
Neurocomputational models of basal ganglia function in learning,
memory and choice

Michael X Cohen and Michael J. Frank*
Department of Psychology Program in Neuroscience University of Arizona 1503 E University Blvd
Tucson AZ 85721

Abstract
The basal ganglia (BG) are critical for the coordination of several motor, cognitive, and emotional
functions and become dysfunctional in several pathological states ranging from Parkinson's disease
to Schizophrenia. Here we review principles developed within a neurocomputational framework of
BG and related circuitry which provide insights into their functional roles in behavior. We focus on
two classes of models: those that incorporate aspects of biological realism and constrained by
functional principles, and more abstract mathematical models focusing on the higher level
computational goals of the BG. While the former are arguably more “realistic”, the latter have a
complementary advantage in being able to describe functional principles of how the system works
in a relatively simple set of equations, but are less suited to making specific hypotheses about the
roles of specific nuclei and neurophysiological processes. We review the basic architecture and
assumptions of these models, their relevance to our understanding of the neurobiological and
cognitive functions of the BG, and provide an update on the potential roles of biological details not
explicitly incorporated in existing models. Empirical studies ranging from those in transgenic mice
to dopaminergic manipulation, deep brain stimulation, and genetics in humans largely support model
predictions and provide the basis for further refinement. Finally, we discuss possible future directions
and possible ways to integrate different types of models.

1 Introduction
The term basal ganglia refers to a collection of subcortical structures that are anatomically,
neurochemically, and functionally linked (Mink, 1996). The basal ganglia are critical for
several cognitive, motor, and emotional functions, and are integral components of complex
functional/anatomical loops (Haber, Fudge, & McFarland, 2000; Haber, 2003). The intricate
complexity of the basal ganglia can be seen at several levels, from myriad cortico-basal ganglia-
thalamo-cortical loops, to the modulations by neurochemicals such as dopamine, serotonin,
and acetylcholine, to differences in action by distinct receptor subtypes (e.g., D1 vs. D2
dopamine receptors) and locations (e.g., presynaptic autoreceptors and heteroreceptors vs.
postsynaptic receptors). Investigations into the functional organization of the basal ganglia
spans many species, experimental designs, theoretical frameworks, and levels of analysis (e.g.,
from functional neuroimaging in humans to genetic manipulations in mice to slice
preparations). To make matters more complicated, most individual experiments focus only on
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one level of analysis in one species, and each method comes with its own interpretive perils,
making it a daunting task to integrate findings across studies and methodologies such that the
effects of a single manipulation on the cascade of directly and indirectly affected variables can
be predicted.

Biologically constrained computational models provide a useful framework within which to
(1) interpret results from seemingly disparate empirical studies in the context of larger
theoretical approaches, and (2) generate novel, testable, and sometimes counter-intuitive
hypotheses, the evaluation of which can be used to refine our understanding of the basal ganglia.
Moreover, the mathematical grounding of computational models eliminates semantic
ambiguity and vague terminology, allows for more direct comparisons among findings from
different experiments, species, and levels of analysis, and allows one to explore the intricate
complexity of the basal ganglia circuitry while simultaneously linking functioning of that
circuitry to behavior.

Although not without caveats, computational models provide a tool for exploring cognitive
and brain processes not possible with classical box-and-arrow diagrams (whether the boxes
contain anatomical brain areas, cognitive/functional processes, or both). Box-and-arrow
diagrams can be confusing to interpret, provide too much leeway for semantic ambiguous
interpretations, and do not allow one to examine the rich temporal dynamic interactions among
subsystems, let alone how these dynamics evolve across time with learning. Computational
models are dynamic, amenable to quantitative analyses, and can make predictions or inspire
novel empirical work that might be difficult to intuit simply by visually inspecting a box-and-
arrow diagram.

There have been several instances in which new understandings of basal ganglia functioning
arose as a result of computational models operating on multiple levels of analysis. Some models
are built to help understand the precise biophysical processes governing neuronal function,
such as ion channel gating within the cholinergic interneuron; others are built to help
understand the kinds of computations that might lead to cognitive processes such as learning,
action selection, and even cognitive control. Each model and class of models has its own
strengths and limitations, and each is appropriate for different applications. Given that no model
is complete (i.e., no matter how biophysically or functionally/behaviorally constrained, every
model necessarily omits several molecular and systems-level effects that are undoubtedly
relevant), models should not be judged solely by any of these factors, but instead by their ability
to capture interesting phenomena and make novel predictions that may lead to insights
regarding their underlying mechanisms.

This review focuses on two classes of models – neural network models and more abstract
mathematical models – that have been repeatedly used to understand behavioral functions of
the basal ganglia and related circuitry. Neural network models use simplified neuronal units
and neural dynamics to help understand how interactions among multiple parts of the circuit,
and modulatory actions by dopamine and other neurochemicals, can support cognitive and
behavioral phenomena such as action selection, learning and working memory. In contrast,
more abstract models comprise mathematical equations, many of which build on research on
machine learning and artificial intelligence. These are not necessarily constrained by biological
architecture at the implementational level, but nevertheless make contact with these data and
are designed to account for a large range of behavioral phenomena using a smaller number of
assumptions and parameters. Given the focus on behavior, we do not discuss models that are
highly focused on understanding more detailed biophysical processes within individual
neurons (e.g, Wilson & Callaway, 2000; Wilson, Weyrick, Terman, Hallworth, & Bevan,
2004; Wolf, Moyer, Lazarewicz, Contreras, Benoit-Marand, O'Donnell, & Finkel, 2005; Zador
& Koch, 1994; Lindskog, Kim, Wikström, Blackwell, & Kotaleski, 2006). This omission does
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not imply a lack of interest in or excitement about these models – indeed, any abstract or
systems-level neural account relying on implementational mechanisms will eventually need to
be tested for plausibility using more realistic model neurons, and it is expected that some higher
level explanations are likely to be modified by that endeavor. At present, though, it is intractable
to use highly detailed biophysical models to develop a model of cognitive and behavioral
phenomena which require systems-level analysis. Empirical data reviewed below confirm that
despite some simplifications at the neuronal level, models make specific predictions that have
been borne out across multiple experiments involving focal lesions, disease, neuroimaging,
pharmacology, genetics, and deep brain stimulation on cognitive processes.

In the following sections we present an overview of the first two classes of models, their basic
architecture and mathematical groundwork, and novel insights they have provided into the
functions of the basal ganglia and related circuitry including empirical experiments testing
specific model predictions. Following these overviews, we discuss how these classes of models
can be related to each other, both in theoretical and practical aspects. We conclude by discussing
the future of computational modeling in understanding the functional organization of the basal
ganglia and related circuitry.

2 Neural network models of basal ganglia
By neural network models, we refer to a class of models in which detailed aspects of neuronal
function such as geometry of an axon are abstracted, while other processes, such as membrane
potential fluctuations over time and dynamic ionic conductances including activity-dependent
channels, are simulated by coupled differential equations (Brown, Bullock, & Grossberg,
2004; Frank, Loughry, & O'Reilly, 2001; Frank, 2005, 2006; O'Reilly & Frank, 2006;
Humphries, Stewart, & Gurney, 2006; Houk, 2005). Thus these models are far more
biologically constrained than simple “connectionist” models but less so than detailed
biophysical models. This approach provides a balance between capturing core aspects of
underlying neurobiology while allowing the network to scale up to a level that is relevant to
global information processing and behavior. Different model neurons are used to simulate
neurons with different firing properties, excitatory and inhibitory neurons, as well as some
basic neuromodulators such as dopamine and its postsynaptic effects onto different receptor
subtypes. Parameters of these processes can be modified to capture different neuronal
properties in different regions of the brain (e.g., striatum vs. globus pallidus vs. thalamus;
Frank, 2006). Synaptic efficacy typically is simplified to a single modifiable “weight,” which
reflects the extent to which a presynaptic neuron will influence the activity of the postsynaptic
neuron. Mathematical and implementational details of this modeling approach is outside the
scope of the present review; interested readers are referred to dedicated textbooks (O'Reilly &
Munakata, 2000; Dayan & Abbott, 1999), and to the specific basal ganglia model references
cited above.

2.1 Architecture of basal ganglia models
Broadly, we conceptualize the basal ganglia to be a system that dynamically and adaptively
gates information flow in frontal cortex, and from frontal cortex to the motor system (see Figure
1 for a graphical overview of the model). The basal ganglia is richly anatomically connected
to the frontal cortex and the thalamocortical motor system, via several distinct but partly
overlapping loops (Gerfen & Wilson, 1996;Nakano, Kayahara, Tsutsumi, & Ushiro,
2000;Haber, 2003). This circuitry can facilitate or suppress action representations in the frontal
cortex (Mink, 1996;Frank et al., 2001;Frank, 2005;Brown et al., 2004;Aron, Behrens, Smith,
Frank, & Poldrack, 2007). These representations can range from simple actions to complex
behaviors to cognitive operations such as working memory updating. Representations that are
more goal-relevant or have a higher probability of being correct or rewarded are strengthened,
whereas representations that are less goal-relevant or have a lower probability of reward are
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weakened. Dopamine plays a key role in this process by modulating both excitatory and
inhibitory signals in complementary ways, which can have the effect of modulating the signal-
to-noise ratio (Winterer & Weinberger, 2004;Nicola, Surmeier, & Malenka, 2000;Frank,
2005).

