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Summary
Motivated from the problem of testing for genetic effects on complex traits in the presence of gene-
environment interaction, we develop score tests in general semiparametric regression problems that
involves Tukey style 1 degree-of-freedom form of interaction between parametrically and non-
parametrically modelled covariates. We find that the score test in this type of model, as recently
developed by Chatterjee and co-workers in the fully parametric setting, is biased and requires
undersmoothing to be valid in the presence of non-parametric components. Moreover, in the presence
of repeated outcomes, the asymptotic distribution of the score test depends on the estimation of
functions which are defined as solutions of integral equations, making implementation difficult and
computationally taxing. We develop profiled score statistics which are unbiased and asymptotically
efficient and can be performed by using standard bandwidth selection methods. In addition, to
overcome the difficulty of solving functional equations, we give easy interpretations of the target
functions, which in turn allow us to develop estimation procedures that can be easily implemented
by using standard computational methods. We present simulation studies to evaluate type I error and
power of the method proposed compared with a naive test that does not consider interaction. Finally,
we illustrate our methodology by analysing data from a case-control study of colorectal adenoma
that was designed to investigate the association between colorectal adenoma and the candidate gene
NAT2 in relation to smoking history.
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1. Introduction
Modern genetic association studies often focus on discovery of susceptibility loci, i.e.
identification of genetic variants that are associated with the trait under study. The risks of
multifactorial traits, such as cancer, however, are determined by complex interactions between
genetic and environmental exposures and the chance for discovery of the underlying
susceptibility genes can be substantially reduced if the possibility of heterogeneity in genetic
effects due to interactions is ignored. Thus, in recent years, there has been increasing attention
in omnibus testing of genetic main effects and gene-environment or gene-gene interactions for
detection of susceptibility genes for complex traits. Clearly, tests of association incorporating
interactions require larger degrees of freedom than those which are based only on main effects.
When the number of extra degrees of freedom required is relatively small, recent studies have
shown that the omnibus tests can be a robust and powerful approach for detecting genetic
association irrespectively of whether certain specific forms of interactions are present or not
(Chatterjee et al., 2006; Kraft et al., 2007). However, if the required number of degrees of
freedom is large, then the omnibus tests can have poor power. Thus parsimonious modelling
of gene-gene and gene-environment interactions should be considered for construction of
powerful omnibus tests.

Chatterjee et al. (2006) proposed the use of a Tukey style 1 degree-of-freedom model for
interaction for testing the genetic association of a disease with a set of genetic variants, such
as tagging single nucleotide polymorphisms (SNPs) in a candidage gene, that may potentially
interact with another set of genetic variants or/and with one or more environmental exposures.
SNPs represent a natural genetic variability at high density in the human genome. A genetic
locus corresponding to an SNP has two possible alleles (states), namely the normal and the
variant. The SNP-genotype data for a subject can have three possible values and are often coded
numerically as the number of variant alleles that the subject carries on the pair of homologous
chromosomes that are inherited from his or her parents.

In this paper, we shall consider extending the work of Chatterjee et al. (2006) focusing on the
problem of gene-environment interaction. Thus, for example, if D denotes the binary indicator
of a disease outcome, X denotes a ‘design matrix’ that is associated with a set of genetic variants
G, Z denotes the desig matrix that is associated with an environmental exposure of interest and
S denotes a set of additional cofactors, such as age and sex, then the risk of the disease can be
modelled by using Tukey’s form of gene-environment interaction as

(1)

where H(·) is the logistic distribution function. Unlike in the standard logistic regression model
where potentially a separate interaction parameter is allowed between each pair of design
elements of the genetic and environmental factors, in model (1), a single parameter (γ) is used
to capture interactions. Moreover, in model (1), the omnibus null hypothesis of interest can be
simply stated as β0=0 under which both genetic main effects and gene-environment interactions
disappear from the model. A complication, however, is that, under β0=0, the parameter γ also
disappears from the model and hence is not identifiable from the data. Nevertheless, Chatterjee
et al. (2006) noticed that, for each fixed value of γ, model (1) can be used to construct a valid
score test for β0=0. They proposed to use maxima of such score statistics over a range of the
parameter γ as the final test statistics for testing β0=0. They observed that the score test has
particular computational advantages, because under the null hypothesis model (1) reduces to
a standard logistic regression model involving only main effects of Z and S.
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In this paper, we extend the work by Chatterjee et al. (2006) in two novel ways. First, we
consider modelling complex effects of continuous environmental exposures by using non-
parametric regression models. The problem is particularly motivated by the fact that modern
molecular epidemiologic studies often involve measurement of environmental exposures
through continuous biomarkers, the relationships of which with the disease can be highly
complex and non-linear. Thus for exmaple in the logistic context, we might consider the model

