms in (18) to be op(1). Hence

which converges weakly to a p-dimensional mean-zero Gaussian martingale, W∑(υ)−1(υ), with
continuous paths. The covariance matrix of W∑(υ)−1(υ) equals to

.
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FIG. 1.
Plots of estimates for β(υ), VE(υ) and CV(υ) under the models M1, M2, M5 and M6 for n =
500, h = 0.1. The solid dark lines are the true functions and the dashed lines are the averages
of the estimates based on 1000 repetitions. The gray lines are the corresponding estimates for
β(υ), VE(υ) and CV(υ) of 50 random samples.
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FIG. 2.
Plots of the standard errors under the models M1, M2, M5 and M6, based on n = 500, h = 0.1.
The solid lines are the averages of the estimates of the standard deviations of β̂(υ),

, while the dashed lines are the sample standard deviations of β̂(υ),
, based on 1000 repetitions. The gray lines are the corresponding estimates

for the standard deviations of β̂(υ),  of 50 random samples.
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FIG. 3.
Plots of the pointwise coverage probabilities for VE(υ) (gray lines) and for CV(υ) (solid lines),
based on n = 500, h = 0.1 and 1000 repetitions. The models on the left panel are M1, M2 and
M3. The models on the right panel are M5, M6 and M7.
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FIG. 4.
Histograms for the observed mark values, ages in years and behavioral risk scores. The left
panel is for the vaccine group and the right panel is for the placebo group.
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FIG. 5.
Plots of the estimated regression coefficients β1(υ), β2(υ) and β3(υ) and their 95% pointwise
confidence bands for the vaccine trial data with h = 0.3.
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FIG. 6.
Plots of the estimates of VE(υ) and CV(υ) and their confidence bands for the vaccine trial data
with h = 0.3. The dashed lines are 95% pointwise confidence bands and the dotted lines are
95% simultaneous confidence bands.
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