Our models of this system includes the main architectural structures of the basal ganglia:
Striatum; globus pallidus, external and internal segments (GPi and GPe); substantia nigra, pars
compacta (SNc); thalamus; and subthalamic nucleus. This covers both the classical “direct
pathway”, which sends a Go signal to frontal cortex, and the “indirect” pathway, which sends
a NoGo signal to frontal cortex (Albin, Young, & Penney, 1989; Mink, 1996; Gerfen & Wilson,
1996; Frank, 2005). However, as we shall see, our computational models go beyond the
classical direct/indirect model to (a) explore dynamics of this system as activity propagates
throughout the system and as a function of synaptic plasticity, neither of which are evident in
the static model and (b) incorporate more recent anatomical and physiological evidence that
is not in the original model but which is essential for its functionality in action selection.

The direct pathway originates in striatonigral neurons, which mainly express D1 receptors and
provide direct inhibitory input to the GPi and SNr. We refer to activity in this pathway as “Go
signals” because when striatonigral cells are active, they inhibit GPi, which in turn disinhibits
the thalamus (Chevalier & Deniau, 1990), and allows frontal cortical representations to be
amplified by bottom-up thalamocortical drive. Note that this disinhibition process only
enables the corresponding column of thalamus to become active if that same column also
receives top-down cortico-thalamic excitation. This means that the basal ganglia system does
not directly select which action to ’consider’, but instead modulates the activity of already
active representations in cortex. This functionality enables cortex to weakly represent multiple
potential actions in parallel; the one that first receives a Go signal from striatal output is then
provided with sufficient additional excitation to be executed. Lateral inhibition within thalamus
and cortex act to suppress competing responses once the winning response has been selected
by the BG circuitry.

Complementary to the direct pathway, the indirect pathway originates in striatopallidal cells
in the striatum which mainly express D2 receptors and provide direct inhibitory input to the
GPe. We refer to activity in this pathway as sending a “NoGo signal” to suppress a specific
unwanted response. Because the GPe tonically inhibits the GPi via direct focused projections;
striatopallidal NoGo activity removes this tonic inhibition, thereby disinhibiting the GPi,
allowing it to further inhibit the thalamus and preventing particular cortical actions from being
facilitated. In this way, the model basal ganglia can facilitate (Go) or suppress (NoGo)
representations in frontal cortex. Note that a given action can have both Go and NoGo
representations, and the probability that it will be selected is a function of the relative Go-NoGo
activation difference (Frank, 2005). This is due to the observation that Go and NoGo cells
receiving from a given cortical region (and thereby encoding a given action) originate in the
same striatal region, and terminate in the same region within GPi (e.g., Féger & Crossman,
1984; Mink, 1996). Neurons in the latter structure can then reflect the relative difference in the
two striatal populations, which then influences the likelihood of disinhibiting the thalamus and
in turn selecting the action.

Note that the above depiction omits the subthalamic nucleus (STN), classically thought to be
a critical relay station within the indirect pathway linking GPe with GPi (Albin et al., 1989).
However, more recent evidence indicates that (a) GPe neurons send direct inhibitory
projections to GPi rather than having to exert their control indirectly via STN; (b) these GPe-
GPi projections are more focused, allowing a specific response to be suppressed, whereas those
from STN to GPi projections are broad and diffuse (Mink, 1996; Parent & Hazrati, 1995),
perhaps providing a more global modulatory function (see below).
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This is not to diminish or discount the role of the STN. To the contrary, recent evidence
indicates that the STN should be considered part of a third “hyper-direct” pathway (so-named
because it bypasses the striatum altogether), rather than just a relay within the indirect pathway.
Indeed, the STN receives direct excitatory input from frontal cortex, and sends diffuse
excitatory projections to GPi (Nambu, Tokuno, Hamada, Kita, Imanishi, Akazawa, Ikeuchi, &
Hasegawa, 2000; Nambu, Tokuno, & Takada, 2002). We refer to activity in the STN as sending
a “Global NoGo” signal because its diffuse excitatory effect on many GPi neurons would
prevent all responses, rather than just one, from being facilitated (Frank, 2006). Simulations
revealed that these signals are dynamic: The Global NoGo signal is observed early during
response selection, preventing any response from being selected prematurely, but as STN
activity subsides, a response is then more likely to occur. This transient burst in STN activity
is consistent with that observed in vivo (Wichmann, Bergman, & DeLong, 1994; Magill,
Sharott, Bevan, Brown, & Bolam, 2004). Moreover, in the model, the initial Global NoGo
signal is adaptively modulated by the degree of cortical response conflict: Greater activation
of multiple competing cortical motor commands is associated with greater STN excitatory
drive and a pronounced Global NoGo signal, enabling the striatum to take more time to “settle”
and integrate over noisy intrinsic activity to choose the best response (Frank, 2006; Bogacz &
Gurney, 2007). Without this STN functionality, the BG network is more likely to make
premature responses, often settling on the suboptimal choice (see Figure 3a), particularly when
there is a high degree of response conflict (Frank, 2006). Such premature responding is
observed in rats with STN lesions (Baunez & Robbins, 1997; Baunez, Christakou, Chudasama,
Forni, & Robbins, 2007).

Dopamine plays a special modulatory role in the basal ganglia. At D1 receptors in the striatum,
dopamine is thought to act as a contrast-enhancer, increasing activity on highly active cells
while decreasing activity on less active cells (Hernandez-Lopez, Bargas, Surmeier, Reyes, &
Galarraga, 1997). This has the effect of amplifying the signal (highly active cells) while
simultaneously decreasing the noise (less active cells; Frank, 2005). At D2 receptors, dopamine
is inhibitory, regardless of the amount of activity in the cells (Hernandez-Lopez, Tkatch, Perez-
Garci, Galarraga, Bargas, Hamm, & Surmeier, 2000). Because D1 receptors are expressed in
great abundance on Go cells whereas D2 receptors are expressed in great abundance on NoGo
cells (Gerfen, 1992), elevated dopamine has the net effect of facilitating synaptically-driven
Go activity while inhibiting NoGo activity. In contrast, low levels of dopamine would decrease
the signal-to-noise in Go cells while freeing the NoGo cells from inhibition. This
conceptualization explains why reduced dopamine levels as in Parkinson's disease results in
over-activation of the NoGo pathway (Surmeier, Ding, Day, Wang, & Shen, 2007; Shen, Tian,
Day, Ulrich, Tkatch, Nathanson, & Surmeier, 2007) and slowness of movement, similar to the
original proposal (Albin et al., 1989). Moreover, in the context of our dynamic model, these
effects of dopamine on Go and NoGo activity are particularly relevant for reinforcement
learning (Frank, 2005; Frank, Seeberger, & O'Reilly, 2004; Brown et al., 2004), and can have
important implications for how the basal ganglia system can learn which representations to
facilitate and which to inhibit, as discussed in the following section.

2.2 Reinforcement learning in basal ganglia models
Synaptic weights between neurons can change dynamically over time and over experience,
forming the basis of learning. Weights between units that are strongly and repeatedly co-
activated become stronger (as in long-term potentiation; LTP), otherwise weights between
units do not change or become weakened (as in long-term depression; LTD). The presence and
timing of dopamine release strongly modulates these effects in the striatum (Berke & Hyman,
2000; Reynolds & Wickens, 2002; Kerr & Wickens, 2001; Reynolds, Hyland, & Wickens,
2001; Calabresi, Pisani, Centonze, & Bernardi, 1997; Calabresi, Gubellini, Centonze, Picconi,
Bernardi, Chergui, Svenningsson, Fienberg, & Greengard, 2000; Centonze, Picconi, Gubellini,
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Bernardi, & Calabresi, 2001). Indeed, the primary mechanism of learning in the basal ganglia
model is dependent on dopaminergic modulation of cells already activated by corticostriatal
glutamatergic input.

Specifically, dopaminergic neurons in the SNc famously fire in phasic bursts during
unexpected rewards, and firing drops below tonic baseline levels when rewards are expected
but not received (Schultz, Dayan, & Montague, 1997; Bayer, Lau, & Glimcher, 2007). In the
model, SNc dopamine bursts are simulated when the model selects the correct action
(depending on the nature of the task). As a result, activated Go units are further potentiated
such that the weights to these Go units from sensory and premotor cortex are increased. This
means that the next time the same sensory stimulus is presented together with the associated
premotor cortical response, these same Go units are likely to become active and facilitate the
same rewarding response. In contrast, weakly active Go units are suppressed. These effects are
mediated via simulated D1 receptors, consistent with the aforementioned physiological data.

Further, when the model receives a dip in dopamine (i.e., a lack of reward when one is expected;
(Schultz et al., 1997; Bayer et al., 2007)), a complementary process occurs. In this case, NoGo
units, which are normally inhibited by dopamine via simulated D2 receptors, now become more
activated by their cortical glutamatergic inputs. Indeed, striatopallidal neurons receive stronger
projections from frontal cortex and show particularly enhanced excitability to cortical
stimulation (Berretta, Parthasarathy, & Graybiel, 1997; Berretta, Sachs, & Graybiel, 1999;
Kreitzer & Malenka, 2007; Lei, Jiao, Del Mar, & Reiner, 2004). Critically, transiently enhanced
NoGo unit activity is associated with long term potentiation (via similar Hebbian learning
principles), such that the next time the model is faced with the same sensory stimulus and
potential response, that response is more likely to be suppressed. Thus, phasic dips in dopamine
induce learning to avoid particular actions in the presence of particular stimuli (Frank, 2005).
Recent studies support this basic model prediction, showing that whereas synaptic potentiation
in the direct pathway is dependent on D1 receptor stimulation, potentiation in the indirect
pathway is dependent on a lack of D2 receptor stimulation (Shen, Flajolet, Greengard, &
Surmeier, 2008).