(2)

where θ0(·) is an unknown function. Second, we consider general semiparametric models with
possible repeated measures (Lin and Carroll, 2006), where the effects are given through terms
roughly of the form on the right-hand side of model (2). In particular, we assume that, for each
subject or cluster i, there are j=1,. . . , J observations (Yij, Xij, Sij, Zij). We write Ỹi=(Yi1, . . . ,,
YiJ) and work with a criterion function

(3)

where a criterion function could mean either an actual likelihood function, a composite
likelihood function, i.e. one that is a likelihood function for a reduced set of data, or a working
independence likelihood function. In particular, criterion functions have scores in the
parameters (β0, η0, ζ0, θ0) that have mean 0 given appropriate subcomponents of

. The case of no repeated measures as in model (1) occurs when J=1.

Our interest is in testing for the hypothesis of the form H0 : β0=0. As in Chatterjee et al.
(2006), it is natural to use a score testing approach to this problem to avoid numerical difficulty
that is associated with parameter estimation under general models of the form (1) and (2). In
particular, we note that estimation of γ in these models can be numerically unstable because
of lack of identifiability of this parameter under β0=0. This also means that γ cannot be
consistently estimated at contiguous alternatives. In practice, even in fully parametric models,
this lack of identifiability means that estimating γ is numerically instable, leading to non-
convergence if its range is not restricted.

Following Chatterjee et al. (2006), we propose to perform score-type tests for eadh value of
γ and then to maximize these tests over an interval of γ-values, and to use numerical devices
to create levels of significance. It is possible to create the score statistic directly, and to apply
the asymptotic expansions that were developed by Lin and Carroll (2006) to analyse these
statistics. However, two problems arise.

a. The first problem is that the direct score statistic requires undersmoothing for the non-
parametric estimation of θ0(·) in expression (3). By modifying the directly calculated
score statistic in a suitable manner using a profile argument, we shall show how to
create test statistics that lose no local power yet allow regular smoothing, such as
cross-validation.

b. The second problem to overcome is that, in the repeated measures case that J>1, the
distribution of the profile score statistic depends on random variables that are formed
as solutions to integral equations. Rather than go about this problem directly and solve
the integral equation, which would be extremely difficult, we show that the crucial
terms can be estimated by using nothing more than the Gaussian repeated measures
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algorithm of Wang (2003); see also Lin et al. (2004) for a non-iterative solution and
Huggins (2006) for another simple computational device.

Thus, we shall develop a test statistic that is straightforward to compute and does not require
undersmoothing, and the method also allows a simple implementation when the score test is
maximized over a range for γ.

Our methodology is easiest to understand in the non-repeated measures case that J=1, and we
take this up in Section 2. The repeated measures case is described in Section 3. Section 4 gives
the results of a simulation study. Here we find that our maximized tests lose little power when
there is no interaction and can gain great power advantages over a main effects test when there
are interactions. Section 5 illustrates an application of the proposed method for omnibus testing
of the effects genetic variants in the NAT2 gene and their interactions with the number of years
since stopping smoking on the risk of colorectal adenoma by using a case-control study that
was conducted with the prostate, lung, colorectal and ovaraian cancer screening trial (Hayes
et al., 2000).

We close this section with a few remarks about identifiability. The models that we study are
examples of a problem where γ is a nuisance parameter and, under the null hypothesis (5) that
β0=0, the nuisance parameter is unidentified. Model (1) is of course reminiscent of Tukey’s 1
degree-of-freedom test for interaction (Tukey, 1949). However, unlike in that context, in our
problem the parameter γ is a nuisance parameter and is not of primary interest. The method of
Chatterjee et al. (2006) is more closely akin to the basic suggestion in Davies (1987), namely
to fix the nuisance parameter, to compute an appropriate test statistic and then to maximize
that test statistic over a range of values for the nuisance parameter. Thus, one way to think
about our testing procedure is as the appropriate, efficient (both computationally and in terms
of power) way of implementing the basic approach of Davies (1987) in our context, while
taking care to eliminate the concerns of undersmoothing and solution of integral equations that
arise from a less targeted approach.

2. Testing without repeated measures
2.1. Data and notation

The data consist of a response Y, parametrically modelled covariates S and X, the latter possibly
interacting with a non-parametrically modelled covariate Z. We consider a general log-
likelihood or criterion function

(4)

where β0 and η0 are the main effects, θ0(·) is an unknown function, γ is the interaction effect
and ζ0 are nuisance parameters. In this section, we are interested in testing the parametric
hypothesis

(5)

As described in Section 1, Chatterjee et al. (2006) addressed a similar problem for a fully
parameteric model where Z is also modelled parametrically. They used a score-based testing
procedure to test H0. We generalize their idea for the general semiparametric model that is
given in expression (4). We describe below the major steps to derive the test statistic for testing
hypothesis (5).
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In what follows, we use a simple subscripting convention for derivatives of the log-likelihood.
Thus, with (•), we set

etc. Thus, in an abuse of notation we do not indicate in the notation that these partial derivatives
do not depend on the parameters and covariates only via STη(Z)+XTβ{1+γ θ(Z)}.

2.2. Estimation of parameters under the null hypothesis
Here we show how to estimate the parameters and the function at the null hypothesis.

The strength of score tests is that we fit the model under the null hypothesis. Under the null
hypothesis, the log-likelihood or criterion function for the model is written as

, a standard form that is easy to handle. The log-likelihood under the
alternative is much more difficult to deal with numerically because of the interaction.

By definition of a log-likelihood or criterion function, at the null hypothesis,

(6)

The first step of the process is to estimate the function θ0(·) for any fixed value of δ=δ*=
(η*ζ*). We shall use kernel methods because of their convenient theory, bu this step can be
modified in practice by using any smoother. The resulting estimate is denoted as θ^(· ,δ*). Let
K(·) be a smooth symmetric density function with bounded support, let h be a bandwidth and
let Kh (z)=h-1 K(z/h). Define ϕk=∫ Zk K(z) dz and Gh (z)=(1, z/h)T. We follow Lin and Carroll
(2006) to estimate the parameters under hypothesis H0: for any fixed value of δ=δ*, estimate
θ0(z) by solving the local likelihood equation

for α^0 and set θ^(z, δ*).

The second step in the process is now smoothing method independent. To estimate δ0=
(η0,ζ0) maximize in δ the function

the so-called profile method, which solves
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where θ^η(Zi, δ) and θ^ζ(Zi, δ) are the derivatives of θ^(Zi, δ) with respect to η or ζ respectively.
Call the resulting estimate δ^.

2.3. The score function and asymptotic theory
2.3.1. Derivation—One approach to developing a score statistic is to fix the function θ(·), to
derive the score statistic and then to plug in estimates of nuisance parameters and the function
θ(·). This does not work well because the function estimate itself needs profiling, and indeed
this approach requires undersmoothing for its validity.

In contrast, our test statistic is a particular implementation of the profiled log-likelihood or
criterion function, which is derived as follows. In general, the log-likelihood function for an

observation is . Recall that δ(η, ζ). For given (β, δ), let θ
(Z, β, δ) be the profile function that solves

(7)

Define X̃pro=X{1+γ θ(Z,0,δ)}+θβ(Z,0,β), where θβ(Z,β,β)=(∂/∂ β)θ(Z, β, δ). The profiled log-

likelihood is . Differentiating it with respect to
β and evaluating at the null hypothesis β=0, the profiled (efficient) score is easily seen to be

.

In addition, differentiating equation (7) with respect to β=0 and evaluating it at β=0 and
δ=δ0 shows that X̃pro={1+γθ0(Z)} X̃, where

We thus propose the following profiled score statistic for β0:

(8)

where X̃i, est is an estimated version of X̃i, with the terms to be estimated in X̃ obtained by
separate non-parametric regressions in the numerator and denominator. The normalization by
n-1/2 is conveient for the asymptotic theory.

2.3.2. Theoretical results—Let  and make the definitions
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The main result of this section justifying our methodology is stated below. Technically, a
precise argument requires little more than that the linear expansions for the parametric and
non-parametric parts that are given in Lin and Carroll (2006) hold to order op(n-1/2), the latter
uniformly.

Result 1: Suppose that we are testing for H0:β0=0. Assume that h α n-α with 1/3 ≤ α ≤ 1/5.
Then, for any fixed γ, the score function for β0 can be written as

In addition, assume that, for any γ1 and γ2,  is finite. Then, under
the hypothesis that β=0  as a function of γ ∈ [L, R] converges weakly to a Gaussian
process  with mean 0 and covariance function .

Remark 1: There are two methods that can be used to estimate the covariance matrix of the
estimated score.

a. First, suppose as in logistic regression that there are no nuisance parameters ζ0, and
that  is a log-likelihood function and not a general criterion function. Then we

can write  with

, where

Let  be the estimated version of  This estimated version requires the
definition of X̃i, S̃i and additional non-parametric regressions, which are easily

accomplished via kernel or spline methods. Further, let  be the
conditional information matrix for θ under the null model. Then we estimate the
covariance matrix of 

b. In general,  can be estimated as the sample covariance matrix of the terms
Ψ̂i(γ), the estimated version of Ψi(γ). In likelihood problems, simplifications arise
becuase we can compute the covariance matrix of Ψ (·) given (X, Z, S) by using Fisher
information calculations.
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Remark 2: The validity and unbiasedness of the profiled score statistic primarily depend on
the use of x.̃ In simpler models, such as the Gaussian model, x=̃X - E(X|Z) is simply the residual
of a non-parametric Gaussian regression of each component of X on Z. In general, x ̃can be
thought of as the residual of a weighted non-parametric Gaussian regression of each component
of X on Z, where the error variance for weighting is taken to be . This interpretation
enables us to construct estimates of x ̃with considerable ease in many cases, especially in the
presence of repeated measurements; see Section 3 for details.