It is through this push-pull mechanism that the basal ganglia model can learn to select actions
or reinforce frontal cortical representations that are more likely to lead to reward or correct
feedback, while simultaneously reducing the probability that incorrect or nonrewarding actions
or representations are less likely to occur. The presence of learning in both pathways allows
the model to enhance contrast between different stimulus-reinforcement probabilities, making
it easier to discriminate between, say, a choice that is 60% vs 40% rewarding. Models learning
only to increase and decrease synaptic weights in just the Go pathway were less able to make
these subtle discriminations in complex probabilistic environments (Frank, 2005). In dual
pathway models, a 60% response is represented in both Go and NoGo pathways, and recall
that the BG output (GPi) computes the relative activation differences for each response. Thus
the net effect on GPi (ignoring nonlinearities for simplicity) is 60−40 = 20%. Similarly, a 40%
response in GPi would have greater NoGo than Go and therefore would be represented as
−20%. The net difference between the two responses, which in reality is 20%, has been contrast-
enhanced to 40% at the BG output.

2.2.1 Do Dopamine ’Dips’ Contain Sufficient Information for Learning?—Baseline
firing rates of dopamine neurons are low – generally around 5 Hz. Thus, while increases in
firing rate can scale upward with larger magnitudes of prediction errors, they cannot scale
downwards with negative prediction errors (since neurons cannot have negative firing rates).
This led to the question of whether separate non-dopaminergic mechanisms in the brain are
required to code negative prediction errors (Daw, Kakade, & Dayan, 2002; Bayer & Glimcher,
2005). However, recent empirical work suggests that, rather than change in firing rate, the
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duration of the dopamine neuron pause during reward omissions might contain information
about the magnitude of the negative prediction error (Bayer et al., 2007). This is interesting in
light of the fact that D2 receptors in the striatum are highly sensitive to small changes in
dopamine, in part because most D2 receptors are high-affinity (Richfield, Penney, & Young,
1989); thus, differences in the pause duration might have detectable downstream effects (Frank
& Claus, 2006; Frank & O'Reilly, 2006).

Recall that the model requires a lack of D2 receptor stimulation to potentiate NoGo units and
to promote learning, as supported by recent data (Shen et al., 2008). Thus, longer pause
durations provide more time for dopamine transporters to remove DA from the synapse,
increasing the likelihood that neurons expressing D2 receptors will become disinhibited. This
account is particularly plausible in dorsal striatum, where there are many dopamine transporters
and the half-life of dopamine in the synapse is roughly 55−75 ms (Suaud-Chagny, Dugast,
Chergui, Msghina, & Gonon, 1995; Gonon, 1997; Venton, Zhang, Garris, Phillips, Sulzer, &
Wightman, 2003). This means that longer duration pauses (> 200ms) would give sufficient
time for dopamine to be virtually absent, and would allow NoGo units to become disinhibited
(in contrast to ventral striatum, and especially prefrontal cortex, in which the time-course of
reuptake may be too slow for phasic dips to have any functional effect). Further, depleted
striatal dopamine levels, as in Parkinson's disease, would actually enhance this effect. Although
tonic dopamine levels are already low, the resulting D2 receptor supersensitivity (Seeman,
2008), together with enhanced excitability of NoGo cells in the DA-depleted state (Surmeier
et al., 2007; Shen et al., 2007), would facilitate the postsynaptic detection of DA pauses (such
that perhaps they do not have to be as long in duration to be detected). Indeed, recent studies
demonstrate enhanced potentiation of NoGo synapses as a result of DA depletion in a mouse
model of Parkinson's disease (Shen et al., 2008).

2.2.2 Plasticity in cortical system: From actions to habits—Finally, the model also
captures plasticity directly in the cortico-cortical pathway from sensory to premotor cortex. As
responses are made to particular stimuli, simple Hebbian learning occurs such that the same
pre-motor cortical units are likely to become active in response to this same stimulus in the
future, independent of whether that response is rewarded or not (Frank, 2005; Frank & Claus,
2006). This effect allows the cortical units to identify candidate responses based on their prior
frequency of choice, providing an initial “best guess” on the suitability of a given action which
can then be facilitated or suppressed by the BG based on Go/NoGo reinforcement values. Once
these cortical associations are strong enough, they may not need be facilitated by the BG at all,
consistent with data suggesting that striatal dopamine is necessary for initial acquisition of
learned behaviors, but much less so for their later expression (Smith-Roe & Kelley, 2000;
Parkinson, Dalley, Cardinal, Bamford, Fehnert, Lachenal, Rudarakanchana, Halkerston,
Robbins, & Everitt, 2002). Similarly, inactivation of the dorsal striatum impairs execution of
a learned task, but this effect is minimal once the behavior has been ingrained (Atallah, Lopez-
Paniagua, Rudy, & O'Reilly, 2007). According to the model, habit learning is dependent on
the striatal dopamine system for acquiring responses that lead to rewards, but its expression is
mediated by more direct cortico-cortical associations (which, if strong enough, do not require
the additional striatal “boost”). Note that this cortical learning implies that eventually premotor
cortical areas participate in reward-based action selection themselves – such that responses
chosen often in the past immediately take precedence over other options, prior to any
facilitation by the BG.

2.3 Limitations and comparison with anatomy of real brains
Our model is far from capturing all the interesting complexity associated with real basal ganglia
circuits. Indeed, the basal ganglia are considerably more complex than what is described in the
above paragraphs. Although we have simulated various dynamic and anatomical projections
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that are not part of the classical model, our model nevertheless continues to be highly simplified,
and for any model it is always legitimate to question whether these simplified principles are
relevant for the real system. Here we summarize some of the challenges to the framework.

2.3.1 Are Go and NoGo pathways truly segregated?—Despite the success of the
classical BG model in providing a predictive framework for interpreting several patterns of
data across multiple levels of analysis, there have been several challenges to the basic tenets
of the model. First, the model relies on the segregation of D1 and D2 receptors in striatonigral
and striatopallidal neurons (Gerfen, 1992; Gerfen & Keefe, 1994; Bloch & LeMoine, 1994;
Le Moine & Bloch, 1995; Gerfen, Keefe, & Gauda, 1995; Ince, Ciliax, & Levey, 1997; Aubert,
Ghorayeb, Normand, & Bloch, 2000). Earlier challenges suggested that, in fact, D1 and D2
receptors are co-localized on the same neurons, even if this co-localization is small relative to
the overall expression of one or the other receptor type (Surmeier, Song, & Yan, 1996; Aizman,
Brismar, Uhlen, Zettergren, Levet, Forssberg, Greengrad, & Aperia, 2000). More recent
advances, most notably with transgenic mice, have all but put to rest this concern (Surmeier et
al., 2007). Nevertheless, a remaining critical challenge is that efferent projections of
striatonigral and striatopallidal neurons themselves may not be as clearly segregated as they
are in the model. In fact, it appears that although ’striatopallidal’ cells exist that project solely
to GPe (NoGo cells, in the parlance of our model), many ’striatonigral’ (Go cells) also have
axon collaterals projecting to GPe (Kawaguchi, Wilson, & Emson, 1990; Lévesque & Parent,
2005; Wu, Richard, & Parent, 2000). On the surface this seems to challenge the idea that ’Go
cells’ function as such, given that they also project to GPe. However, we argue that this setup
is actually useful for ensuring that the activation of the Go pathway remains transient, and
implies that the GPi computes the temporal derivative of Go signals rather than raw Go signals
(Frank, 2006). That is, because direct projections from striatum to GPi are monosynaptic
whereas those to GPe and then GPi are polysynaptic, Go signals will first disinhibit the
thalamus, followed by a delayed re-inhibition of the thalamus via the GPe route. This type of
system is amenable to rapid facilitation and subsequent inhibition of representations, which
would be relevant if a sequence of motor commands or items in working memory had to be
activated in succession.

2.3.2 Role of Striatal Interneurons—For simplicity, our model does not explicitly
incorporate functions of cholinergic (tonically active) interneurons, and we are only beginning
to explore the role of GABA-ergic (fast-spiking) interneurons (Figure 1), which together make
up  of striatal neurons (Tepper & Bolam, 2004;Gerfen & Wilson, 1996). The relatively
small proportion of these cell types does not necessarily diminish their potential functional
significance. For example, cholinergic interneurons are known to be deeply involved in reward-
based learning, and they respond dynamically to stimuli as they become predictive of reward
(Wilson, Chang, & Kitai, 1990;Aosaki, Tsubokawa, Ishida, Watanabe, Graybiel, & Kimura,
1994). Cholinergic neurons also play a permissive role in striatal long-term plasticity changes
(Centonze, Gubellini, Bernardi, & Calabresi, 1999) and appear to indirectly mediate some
effects of dopamine-induced plasticity (Wang, Kai, Day, Ronesi, Yin, Ding, Tkatch, Lovinger,
& Surmeier, 2006). Recent evidence suggests that acetylcholine and dopamine may play a
cooperative role in reward-based learning: during salient events, midbrain dopamine cells and
striatal cholinergic cells respond during the same temporal window, but only the dopamine
cells fire in proportion to reward probability (Morris, Arkadir, Nevet, Vaadia, & Bergman,
2004). It was argued that the pause in cholinergic firing may serve as a “temporal frame” that
determines when to learn based on the magnitude of the dopaminergic signal. Further, Cragg
(2006) suggested that the cholinergic pause provides a contrast enhancement effect that
discriminates between tonic and phasic dopaminergic states, effectively enhancing learning
due to both dopamine bursts and dips. This effect partially arises due to presynaptic effects of
acetylcholine on dopamine release via nicotinic receptors (Cragg, 2006). Thus, it is possible
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that whereas dopamine facilitates what to learn, cholinergic interneurons facilitate when to
learn.