2.4. The test statistic and its implementation
Here we define our test statistic and show how to implement it in practice to compute critical
values.

The score test statistic, for a fixed value of γ, is then given by . We
compute the final test statistic as

Where L and R are prespecified lower and upper bounds of γ. Our approach is also related to
adaptive tests that have been developed for non-parametric alternatives of functions with
unknown smoothness; see for example Horowitz and Spokoiny (2001).

To implement the test, we need to simulate the null distribution of  and to obtain the desired
critical values. Oure method avoids the need to determine critical values for the maximum of
a function of a Gaussian process. Using result 1 we can generate realizations from the limiting
distribution of the score statistic as

where Ψ̂(γ) is Ψ(γ) evaluated at δ^ and θ^(z, δ ^) and , . . ., , are standard normal random
variates which are drawn independently of the data. The null distribution of  is then simulated

by generating  repeatedly. This methods is the
semiparametric version of a method that was discussed by Lin and Zou (2004) and Chatterjee
et al. (2006).

3. General interaction model with repeated measures
3.1. Data and notation

In this section we generalize the ideas that were presented earlier to the case when repeated
measures are present in the data. Repeated measures models can arise from various fields of
research, e.g. matched case-control studies, finance and epidemiology. The key feature of these
models is that the non-parametric function is evaluated for each of the repeated measurements.
Lin and Carroll (2006) developed kernel-based estimation procedures and investigated
asymptotic properties of the estimators in general semiparametric regression problems. We
shall use their results and methodology in our context.

In this section we set out the notation to be used.
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For simplicity only, we suppose that there are J repeated measurements for each individual.
Only obvious notational changes are requires for the more general case. Specifically, we
consider a log-likelihood or criterion function

Where  γ is the common interaction parameter
for each of the repeated measurements and ζ0 is the collection of all the nuisance parameters.
Then, with a slight abuse of notation in the first formula below,

see Lin and Carroll (2006) for more discussion. In Section 3.6, we describe methods for the
partially linear model when working independence among the errors is used, and hence weaker
conditioning assumptions are required.

Letting •={Ỹ, ν1 (β,θ,η),. . . ,, νJ(β, θ, ν),. . . ,, νJ(β,θ, ζ}, we define terms , ,
 and  in the same way as described in Section 2.1. Thus, for example,

3.2. Estimation under the null model
In this section, we display the method for estimation of parameters and the function θ(·), at the
null hypothesis.

Under the null hypothesis, the criterion function is given by

Let δ=(η, ζ). We estimate θ0· and δ0 under the null model by using methodology that was
proposed in Lin and Carroll (2006): for any fixed δ=δ*=(η*, ζ*), estimate θ0(z) by solving for
(α0,α1)

and setting θ^(z,δ*) Next, estimate δ by maximizing
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with respect to δ. This can be accomplished by implementing a profiling algorithm as in Lin
and Carroll (2006)

3.3. The score function and asymptotic theory
3.3.1. Derivation of the profile score—As we have seen in Section 2.3, our test statistic
will be based on the score function of a profiled log-likelihood. In this section, we derive the
profiled log-likelihood and the score function, but here the repeated measures aspect makes
the calculations less transparent and indeed leads to real issues of implementation. Let fj(z) be
the marginal density of Zj. Again, for any (β, δ), we define θ(z, β, δ) by the repeated measures
version of equation (7), namely the solution to the equation

(9)

Defining , the profiled log-likelihood

function is . Let 

and  be the derivatives of

 with respect to β and θ(Zk, β, δ) respectively.
Differentiating and setting β=0, the profiled score becomes

where, by differentiating equation (9) with respect to β and solving θβ(z, β, δ, γ) is the solution
of the functional integral equation

(10)

Then, for any fixed value of γ, the profiled score function for β0 evaluated at β0=0, β0=β^ and
θ(z)=θ^(z,δ^) is given by
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3.3.2. Asymptotic theory—Denote (•)={Ỹ, ω1 (β0, θ0, δ0),. . . , ωJ(β0, θ0, δ0) and denote
(•i) to be (•) evaluated at the ith observation. Do all calculations at the null model β0=0. Define
θδ(z,δ0) such that

Further define

Then we have the following result.

Result 2: Suppose that we are interested in testing H0 : β0=0. Assume that h α n-α where 1/3
≤ α ≤ 1/5. Then, for any fixed γ, the score function for β0 can be written as

In addition, assume that, for any γ1 and γ2  is finite. Then, under the
hypothesis that β0=0,  as a function of γ ∈ [L, R] converges weakly to a Gaussian
process  with mean 0 and covariance function V(γ1, γ2).

Using result 2, we construct the test statistic and the critical values in the obvious analogy with
Sections 2.3 and 2.4. To implement this in practice though, we must solve the integral equations
for θβ(·_ and θδ(·), which is very difficult to do. In the next section, we show how to estimate
these quantities without directly solving the integral equations.

3.4. Computation of θβ(·) and θδ(·)
The main difficulty in performing the score test is that, for each γ, we must compute θ^β (z,
0,δ0, γ) and θ^β (z, 0, δ0), the former of which is the solution of integral equation (10), making
implementation difficult. In this section we show that θβ(z, 0, δ0, γ) can be viewed as a
regression function and hence can be computed via a non-parametric Gaussian repeated
measures regression, which is easily computed and for which the exact solution is known; see
Huggins (2006) and Lin et al. (2004). The result can be stated as follows: details are in
Appendix A.
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Result 3—Define Qij =-Xij{1+γθ0(Zij)}. Let Vi be the J × J matrix with elements νijk. Then
θβ (z, 0, δ0, γ) is identified as the formal solution of the Gaussian repeated measures problem
that was solved by Wang (2003) and Huggins (2006) with ‘responses’ being the components
of Qij and the inverse of the covariance matrix being Vi

The algorithm for estimating θβ(·) now is quite simple. Define Q̂ij=-{1+γθ^(Zij,δ^). Then we
construct each component of θ^β(z,0,β^,γ) by performing a non-parametric repeated measures
regression under the null model with β=0, with the response being the appropriate component
of Q^ij and the inverse of the covariance matrix being V̂i=(ν^ijk), where

 and θ^(z,δ^) is computed under the null
model with β0=0.

We can estimate θδ(·) in a similar manner. We do this componentwise. Let  denote the

lth component of , and similarly for θδ,l(·). Define

. Then θδ,l(·) can be thought of as the Gaussian

repeated measures regression of  on Zij pretending that the inverse of the covariance matrix

for the ith cluster is Vi. In practice, we construct θ^δ,l(·) by using  and .

3.5. Special case: partially linear repeated measurement model
In this section we consider the partially linear Gaussian model as an example to demonstrate
our methodology. Specifically, we consider the model

where  has an N(0, Σ) distribution. We want to test for H0: β0=0. The asymptotic
theory is not affected by estimation of Σ, so here we assume that it is known.

Let Σ=(σjk)j,k=1,. . . ,,J and Σ-1=V=(vjk). Then the log-likelihood function is given by

where . Now we observe that, when β0=0,

For β0=0, θβ (z, 0, η0, γ) solves

(11)
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Hence the profiled score function is given by

Now we can construct the score test by using result 2.

Remark 3—Referring to Section 3.4, we observe that estimation of θβ(·) becomes much
simpler in this case. Using the fact that , we can construct θ^β(·) by performing
a non-parametric componentwise Gaussian repeated measures regression of Q̂k=-{1+γ θ^
(Zk,ν^) on Zk pretending that the error covariance matrix is Σ, where β0=0 is computed under
the null model with β0=0. Similarly, we can estimate θη(·) by performing a non-parametric
Gaussian repeated measures regression of -Sij on Zij by using Σ as the error covariance matrix.

3.6. Testing under working independence
In practice, often working independence is used to simplify the computations in the presence
of repeated measures. In this set-up, we pretend that there is no correlation among the data. In
our context, this leads to the assumption that σjk=0 for j ≠ k, and we work with the criterion
function

where . The use of this criterion function simplifies the

calculations to a great extent. For any generic random variable W, define 
with

Under the hypothesis that H0: β0=0, we then observe that now θβ(·) and θη(·) have closed form
expressions:

The profiled score statistic is given by

where . We can compute  by running a componentwise Gaussian
repeated measures regression on Xij and Zij by using the working independence set-up.
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Further define

Result 2 then translates to the following result.

Result 4—Assume that h α n-α where 1/3 ≤ α ≤ 1/5. Then, under the assumption of working
independence,

Define  and let  (γ) be the sample version. Under
the null hypothesis, we estimate the covariance matrix of  by

The score statistic, maximized over γ, is then given by

Using lemma 4 in Appendix A, we can now implement the score test by using the technique
that was described in Section 2.4. We start by generating

where , i=1, . . . ,, n, are independent random vectors that are generated from
an N(0,Σ ̂) distribution. We can form Σ̂ as the sample covariance matrix of the residuals

. The null distribution of  is then simulated by repeatedly generating

Remark 4—We reiterate that one needs to estimate  and  to implement the
score test. These quantities can be easily estimated by performing componentwise Gaussian
repeated measures regressions of Xij and Sij on Zij by using the working independence set-up.
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4. Simulations
4.1. Testing without repeated measures

For the simulation for the test for β0=0, we used the following conventions. We used 31 values
of γ in the range [-3, 3]. The variable Z=Uniform[-2, 2], whereas the function θ0 (z)=sin (2z)
is distinctly non-linear. In keeping with our data example, the sample size was n=1400.