Although none of these effects is simulated at the biophysical level in our model, we
nevertheless implicitly incorporate some of them. That is, the equations that govern learning
in our model amount to a form of contrastive Hebbian learning in which the effects of phasic
dopamine signals on Go/NoGo activity are computed relative to those in the immediately
preceding states (during which dopaminergic signals are tonic). Thus this mechanism
automatically ensures that learning occurs during the correct temporal window and also
provides a contrast between tonic and phasic states; both of these functions may be supported
by the pause in cholinergic firing, as proposed above (Morris et al., 2004; Cragg, 2006).
Nevertheless, it is undoubtedly the case that these interactions are considerably more complex,
and may benefit from more explicit simulation.

2.3.3 Thalamic Back-projections—In addition to the recurrent projections between
thalamus and frontal cortex, and the feedforward projections from GPi to thalamus, there are
also often-neglected back-projections from the parafasicular thalamus to both the striatum and
the subthalamic nucleus (e.g., Mouroux & Féger, 1993; Castle, Aymerich, Sanchez-Escobar,
Gonzalo, Obeso, & Lanciego, 2005). Given that thalamostriatal projections synapse primarily
on cholinergic interneurons and regulate cholinergic efflux (Lapper & Bolam, 1992; Zackheim
& Abercrombie, 2005), it is possible the parafasicular thalamus provides an alerting signal
during salient events that induces a pause in cholinergic firing and promotes learning. Further,
preliminary (unpublished) simulations in our model suggest that back-projections from
thalamus to the STN (Castle et al., 2005) might play a role in terminating a motor response
once it has been disinhibited.

2.3.4 Ventral vs. Dorsal Striatum—Although the striatum in our and in several other
models appears as a unitary structure, it in fact comprises several subregions. These subregions
follow a ventromedial to dorsolateral gradient, with afferents from a roughly parallel gradient
in the cortex (Haber, 2003; Cohen, Lombardo, & Blumenfeld, 2008). Although precise
boundaries between subregions can be difficult to define based on cytoarchitectonic properties
(Voorn, Vanderschuren, Groenewegen, Robbiins, & Pennartz, 2004; Liu & Graybiel, 1998),
subregions can be delineated by their patterns of input/output fibers (Haber et al., 2000), and,
in some cases, by functional dissociations (Cardinal, 2006; Pothuizen, Jongen-Rêlo, Feldon,
& Yee, 2005; Atallah et al., 2007; O'Doherty, Dayan, Schultz, Deichmann, Friston, & Dolan,
2004). Dorsal striatal regions are richly interconnected with dorsal prefrontal regions, and
therefore are thought to play a central role in modulating cognitive operations such as working
memory updating (Frank et al., 2001; Collins, Wilkinson, Everitt, Robbins, & Roberts, 2000;
Saint-Cyr, Taylor, & Lang, 1988). In contrast, ventromedial regions, including the nucleus
accumbens, are more implicated in reinforcement-guided learning and addiction-related
processes (Cardinal, Parkinson, Hall, & Everitt, 2002; Everitt & Robbins, 2005; Koob & Le
Moal, 1997). Further distinctions can be made within the nucleus accumbens, between the shell
and core regions.

One classic interpretation of the ventral/dorsal functional dissociation in the realm of
reinforcement learning has been that between the “critic” and the “actor” (Joel, Niv, & Ruppin,
2002; Houk, Adams, & Barto, 1995). The critic, played by the ventral striatum, evaluates
whether the current environmental state is predictive of reward, and learns to do so by
experiencing rewards in particular states. Changes in phasic dopamine responses during
unexpected rewards (or lack thereof) are thought to drive learning in the critic so that its
predictions are more accurate in the future. In contrast, the actor – played by the dorsal striatum
– determines which actions to select, and learns to do so via these same phasic dopamine signals
following the execution of particular actions, such that it develops action-specific value
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representations. (Note that once the critic has learned, it will generate a dopamine burst when
encountering an environmental state that is predictive of future reward, which serves to train
the actor to produce actions that produced this state – even if they don't immediately precede
reward itself). Although evidence exists in favor this viewpoint (Joel et al., 2002; O'Doherty
et al., 2004), the story is likely to be more complex (Atallah et al., 2007).

Based on the modeling framework presented above, we would argue that different subregions
of the striatum engage in similar computations and interactions with frontal cortex, but that the
kind of information that is processed in different regions depends on the subregion of frontal
cortex with which the striatal subregion interacts (see also Wickens, Budd, Hyland, and
Arbuthnott (2007)). For example, because the dorsal striatum is most densely innervated by
dorsal and lateral prefrontal regions, it might gate information flow related to processes
engaged by dorsolateral prefrontal cortex, namely working memory, planning, cognitive
control, etc (Frank et al., 2001; O'Reilly & Frank, 2006). In contrast, the ventral striatum, with
dense connectivity from the orbitofrontal cortex and ventromedial prefrontal cortex, might gate
information regarding reward and motivation (Frank & Claus, 2006). Other parts of the
accumbens are likely to be involved in learning which environmental states (both external and
internal) are associated with reward so that they can drive dopamine signals and train the actor
(O'Reilly, Frank, Hazy, & Watz, 2007; Brown, Bullock, & Grossberg, 1999).

More recently, O'Reilly and colleagues have proposed an expanded model of the
neurobiological mechanism of dopamine-mediated learning. In the PVLV (primary value-
learned value) model (O'Reilly et al., 2007), the single node that corresponded to the SNc is
now a network of regions including the ventral striatum, lateral hypothalamus, central nucleus
of the amygdala, and SNc. The primary value (PV) system, mediated by patch-like striosomal
neurons in the ventral striatum, is responsible for learning when unconditioned rewards will
occur, and act to cancel out the dopamine burst when these are expected (due to inhibitory
projections from striosomes into SNc and VTA (Joel & Weiner, 2000)). The activity resulting
from the PV system matches the initial increase and subsequent decrease of dopamine neuron
activity as animals learn to anticipate primary rewards.

The learned value (LV) system of the model learns to assign reward value to arbitrary stimuli
that are predictive of later reward (i.e., conditioned stimuli). Learning in this system occurs
only if an external reward is present or the PV system expects primary reward – that is LV
learning is gated by PV activation. In this way, the LV system can express generalized reward
value at times during which no reward is present in the environment (in contrast, the PV system
always learns about rewards or their absence and so does not express reward values in advance
of their occurrence). The LV is represented by the central nucleus of the amygdala, which is
heavily involved in reward learning and sends excitatory projections to midbrain dopamine
neurons. This system is more biologically plausible than previous mathematical estimations
of the midbrain dopamine system's functioning using temporal difference learning, and is more
robust than that system under certain circumstances (e.g., stimulus-reward timing variability
and sensitivity to intervening distracting stimuli (O'Reilly et al., 2007)).

In sum, despite the incompleteness of our computational model, brains are more than the sum
of their complex synaptic, neural, and chemical parts: Brains can learn and engage in an
impressive array of cognitive and behavioral processes. In this sense, the modeling approach
described above is biologically relevant, because, as detailed in the next section, the model can
produce outputs that are similar to those of biological organisms, and the model's behavior is
modulated from simulations of drugs, disease states, and genetic variation. Thus, the purpose
of the neural network approach to modeling is not to capture every known aspect of the
neurobiology of the basal ganglia, but instead to relate the key elements of basal ganglia
neurobiology to cognitive and behavioral processes.

Cohen and Frank Page 10

Behav Brain Res. Author manuscript; available in PMC 2010 April 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In the next section, we describe some of the predictions of the model that have been confirmed
by empirical results.

2.4 Empirical evidence for predictions from basal ganglia models
This basal ganglia model makes several testable and falsifiable predictions regarding
behavioral and neural responses during reinforcement learning, and how those responses
should be modulated by drug, disease, or genetic states. The initial model was designed to be
constrained by physiological and anatomical data, but also to account for cognitive changes
resulting from Parkinson's disease and medication states, including complex probabilistic
discrimination between reinforcement values and reversal (Frank, 2005), and the role of the
subthalamic nucleus in high-conflict decisions (Frank, 2006).

2.4.1 Dopaminergic modulation of Go and NoGo learning—At the neural level, the
model predicted the existence of separate striatal populations that code for positive and negative
stimulus-response action values. Such neurons have since been reported in monkeys
(Samejimah, Ueda, Doya, & Kimura, 2005), although it remains to be determined whether
these correspond to the Go and NoGo units (i.e., striatonigral vs striatopallidal), but synaptic
plasticity studies support the model's predictions regarding how these separate populations
might emerge via differential D1 and D2 receptor mechanisms for potentiating synapses in Go
and NoGo synapses (Shen et al., 2008).

At the behavioral level, monkeys’ ability to speed reaction times to obtain large rewards
(requiring Go learning in our model) is dependent on striatal D1 receptor stimulation, whereas
the tendency to slow down for smaller rewards (NoGo learning) is dependent on D2 receptor
disinhibition (Nakamura & Hikosaka, 2006). Similarly, our computational model has simulated
a constellation of reported findings regarding D2 receptor antagonism effects on expression of
catalepsy in rodents, as a form of NoGo learning, including sensitization, context dependency,
and extinction (Wiecki, Riedinger, Meyerhofer, Schmidt, & Frank, submitted).

In humans, a direct model prediction is that the ability to learn from positive versus negative
feedback should depend on Go and NoGo learning, the balance of which depends on the level
of dopamine. Phasic bursts of dopamine promote Go learning from positive feedback, whereas
phasic dips promote NoGo learning from negative feedback (Frank, 2005). If these phasic
levels of dopamine were modulated or compromised by disease or pharmacology, the way that
individuals learn from positive vs. negative feedback should likewise be modulated. Patients
with Parkinson's disease provide an opportunity to test these hypotheses: These patients have
reduced dopamine signaling when off their medication, but enhanced dopamine levels when
on their medication. Previous research has found that Parkinson's patients are impaired at
reinforcement learning as a function of feedback (Swainson, Rogers, Sahakian, Summers,
Polkey, & Robbins, 2000; Shohamy, Myers, Grossman, Sage, Gluck, & Poldrack, 2004; Cools,
2006; Cools, Barker, Sahakian, & Robbins, 2001a), linked to low levels of dopamine in the
striatum and prefrontal cortex. One might therefore expect that dopamine medication would
improve performance in these patients. Curiously, however, performance can be improved or
impaired depending on which cognitive task is used (Cools, Barker, Sahakian, & Robbins,
2001b; Shohamy, Myers, Geghman, Sage, & Gluck, 2006; Frank, 2005; Frank et al., 2004).

The computational model might help clarify this apparent inconsistency. Specifically, the
model predicts that dopamine levels should differentially affect learning from negative versus
positive feedback. When patients are off their medication, they should learn better from
negative than from positive feedback, because low levels of dopamine activate the NoGo
pathway (e.g., Surmeier et al., 2007), and, together with D2 receptor supersensitivity, may
facilitate the detection of DA dips, but prevent the Go pathway from being sufficiently activated
during rewards. In contrast, when patients are on their medication, presynaptic dopamine
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synthesis increases (Tedroff, Pedersen, Aquilonius, Hartvig, Jacobsson, & Långströom,
1996; Pavese, Evans, Tai, Hotton, Brooks, Lees, & Piccini, 2006). Moreover, chronic
administration of levodopa (the main DA medications used to treat PD) has been shown to
increase phasic (spike-dependent) DA bursts (Harden & Grace, 1995; Wightman, Amatore,
Engstrom, Hale, Kristensen, Kuhr, & May, 1988; Keller, Kuhr, Wightman, & Zigmond,
1988), and the expression of zif-268, an immediate early gene that has been linked with synaptic
plasticity (Knapska & Kaczmarek, 2004), in striatonigral (Go), but not striatopallidal (NoGo)
neurons (Carta, Tronci, Pinna, & Morelli, 2005). Thus, the model predicts that medication
improves positive feedback learning in the Go pathway. Interestingly, the same model predicts
that dopamine medication will impair the ability to learn from negative feedback: because the
medication continually stimulates D2 receptors1, they effectively preclude phasic pauses in
DA firing from being detected when rewards are omitted (Frank, 2005).

This pattern of results was recently confirmed in Parkinson's patients who tested on and off
their medication in a probabilistic reinforcement learning paradigm in which some choices had
greater probabilities of being associated with positive and negative feedback (Frank et al.,
2004). Patients off their medication learned better from negative than from positive feedback,
whereas patients on medication learned better from positive than from negative feedback.
These effects were also produced when DA depletion and medications were simulated in the
model (Frank et al., 2004; Frank et al., 2007b), and have been replicated using a different
paradigm in a different lab (Cools, Altamirano, & D'Esposito, 2006). Moreover, they are in
striking accord with the synaptic plasticity studies described above, in which DA depletion
was associated with reduced D1-related potentiation of Go synapses but enhanced D2-related
potentiation of NoGo synapses, whereas D2 agonist administration reversed the potentiation
of NoGo synapses (Shen et al., 2008). Notably, similar patterns of behavioral results (enhanced
Go but reduced NoGo learning) have been reported in mice with genetic knockouts of the
dopamine transporter, who have elevated striatal dopamine levels (Costa, Gutierrez, de Araujo,
Coelho, Kloth, Gainetdinov, Caron, Nicolelis, & Simon, 2007). ll of these findings confirm
that dopamine is critically involved in learning not only from positive but also negative
prediction errors.

This same modulation of probabilistic Go and NoGo learning has also been observed in young,
healthy college students who took small doses of dopamine agonists and antagonists (Frank &
O'Reilly, 2006). Further, aged adults (older than 70 years of age), who have striatal DA
depletion and damage to DA cell integrity (Bäckman, Ginovart, Dixon, Wahlin, Wahlin,
Halldin, & Farde, 2000; Kaasinen & Rinne, 2002; Kraytsberg, Kudryavtseva, McKee, Geula,
Kowall, & Khrapko, 2006), showed selectively better negative feedback learning than their
younger counterparts (60−70 years of age), consistent with the Parkinson's findings (Frank &
Kong, 2008). The opposite pattern of results was seen in adult ADHD participants, who showed
better positive than negative feedback learning while on stimulant medications (Frank,
Santamaria, O'Reilly, & Willcutt, 2007c), which block the dopamine transporter and elevate
striatal DA (Volkow, Wang, Fowler, Logan, Gerasimov, Maynard, Ding, Gatley, Gifford, &
Franceschi, 2001; Madras, Miller, & Fischman, 2005). In sum, across a wide range of
populations and manipulations, increases in striatal dopamine are associated with relatively
better Go learning and especially, worse NoGo learning, whereas decreases in striatal dopamine
is associated with the opposite pattern.

Behaviorally, the model suggests that having independent Go and NoGo pathways improves
probabilistic discrimination between different reinforcement probabilities. That is, networks
learning only from positive feedback or only from negative feedback do not produce as robust

1This assumption most clearly applies to D2 agonist medications taken by the majority of patients, but also potentially by levodopa,
which may increase tonic DA release in addition to phasic bursts.
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learning as those receiving both positive and negative feedback (even if the number of feedback
trials is equated). Such a pattern was recently found in a basal ganglia-dependent probabilistic
learning task (Ashby & O'Brien, 2007), in which it was concluded that the dual pathway Go/
NoGo model is required to capture the basic behavioral findings.

Although we have found in our probabilistic reinforcement paradigm that on average healthy
individuals learn equally well from positive and negative feedback, there are nevertheless
substantial individual differences in these measures, such that some participants are “positive
learners” and some are “negative learners” (Frank, Woroch, & Curran, 2005). We hypothesized
that at least some of this variability may be due to genetic factors controlling striatal
dopaminergic function. To test this hypothesis, we collected DNA from 69 healthy participants
and tested them with the same probabilistic reinforcement learning task (Frank, Moustafa,
Haughey, Curran, & Hutchison, 2007a). If individual differences in Go learned are attributed
to D1 function and NoGo learning to D2 function, genetic factors controlling striatal D1 and
D2 efficacy may be predictive of such learning. Because there is not yet a genetic
polymorphism shown to preferentially affect striatal D1 receptors, we analyzed instead a
polymorphism that controls the protein DARPP-32, which is heavily concentrated in the
striatum, and is required for D1-dependent plasticity and reward learning in animals (Ouimet,
Miller, Hemmings, Walaass, & Greengard, 1984; Walaas, Aswad, & Greengard, 1983;
Calabresi et al., 2000; Stipanovich, Valjent, Matamales, Nishi, Ahn, Maroteaux, Bertran-
Gonzalez, Brami-Cherrier, Enslen, Corbillé, Filhol, Nairn, Greengard, Hervé, & Girault,
2008). Furthermore, in humans, the only brain area that was functionally modulated according
to DARPP-32 genotype was the striatum, and its functional connectivity with frontal cortex
(Meyer-Lindenberg, Straub, Lipska, Verchinski, Goldberg, Callicott, Egan, Huffaker, Mattay,
Kolachana, Kleinman, & Weinberger, 2007). We also analyzed a polymorphism within the
DRD2 gene, which codes for postsynaptic striatal D2 receptor density (Hirvonen, Laakso,
Rinne, Pohjalainen, & Hietala, 2005). Strikingly, we found that individual differences in
DARPP-32 genetic function, as a surrogate measure of striatal D1-dependent plasticity, were
predictive of better positive feedback learning, whereas individual differences in DRD2
function, as a measure of striatal D2 receptor density, were predictive of better negative
feedback learning (Frank et al., 2007a). This latter effect was also found independently by
another group (Klein, Neumann, Reuter, Hennig, von Cramon, & Ullsperger, 2007), who
analyzed a different DRD2 polymorphism. Moreover, the Go/NoGo learning effects were
specific to striatal genetic function, as a third gene coding primarily for prefrontal dopaminergic
function (Tunbridge, Bannerman, Sharp, & Harrison, 2004), was not associated with Go or
NoGo incremental probabilistic learning, but instead – and in contrast to the striatal genes –
was predictive of participants’ working memory for the most reinforcement outcomes (Frank
et al., 2007a). This working memory effect is consistent with other detailed computational
models suggesting that prefrontal dopamine is critical for robust maintenance of information
in an active state (Durstewitz, Seamans, & Sejnowski, 2000), and that parts of prefrontal cortex
support working memory for reward values, guiding trial-to-trial behavioral adaptions and
complementing the incrementally learning basal ganglia system (Frank & Claus, 2006).

Such clear genetic findings – where distinct polymorphisms having different functional brain
effects are associated with dissociable cognitive functions – are rare in the literature, and
without a computational model, it is unlikely that these specific genes would have otherwise
been analyzed in the context of these specific types of decisions. Nevertheless, the nature and
direction of the prefrontal dopaminergic genetic effects, despite being consistent with the
general role of prefrontal cortex in rapid trial to trial adaptations, were inconsistent with our
existing model of the role of DA in that system (Frank & Claus, 2006), which will lead us to
revisit and refine that model (i.e., such that prefrontal DA plays a role closer to that suggested
by Durstewitz et al. (2000).)
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2.4.2 Subthalamic nucleus in high-conflict decisions—The basal ganglia model also
makes predictions for other non-dopaminergic and non-learning aspects of decision making.
As described in a previous section, the subthalamic nucleus (STN) projects diffusely to BG
output nuclei (GPi and GPe), and receives direct excitatory input via the hyperdirect pathway
from dorsomedial frontal cortex (Nambu et al., 2000; Aron et al., 2007). The model implicates
the STN in preventing impulsive decisions, by dynamically (and transiently) adjusting decision
thresholds as options are being considered (Frank, 2006). Such a role would be evident when
making decisions involving a high degree of response conflict. Neuroimaging studies support
this conclusion, whereby increased co-activation between dorsomedial frontal cortex and STN
is associated with increasingly slowed response times in high but not low conflict conditions
(Aron et al., 2007).