We generated X in three ways:

a. as a bivariate standard normal random variable;

b. X=(X1, X2) where X1=Bernoulli(0.6) and X2=N(0, 1);

c. as two dummy variables. Thus, we first generated a standard normal random variable
r, and X1=I(r < -0.4) and X2=I(r>0.4).

We set β0=c(1, 1)T, where we set c=0.0, 0.01, . . . ,, 0.15 for power calculations. The true value
of γ was varied: γtrue=0,1,2. We ran simulations both with and without additional covariates
S: in the former case, we set S to be generated from a univariate N(0, 1) distribution and used
η0=1.

For each scenario, we ran 1000 simulated data sets. To estimate the level of significance, we
applied the method in Section 2.4 with 1500 replications. The Epanechnikov kernel was used
to carry out the computation. We used different bandwidths of the form h=κ std(Z)n-1/5 with
various values of κ ranging from 0.5 to 2. The results are very similar in each of those cases
and hence we report the results for κ=1 only. The results are displayed in Figs 1-3. There three
main conclusions are clear.

a. The test level of our method is near nominal, being 0.051 without S and 0.057 with
S in the model.

b. For the main effects model with γtrue=0, our maximized score-type test loses only
modest power compared with the efficient (in this case) main effects score test.

c. When there are interactions, our methods greatly dominate the main effects score test
as γtrue increases.

For comparison, we repeated the simulation by using penalized B-spline regression, using a
second-order B-spline with 10 basis functions and with a second-order difference penalty. The
smoothing parameter was chosen by generalized cross-validation. The results were very similar
to those obtained for kenrnel methods. The near equivalence of kernel and spline methods here
is no surprise, since there is evidence in Gaussian cases that smoothing splines are equivalent
to kernel methods (Silverman, 1984; Lin et al., 2004). Recently, Li and Ruppert (2008) showed
that penalized B-spline regression is also asymptotically equivalent to kernel regression
methods in the Gaussian case.

4.2. Testing with repeated measures
We use the following set-up for our simulations for testing β0=0. We generate samples from
the partially linear gaussian repeated measures model: for i=1, . . . , n and j=1, . . . , J,

with n=200 and J=3, where we take the true value of the parameter to be β0=c(1, -1)T and set
c=0.001, . . . , 0.06 for power calculation. We set τ0(z)=sin (2z) to be the true function. We
generated X from the standard bivariate normal distribution and Z from the Uniform[-2, 2]
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distribution. The error vectors (ε1, . . . , εJ)T are generated from a multivariate normal
distribution with covariance matrix σ=I + 0.6 (11T - I).

We use 11 values of γ in [0, 2] to compute the test statistic. The true values of γ that are used
to generate the data are taken to be γtrue=0, 1, 2. As in the previous simulation, we use the
Epanechnikov kernel with bandwidth h=κ std (Z)n-1/5 where the value of κ ranged from 0.5 to
2. In this case also, we observe that the results are very similar for each of the choices of
bandwidth and hence we report the results for κ=1. We generate 1000 data sets for each case
and for each data set we apply our method by using 1000 replications. The results are given in
Fig. 4. The level of our test is 0.051, which is very close to the nominal level of 0.05. It is
evident that, although our test loses very little power when γtrue=0, it achieves great power gain
in the presence of interaction as seen in cases where γtrue=1, 2.

We redid the simulation by using B-splines with 10 basis functions where the penalty parameter
is estimated at the null model by using generalized cross-validation. The results are nearly
identical of Fig. 4, as we would expect in the Gaussian case.

5. Data analysis
Chatterjee et al. (2006) illustrated application of their methodology by using a case-control
study for investigation of association between colorectal adenoma, a precursor of colorectal
cancer, and NAT2, a candidate gene that is known to play an important role in detoxification
of certain aromatic carcinogens in cigarette smoke. The study involved about 700 cases and
700 controls who were genotyped for six known functional polymorphisms related to NAT2
acetylation activity. The genotype data were used to construct diploytpe information, i.e. the
pair of haplotypes that the subjects carried along their pair of homologous chromosomes. The
frequency distribution of these diplotypes and associated acetylation phenotypes are shown in
Table 4 of Chatterjee et al. (2006). In principle, the diplotypes are not observed directly and
we can only assign diplotypes on the basis of the unphased genotype data. However, in many
instances such as this example, when we have tightly linked SNPs, the phase ambiguity is often
minimal, i.e. we can assign a very large proportion (greater than 95%) of the subjects a specific
diplotype with a very high probability (greater than 0.95). In such cases, it is esier just to remove
those few people for whom the diplotypes are more uncertain and to assume that for the rest
of the people the diplotypes are known. In our data set. we removed a small number of people
whose haplotypes were quite uncertain.