To demonstrate that the STN provides a critical (rather than correlational) role in slowing
responses under conflict, it has to be manipulated. Parkinson's patients with deep brain
stimulators (DBS) implanted into the STN provide a unique window into the role of the STN
in human conflict-related decisions. These stimulators provide electrical current into the STN
at abnormally high frequency and voltage, disrupting STN function, effectively acting like a
lesion (or like adding noise to the system, preventing it from responding naturally to its cortical
inputs) (Benabid, 2003; Benazzouz & Hallett, 2000; Meissner, Leblois, Hansel, Bioulac, Gross,
Benazzouz, & Boraud, 2005). However, this virtual lesion is temporary, because the stimulator
can be turned on or off by a physician. While the stimulator is switched on, many of the motor-
related symptoms of Parkinson's disease are sharply diminished; within minutes to an hour
after the stimulator is switched off, symptoms return. In a recent study, Frank and colleagues
tested these patients in a reinforcement learning task on and off stimulation, and compared
their performance to another group of patients on and off dopaminergic medication (Frank et
al., 2007b). High conflict decisions were defined as those choices in which the probability of
reinforcement between the two options differed only subtly (e.g., one option had an 80% chance
of being rewarded whereas the other had a 70% chance), whereas low conflict decisions were
characterized by choices involving disparate reinforcement probabilities (e.g., 80% vs 30%).

Typically, when faced with these high-conflict choices, response times slow down; this pattern
was observed in healthy controls, in patients off and on medication, and in patients off DBS.
Notably, patients on DBS failed to slow reaction times with increased decision conflict (Figure
3b). Moreover, patients on DBS actually responded faster to high than to low conflict choices.
These speeded high conflict decision times were even more exaggerated when patients selected
the suboptimal choice (that with lower reinforcement probability; (Frank et al., 2007b)),
suggesting that the stimulation disrupted the STN's ability to provide a global NoGo signal
during high-conflict decisions. Further, when the model was given a STN lesion or when
simulated high frequency DBS was applied, it produced the same pattern of results. Together
with the medication effects reported above (and replicated in the 2007 study), these findings
reveal a double dissociation of treatment type on two aspects of cognitive decision making in
PD: Dopaminergic medication influences positive/negative learning biases but not conflict-
induced slowing, whereas DBS influences conflict-induced slowing but not positive/negative
learning biases.

In sum, although our neural model is simplified relative to the complexity of real basal ganglia
circuitry, and abstracts away a host of biophysical and molecular mechanisms, the modeling
endeavour has proved to be a valuable tool in developing explicit testable and falsifiable
hypotheses, which directly led to empirical experiments providing support for several of these
predictions. Nevertheless, we acknowledge that some of the detailed mechanisms by which
our model functions, while neurally plausible, are likely over-simplified. We look forward to
further refinements and challenging data that will cause us to revisit some of the basic
mechanisms.
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3 Abstract models of action selection and learning
In contrast to the neural network models described in the previous section, abstract models
typically do not capture neurobiological or neuroanatomical processes, but instead focus on
the nature of cognitive operations that might lead to specific behavioral outputs, such as
learning and decision-making. Although these models have been linked to neurobiological
events, and in some cases, incorporate specific neural processes such as the effects of dopamine
(Wörgötter & Porr, 2005; Cohen, 2007), these models typically are not constrained by known
biological limitations (incorporating neither anatomy nor physiology). Nonetheless, by
adapting a ’top-down’ functional approach, these models have proven valuable in uncovering
the cognitive mechanisms of reward-guided learning and decision-making, and have made
several strides in linking these mechanisms to the neurobiology of the basal ganglia, prefrontal
cortical, and dopamine systems (Cohen, 2007; Montague, Dayan, & Sejnowski, 1996; Daw,
Niv, & Dayan, 2005; O'Doherty et al., 2004).

3.1 The math behind the models
We focus on models that have been used most extensively in understanding basal ganglia
functioning. The basic learning mechanism behind these reinforcement learning models can
be summarized semantically by Thorndike's Law of Effect (Thorndike, 1911): “Of several
responses made to the same situation, those which are accompanied or closely followed by
satisfaction to the animal will, other things being equal, be more firmly connected with the
situation, so that, when it recurs, they will be more likely to recur; those which are accompanied
or closely followed by discomfort to the animal will, other things being equal, have their
connections with that situation weakened, so that, when it recurs, they will be less likely to
occur. The greater the satisfaction or discomfort, the greater the strengthening or weakening
of the bond.”

In other words, actions associated with positive feedback are more likely to be repeated,
whereas actions associated with negative feedback are less likely to be repeated. In models,
different actions may be represented with “Q values”; the larger the Q value relative to that of
other actions, the more likely the model is to select that action. Nevertheless, the choice function
“policy” is typically probabilistic, such that sometimes other choices with lower Q values are
selected. This ensures that the model occasionally explores alternative actions, thus avoiding
situations in which other decision options provide higher rewards but are not selected because
the model is stuck continually choosing one decision option (i.e., a local minimum) (Sutton &
Barto, 1998). The most common choice function used is termed softmax because it assigns a
higher probability of choosing the action with the maximum Q value, but the arbitration
between Q-values is soft, such that those with only slightly smaller values are almost as likely
to be chosen. The slope of the softmax function determines the degree to which maximum Q
values are chosen versus the probability of making an exploratory choice (Sutton & Barto,
1998; Daw, O'Doherty, Dayan, Seymour, & Dolan, 2006; Frank et al., 2007a).

To learn which Q values lead to the highest rewards, Q values are adjusted following
reinforcements. The most commonly used method for updating Q values is through a reward
prediction error, which is the difference between an expected and received reward: δ = r − Q,
where δ is the prediction error, r is the reward, and Q is the value of the weight corresponding
to the action selected.2 This prediction error term might reflect phasic activity of midbrain

2In more sophisticated algorithms the prediction error takes into account not only the current reward but also the predicted reward for
future trials, based on prior learning, and where rewards further into the future are discounted (Watkins & Dayan, 1992). This function
is important for allowing a reinforcement learning agent to learn not only which actions lead to immediate rewards, but which actions to
reinforce when their consequences occur later in time, and to maximize total future rewards (Sutton & Barto, 1998). Nevertheless, we
restrict our discussion here to the simple case in which simple actions lead to immediate rewards or lack thereof.
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dopamine neurons, described in more detail below (Suri & Schultz, 1998). Thus, when rewards
that follow particular actions are greater than the reward expected from that particular action
(i.e., the Q value), the prediction error is positive; when rewards are received exactly as
expected, the prediction error is zero; and when rewards are smaller than those expected, the
prediction error is negative. These prediction errors then adjust the Q value in the subsequent
trial: Q(t + 1) = Q(t) + δ, where t refers to a trial. Q values that led to rewards (punishments)
are strengthened (weakened), thus becoming more (less) likely to be selected in subsequent
trials. Thus, the Q value updating equation can be seen as a concise mathematical representation
of part of Thorndikes Law of Effect. Note that prediction error terms are multiplied by a learning
rate, which scales the impact of the prediction error on the subsequent Q value: Q(t + 1) = Q
(t) + α * δ.

The learning rate describes the degree to which the prediction error adjusts the Q values, and
might correspond to the relative number of AMPA receptors that are mobilized from a single
learning experience. These learning rates might also differ among different brain regions. For
example, the hippocampal learning system is capable of rapid, single trial learning (high
learning rate), whereas the basal ganglia learning system learns by integrating more slowly
over time, thus utilizing a lower learning rate. Thus, one important computational issue is
determining when to use systems with high versus low learning rates. Some have proposed
that the amount of uncertainty plays a role in determining the learning rate (Behrens, Woolrich,
Walton, & Rushworth, 2007; Daw et al., 2005; Yu & Dayan, 2005).

Learning Q values might also help explain how we form habits, as is formalized in “Advantage
learning” (Dayan & Balleine, 2002). Advantage learning theory states that actions are chosen
when the value associated with that action exceeds the average value of the entire set of possible
actions at that state (e.g., point in time). Over time, as agents learn optimal response strategies,
the advantage of a particular action declines because the overall value of that action state
increases. At that point, action selection becomes more automatic, and a stimulus-response
habit is formed. Our neural models also show a similar transition from choosing actions
according to rewards to choosing actions by habit. In our neural models, this transition occurs
gradually over many trials through slow Hebbian learning in cortico-cortical projections, as
described above.

Note that the basic principles of reinforcement learning – strengthening representations of
rewarded actions while weakening representations of nonrewarded actions – is conserved
between the neural network and abstract models. The neural network models are more
concerned with putative neural implementation whereas “Q models” abstract the neural
implementation in favor of focusing on the essential computational implementation.

Many models that have been used to understand basal ganglia functions are more elaborate
and sophisticated than these simple equations. For example, other abstract models address how
animals arbitrate between a BG-based habitual system versus a more goal directed system
localized in the prefrontal cortex (Daw et al., 2005), when to explore in a dynamic probabilistic
environment (Daw et al., 2006; McClure, Gilzenrat, & Cohen, 2006), how much vigor to
respond with in variable reward schedules (Niv, Daw, Joel, & Dayan, 2007), and when to
supplement basic dopamine mediated reinforcement learning with an explicit rule for detecting
when the environment has changed (Hampton, Bossaerts, & O'Doherty, 2006). Nevertheless,
the above basic equations are robust in many situations and continue to form the “backbone”
of these more sophisticated models. Although many aspects of neurobiology are not
incorporated into these models (e.g., membrane potential dynamics, different actions at D1 vs.
D2 receptors, role of different BG nuclei), these equations predict activity in specific striatal
and prefrontal regions, demonstrating the elegance of these simple but powerful models in
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elucidating the computations engaged by the basal ganglia without requiring as many
assumptions about the precise implementational form in neural circuitry.

3.2 Neurobiological correlates of abstract models
3.3 Neurobiology of prediction errors

Reward prediction errors have been proposed to be signaled by phasic bursting activity of
midbrain dopamine cells in the ventral tegmental area and SNc. This burst induces rapid
dopamine release in widespread regions of the striatum and limbic system. Like the prediction
error term from reinforcement learning models described above, midbrain dopamine activity
phasically increases unexpected rewards are received, phasically decreases when expected
rewards are not received, and does not change from baseline levels when expected rewards are
received. Detailed reviews of this evidence can be found elsewhere (Schultz, 2002, 1998;
Schultz & Dickinson, 2000).

The link between dopamine cell activity and prediction error terms from computational models
has inspired many researchers using noninvasive neuroimaging techniques in humans to
investigate neural correlates of reward prediction errors. For example, in functional MRI
studies, computational reinforcement learning models, similar to that outlined above, have been
used to generate reward prediction errors on each trial. These prediction errors are then used
in a regression to identify brain regions areas in which activity correlates with prediction errors
derived from the model. These correlations are often observed to be significant in the striatum
and frontal cortex, as well as other regions (discussed in more depth below), and are taken to
reflect reward prediction error signals from the midbrain to striatal circuitry (Cohen, 2007;
O'Doherty, Dayan, Friston, Critchley, & Dolan, 2003; O'Doherty, 2007; Seymour, O'Doherty,
Dayan, Koltzenburg, Jones, Dolan, Friston, & Frackowiak, 2004).

In other work using scalp-recorded EEG in humans, researchers have identified a component
called the error-related negativity (ERN) and the feedback-related negativity (FRN) that may
reflect a reward prediction error signal (Yasuda, Sato, Miyawaki, Kumano, & Kuboki, 2004;
Holroyd & Coles, 2002; Cohen & Ranganath, 2007; Frank et al., 2005; Nieuwenhuis, Holroyd,
Mol, & Coles, 2004). These components are located at frontocentral scalp sites from around
200−400 ms following negative compared to positive feedback, or following error compared
to correct responses. It has been proposed that the FRN reflects the impact of a negative reward
prediction error signal originating in the midbrain dopamine system, which is then used to
adapt reward-seeking behavior (Holroyd & Coles, 2002; Brown & Braver, 2005). This is
consistent with findings that midbrain dopamine neurons project to, and can modulate activity
in, pyramidal cells in the cingulate cortex (Onn & Wang, 2005). However, it is unclear whether
the cingulate can detect DA dips, given the slow time-course of DA reuptake in frontal cortex
(discussed above). Nevertheless, it is possible that these scalp-EEG recordings actually reflect
the impact of DA dips in the BG, which activate the NoGo pathway, and then indirectly lead
to changes in frontal cortical activity (e.g., via increased post-response “conflict” (Yeung,
Botvinick, & Cohen, 2004)).

3.4 Neurobiology of action (Q) values
The other main component of these reinforcement learning models is the Q value, which
represents specific actions or decisions. Although the possible neurobiological correlates of Q
values has received less attention compared to the neurobiological correlates of prediction
errors, evidence suggests that Q values in models might correspond to activity in brain regions
responsible for planning and executing those specific actions. For example, activity of neurons
in the striatum that represent specific actions (e.g., saccades to the right or left) is modulated
by the amount of reward that would be obtained by correct responses (Samejima et al., 2005).
In this study, the properties of these neurons were well fit by a Q learning algorithm. Further,
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reward-related activity modulations in motor regions can bias decision-making and action
selection processes (Gold & Shadlen, 2002; Schall, 2003; Sugrue, Corrado, & Newsome,
2004). Although these findings are not always discussed in terms of Q-values from
computational learning models, the observations are consistent with the idea that Q-values or
weights in models correspond to activity in sensory-motor systems. Preliminary evidence in
humans suggests that activity in cortical motor regions might correspond to Q values. For
example, Cohen and Ranganath (2007) reported that EEG activity over lateral frontal electrode
sites (sites C3/4, typically taken to index motor cortex activity) resembled Q values obtained
from a computational model, while the model played the same strategic game the human
subjects played.

One important question is what a “Q” value means in the brain, and where it is stored. As
described in the previous paragraph, for simple decisions in which each decision maps onto a
particular action or response (e.g., saccade to the left, or pressing the right index finger), the
Q value might correspond to the strength of the activation of that motor action in basal ganglia
and/or cortical motor regions. But most decisions we face are more complex, and do not have
specific, discrete motor actions associated with them (e.g., which college to attend? What to
eat for dinner? Should I marry this person?). Relatedly, in some experiments, the same stimuli
are associated with different motor responses in different trials. This is useful for
counterbalancing motor response requirements, but leaves open the question of whether Q
values in such experiments are linked to the stimulus representation, or whether they remain
linked to a more abstract response representation that is flexible and changes according to task
demands. One possibility is that multiple Q-like representations are maintained by different
brain regions, and correspond to reward-modulated weights of different kinds of information.
For example, the orbitofrontal cortex or ventral striatum might contain basic value
representations of particular world states (divorced from action); the dorsal striatum and
supplemental motor area might contain Q-like representations for specific motor actions; and
dorsolateral or anterior prefrontal cortex might contain Q-like representations of more abstract
goals or plans.

3.5 Individual differences
The equations for reinforcement learning described above are normative, in that they prescribe
how all individuals should act and learn from reinforcements. However, human decision-
making can be variable; myriad individual differences influence how people make decisions,
and different individuals can act and learn quite differently, even when given the same
reinforcements following the same actions. One advantage of abstract models is that they can
be used to characterize mathematically such individual differences. This is done by fitting the
model to each subjects’ behavioral data and estimating some model variables through statistical
fitting procedures. For example, one could estimate unique learning rates, which scales the
impact of prediction errors on adjustments in Q values, for each subject. This approach has
been successfully used to link behavioral task performance and brain activity in the basal
ganglia and frontal cortex to individual differences in decision-making (Cohen & Ranganath,
2005; Cohen, 2007; Schönberg, Daw, Joel, & O'Doherty, 2007; Behrens et al., 2007). Frank
and colleagues recently demonstrated that genetic polymorphisms related to the expression of
dopamine receptors in the human striatum and prefrontal cortex are associated with different
learning rates (Frank et al., 2007a). Further, separate learning rates for gains (Go) and losses
(NoGo) were predicted by the DARPP-32 and DRD2 genes, providing a nice mapping onto
the neural network model. Lee and colleagues have shown in monkeys that activity of prefrontal
cortical cells is predicted by these estimated model parameters (Lee, Conroy, McGreevy, &
Barraclough, 2004; Lee, McGreevy, & Barraclough, 2005).
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When subjects vary widely in how they use reinforcements to adjust decision-making (e.g., in
a gambling study in which there are no correct answers or policies to learn; Cohen & Ranganath,
2005), fitting model parameters to subjects’ data can be critical to elucidating the
neurocomputational mechanisms of decision-making. In these cases, ignoring individual
differences (i.e., a normative approach) may lead to the misleading interpretation that the
models cannot account for the data.

3.6 Uncertainties and inconsistencies in linking abstract models to neurobiology
Although extant literature has shown that activity in fronto-striatal circuits correlates with some
aspects of abstract computational models, inconsistencies and uncertainties remain regarding
what brain systems are involved to what extent, and how closely brain activity conforms to
predictions from the abstract models. Some of this uncertainty is related to the fact that models
are far more simplistic than real basal ganglia systems. For example, it is unlikely that the
equations detailed above describe all internal mental processes engaged during experimental
learning tasks, even in species with simple nervous systems; humans and animals are likely
engaging mechanisms akin to these plus other complex and dynamic high level processes, such
as hypothesis-testing.

One area of uncertainty concerns positive versus negative prediction errors. As described in
the previous section, recent work suggests that the duration of dopamine cell firing pauses may
encode negative prediction errors (Bayer et al., 2007). The serotonin systems has also been
proposed to play a role in signaling negative prediction errors (Daw et al., 2002). The functional
MRI literature is less clear on this issue: Some have found increased/decreased activity in
fronto-striatal circuits for positive/negative prediction errors (Cohen, 2007; McClure, Berns,
& Montague, 2003; O'Doherty et al., 2003) while others have found that ventral striatal activity
correlated with positive prediction errors only (Yacubian, Sommer, Schroeder, Gläscher,
Kalisch, Leuenberger, Braus, & Büchel, 2007). Yet others have suggested that different
subregions of the striatum are involved in positive versus negative prediction errors (Seymour,
Daw, Dayan, Singer, & Dolan, 2007). In studies that have reported activation in the midbrain,
some have reported increased activity for rewards compared to punishments (Murray, Corlett,
Clark, Pessiglione, Blackwell, Honey, Jones, Bullmore, Robbins, & Fletcher, 2008), others
have reported increased midbrain activity for negative compared to positive feedback (Aron,
Shohamy, Clark, Myers, Gluck, & Poldrack, 2004), and others have reported increases for
positive prediction errors but nonsignificant decreases for negative prediction errors
(D'Ardenne, McClure, Nystrom, & Cohen, 2008).