Chatterjee et al. (2006) considered an omnibus test that can account for interaction of NAT2
history with smoling history, defined as ever, former or never smokers. We consider a similar
application involving NAT2 diplotypes but model the effect of CIG_STOP (years since
stopping smoking) in a continuous fashion with non-parametric regression among smokers.
Because of a few high leverage values, we censored CIG_STOP at 45. In our analysis, the
cofactor S included gender and three indicator dummy variables for age level: between 60 and
65 years, between 65 and 70 years and more than 70 years. For modelling the effect of NAT2
diplotypes, we considered a series of 14 different analyses where in the kth analysis we compare
the risk that is associated with the k (k=1, . . . ,, 14) most common diplotypes in reference to
the rest, with the associated design matrix Xk being defined by k corresponding dummy
variables. To account for non-smokers in this analysis, we defined δ to be the indicator of
smoking (ever versus never) and considered the following model:

(12)
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Modifying our methods to handle this slightly more complex model is straightforward: details
are available from the authors.

Table 1 compares results of the proposed method for testing β2=0 on the basis of model (12)
with those for a test for only the corresponding main effects of the diplotypes, ignoring NAT2-
smoking interaction, i.e. assuming γ=0. We observe that, in each analysis, stronger evidence
of association is seen in our new test. For example, when the 12 most common diplotypes were
used, our method had a level of significance of 0.036 versus a level of significance of 0.214
for the main-effect-based test. Interestingly, when all 14 common diplotypes are used, the level
of significance of the test proposed was 0.066, which is quite close to that for the test that was
used by Chatterjee et al. (2006), also using all the 14 diplotypes, but accounting for interaction
with the categorical smoking history variable defined as never, former or current smoker.

6. Discussion
We have developed methodology for an efficient score test for genetic effect in general
semiparametric models that can account for gene-environment interaction with non-
parametrically specified environmental effects. The procedure proposed allows for repeated
measurements.

We proposed a profiled score statistic which can be performed by using standard bandwidth
selection procedures. We also found that these profiled score tests are efficient.

The main difficulty of performing the score test is that one must estimate a function which
itself is a solution of an integral equation that is difficult to solve. In the case of repeatedly
measured data, the solution generally does not a closed form expression and hence some sort
of numerical procedure is required for estimation. In this paper, we overcome this problem by
developing an easily implementable estimation procedure which does not involve solving
integral equations and can be performed easily via standard software. The key idea lies in the
fact that the target functions, based on their estimating equations, can be interpreted as Gaussian
repeated measures regressions.

Simulations that were presented in the paper show that the score tests proposed maintain the
desired type I error level, indicating that the asymptotic approximations work well for studies
such as ours. Moreover, both simulation studies and the data example indicate that the score
test proposed taking account of the interaction can achieve higher statistical power than naive
tests which ignore interaction altogether. Future research areas of interest include extension of
the score test to account for the interaction of the genetic factors with several different, but
biologically related, environmental factors, such as different biomarkers for a nutrient,
simultaneously. In principle, the score test can be extended by using generalized additive
models to account for the effect of several different continuous exposures. Further theoretical
development, however, is needed to establish the asymptotic theory for such procedures.
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Appendix A: Argument for result 1
For simplicity of notation, here we consider only the case that there are no nuisance parameters
ζ0. The more general case is a simple extension.
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To prove the results, we rely on several technical conditions that for brevity we do not state
here explicitly. These conditions are well known and standard in smoothing theory. Refer to
Claeskens and Van Keilegom (2003), Claeskens and Carroll (2007) and Lin and Carroll
(2006) among many others for the details of these assumptions. As stated just before result 1,
we require that the linear expansions for the parametric and non-parametric parts that were
given in Lin and Carroll (2006) hold to order op (n-1/2); the latter uniformly.

A.1. Expansion of 
Let θ(j) (·) be the jth derivative of θ(·) with respect to z0. Let fz(z0) be the density function of
Z. Make the definitions

Note that , and recall that

Then using Lin and Carroll (2006) we have that, uniformly in z0,

(13)

(14)

The score statistic for β is, via Taylor series,

where

By definition of X̃, it is easy to see that, to order op(1),
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where we have used equations (6) and (13). Also, using equation (14) and the definition of
 we obtain

The result now follows by collecting all ther terms. It is readily seen that the expansion is
uniform in γ∈[L, R].

A.2. Weak convergence
Weak convergence is trivial. Examining the form of the test statistic  in equation (8),
we see that it is linear in γ and can be written as Un + γVn, where (Un, Vn) are jointly
asymptotically normally distributed.

Appendix B: Argument for result 2
Define

and

where fj(z) is the density of Zj and fjk(z1, z2) is the bivariate density of (Zj, Zk), which are assumed
to have bounded support and are positive on the support. Let  be the solution to

Using the results of Lin and Carroll (2006) we obtain that, uniformly in z,

(15)
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(16)

Define

It is easily shown that

Using equation (16) and the fact that , it is easy to see that

Next, using equation (15), we now derive that, up to terms of op (1),

where we define

We now note that
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by deifnition of θβ(·) with β0=0 and hence C1 (z, γ)=C2 (z, γ)=0.

Finally, we recognize that θ^β(·) is the repeated measures regression of Qij on Zij and hence
yields an asymptotic expansion similar to equation (15). Together with the fact that

, it is now straightforward to show that the fourth term in the expansion
of  completing the proof.

Appendix C: Argument for result 3
Under the null hypothesis, θβ(z, 0, δ0, γ) solves

(17)

Recall that Kh (z)=h-1 K(z/h) and Gh (z)=(1,z/h)T. Consider the problem of solving, for |{m(z),
m(1) (z)|},

where  Define

The solution then satisfies

Note that

Where ϕ2=∫ z2k(z) dz. Hence, taking the limit of both sides we obtain that m(z) satisfies

which is identical to equation (17) with m(z)=θβ(z,0,δ0,γ). This completes the argument.
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Fig. 1.
Results of the simulation for testing whether β=0 as described in Section 4.1 by using kernel-
based calculations (here X is a bivariate standard normal random variable; , our
method; - - -, naive test, value of c and the vertical axis plots the corresponding power): (a)
γtrue=0, without S; (b) γtrue=1, without S; (c) γtrue=2, without S; (d) γtrue=0, with S; (e) γtrue=1,
with S; (f) γtrue=2, with S
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Fig. 2.
Results of the simulation for testing whether β=0 as described in Section 4.1 by using kernel-
based calculations (here X=(X1, X2) where X1=Bernoulli (0.6) and X2=N(0, 1); , our
method;-------, naive test, which assumes γ=0; the true value that was used was β=c(1, 1)T; the
horizontal axis plots the value of c and the vertical axis plots the corresponding power): (a)
γtrue=0, without S; (b) γtrue=1, without S; (c) γtrue=2, without S; (d) γtrue=0, with S; (e) γtrue=1,
with S; (f) γtrue=2, with S
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Fig. 3.
Results of the simulation for testing whether β=0 as described in Section 4.1 by using kernel-
based calculations (here X=(X1, X2) is two dummy variables; thus, we first generated a standard
normal random variable r, and X1=I(r < -0.4) and X2=I(r < 0.4); , our method;-------,
naive test, which assumes γ=0; the true value that was used was β=c(1, 1)T; the horizontal axis
plots the value of c and the vertical axis plots the corresponding power): (a) γtrue=0, without
S; (b) γtrue=1, without S; (c) γtrue=2, without S; (d) γtrue=0, with S; (e) γtrue=1, with S; (f)
γtrue=2, with S
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Fig. 4.
Results of the simulation for testing whether β0=0, as described in Section 4.2 by using kernel-
based calculations ( , our method; - - -, naive test which assumes γ=0; the true value
that was used was β=c(1, -1)T; the horizontal axis plots the value of c and the veritcal axis
plots the corresponding power): (a) γtrue=0; (b) γtrue=1; (c) γtrue=2
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Table 1
Levels of significance (p-values) of the test for genetic effects in a regression model in which Z is years since stopping
smoking†

Diplotype Results for our method Results for γ=0

Test p-value Test p-value
1 11.4 0.001 3.3 0.066
2 13.9 0.003 5.7 0.055
3 16.6 0.002 9.8 0.016
4 16.7 0.007 9.8 0.041
5 19.5 0.007 11.3 0.045
6 19.7 0.017 11.4 0.087
7 20.0 0.021 12.3 0.098
8 21.3 0.025 13.1 0.111
9 24.1 0.015 14.2 0.116

10 25.2 0.016 15.3 0.120
11 25.2 0.027 15.4 0.180
12 25.6 0.036 15.4 0.214
13 25.9 0.055 15.8 0.262
14 26.7 0.066 16.6 0.279
†
Age category and gender were modelled additively and parametrically. The analysis is done for the most common diplotype, the most common two

diplotypes, and so on. The non-parametric regression was done by using penalized order 2 B-splines with 10 segments, with penalization done via
generalized cross-validation.
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