Another area of uncertainty concerns the precise regions in which activity correlates with
prediction errors: Although the prediction error-correlated activity in the ventral striatum is
commonly reported, different studies have also shown prediction error-like responses in the
dorsal striatum, regions of the prefrontal cortex, including orbitofrontal, ventrolateral, and
dorsolateral, midbrain, and cerebellum (McClure et al., 2003; Seymour et al., 2004; O'Doherty
et al., 2003; Haruno & Kawato, 2006; Ramnani, Elliott, Athwal, & Passingham, 2004). It is
possible that prediction errors are utilized by different networks in the brain depending on
current task goals, although to our knowledge this has not been investigated.

There is another problem with the interpretation of the BOLD response, particularly with
respect to the basal ganglia: The BOLD response is a temporally and spatially sluggish signal
that does not distinguish activity of different types of neurons or different functional networks,
especially if those networks are spatially overlapping. For example, networks of Go and NoGo
cells are spatially overlapping, so one could not distinguish between these systems using
functional MRI. Similarly, functional MRI cannot dissociate interneurons from medium spiny
neurons, or oscillations of different frequencies, or different subregions within particular basal
ganglia structures. This issues may become critically important if one assumes that, for
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example, Go and NoGo cells are acting in opposition to each other. In this case, it is possible
that there would be no differences in the BOLD response of the striatum between conditions
of high Go and low NoGo activity compared to conditions of low Go and high NoGo activity.

Despite these inconsistencies across studies–which may be relatively minor compared to their
commonalities–the theory that reward prediction errors are signaled by midbrain dopamine
neurons has proven to be a remarkable one in its simplicity, elegance, and ability to tie together
vastly different fields of research, from artificial intelligence to cellular electrophysiology to
human neuroimaging. It continues to inspire new, creative, and interdisciplinary research, and
has shed new light on the role of basal ganglia circuitry on reinforcement learning and decision-
making.

4 Integrating neural network and abstract models
These two approaches to understanding the computational functions of the basal ganglia have
traditionally been conducted separately, often by separate research groups. As outlined in
previous sections, different models have different strengths and weaknesses. To the extent that
their strengths and limitations match, combining these two modeling approaches might prove
more fruitful than using either in isolation. For example, abstract models, but not neural
network models, are amenable to estimating individual differences in a learning rates and other
parameters, and relating these individual differences to performance or brain activity; in
contrast, neural network models, but not abstract models, make specific predictions regarding
how functional computations may arise via interactive dynamics among multiple brain areas,
and in turn the effects of focal brain lesions, pharmacological manipulations, and genetics.

One way to combine these modeling approaches is to use abstract mathematical models to
estimate learning parameters of neural network models, as if it were a human subject. That is,
when estimating individual learning rates, abstract models are typically “fit” to account for a
given subject's actual trial-by-trial choices when faced with their particular sequence of
reinforcements. One could instead apply the same procedure and treat the output of the neural
network model as “behavioral choices”, and then use the abstract model to estimate learning
rates used by the neural network model as an entire system (which may differ substantially
from learning rates at a given synapse). This might prove useful in understanding the
neurobiology of individual differences in behavioral learning rates. Although several studies
have investigated individual differences in learning rates and correlates of those individual
differences in behavior and brain activity, it remains unknown what neurobiological factors
might lead different individuals to have different learning rates. Is it dopamine system response
amplitude, concentration of dopamine receptors, or the efficacy of globus pallidus-thalamus
efferents? Empirically, it might be difficult to determine the neuro-biological mechanisms that
lead to differences in behavioral learning rates. However, this is where neural network models
become useful: Various parameters in a neural network model could be manipulated, and the
model could be tested in a virtual experiment. The resulting learning rates from different model
versions (e.g., models with intact or impaired dopamine system functioning to simulate
Parkinson's disease) could be compared to different groups of subjects with different learning
rates. If the learning rates from different model versions matched the learning rates from
different subjects groups (e.g., subjects with different genotypes), one could conclude that the
changes made to the model represent one biologically plausible mechanism by which different
learning rates are achieved. Of course changes made to the neural network models should be
driven by a priori hypotheses, constrained by physiological evidence. This would provide an
important validation of the abstract models because, although activation in various regions of
the brain correlate with model parameters that were derived from individual differences in
learning rates (Cohen, 2007; Tanaka, Doya, Okada, Ueda, Okamoto, & Yamawaki, 2004), it
remains unknown which biological processes could account for these differences.
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5 Conclusions and future directions
Computational models such as those discussed here are theories, and, like all theories, are
simplified, limited in scope, and likely to undergo significant revision as new empirical data
refines our understanding. Many empirical papers often rely on conceptual models, but these
are often static anatomical diagrams that lack the mathematical precision of the models
reviewed here, and are often are relatively more simplistic. The computational models
discussed here are similar in the sense that they are simplistic versions that omit many details.
However, computational models have distinct advantages over less mathematically grounded
theories: They can go further by considering the computational functions the brain is trying to
solve, the implementation of those computations, and the rich dynamics of the basal ganglia
circuitry. Ultimately, patterns of data captured by particular models should be replicated by
models one level above (for elegance, analytic tractability, and succinctness), and by models
one level below (for exploring more biophysically detailed constraints and adjusting models
accordingly).

The field of computational modeling, and especially modeling of the basal ganglia system, has
grown considerably over the past few decades. We envision several parallel future directions
of using computational modeling to understanding basal ganglia and related circuitry. It is
likely that more researchers will use more complex and biologically detailed models, due to
the emergence of new software that eases the entry into this field, as well as to advancements
in computer hardware speed and efficiency. As computers become faster, and parallel
processing becomes more commonly used, highly detailed neural models may be scaled up to
a level where they can produce behaviorally and cognitively meaningful outputs. We also
envision that computational models will be integrated more with empirical research, along the
lines discussed in this review about uncovering the putative neural mechanisms of prediction
errors and related reinforcement learning variables. Finally, insights from neurobiologically
plausible computational models might increasingly find their way into domains outside
neuroscience, such as artificial intelligence and robotics (Gurney, Prescott, Wickens, &
Redgrave, 2004).
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Figure 1.
Left. Functional anatomy of the basal ganglia circuit, showing an updated model of the primary
projections. In addition to the classic “direct” and “indirect” pathways from Striatum to BG
output nuclei originating in striatonigral (Go) and striatopallidal (NoGo) cells respectively, the
revised architecture features focused projections from NoGo units to GPe and strong top-down
projections from cortex to thalamus. Further, the STN is incorporated as part of a newly
discovered hyperdirect pathway (rather than part of the indirect pathway as originally
conceived), receiving inputs from frontal cortex and projecting directly to both GPe and GPi.
Right. Neural network model of this circuit, with four different responses represented by four
columns of motor units, four columns each of Go and NoGo units within Striatum, and
corresponding columns within GPi, GPe and Thalamus. Fast spiking GABA-ergic interneurons
(γ-IN) regulate Striatal activity via inhibitory projections. For implementational details, see
Frank (2005, 2006).

Cohen and Frank Page 31

Behav Brain Res. Author manuscript; available in PMC 2010 April 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
a) Probabilistic selection reinforcement learning task. During training, participants select
among each stimulus pair. Probabilities of receiving positive/negative feedback for each
stimulus are indicated in parentheses. In the test phase, all combinations of stimuli are presented
without feedback. “Go learning” is indexed by reliable choice of the most positive stimulus A
in these novel pairs, whereas “NoGo learning” is indexed by reliable avoidance of the most
negative stimulus B.b) Striatal Go and NoGo activation states when presented with input
stimuli A and B respectively. Simulated Parkinson's (Sim PD) was implemented by reducing
striatal DA levels, whereas medication (Sim DA Meds) was simulated by increasing DA levels
and partially shunting the effects of DA dips during negative feedback. c) Behavioral findings
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in PD patients on/off medication supporting model predictions (Frank et al., 2004). d)
Replication in another group of patients, where here the most prominent effects were observed
in the NoGo learning condition (Frank et al., 2007b). e) Similar results in healthy participants
on dopamine agonists and antagonists modulating presynaptic DA (pDA) and f) adult ADHD
participants on and off stimulant medications. g), h) Individual differences in Go/NoGo
learning in college students are predicted by genes controlling striatal D1/D2 function.
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Figure 3.
a) Subthalamic nucleus contributions to model performance in the probabilistic selection task.
While not differing from intact networks in selection among trained low-conflict
discriminations (80 vs 20 and 70 vs 30), STN lesioned networks were selectively impaired at
the high conflict selection of an 80% positively reinforced response when it competed with a
70% response. The model STN Global NoGo signal prevents premature responding when
multiple responses are potentially rewarding, increasing the likelihood of accurate choice
(Frank, 2006). b) Behavioral results in Parkinson's patients on and off DBS, confirming model
predictions. Response time differences are shown for high relative to low conflict test trials.
Whereas healthy controls, patients on/off medication (not shown) and patients off DBS
adaptively slow decision times in high relative to low conflict test trials, patients on DBS
respond impulsively faster in these trials (adapted from (Frank et al., 2007b)).
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Figure 4.
Abstract reinforcement learning models can be useful for investigating individual differences.
Here a model was used to estimate the impact of reinforcement (winning money or not in a
gambling task) on the likelihood of making a low- or high-risk gamble in the subsequent trial.
The best-fitting parameter for each subject determines the magnitude and sign of the weight
change for the high-risk option after obtaining a high-risk reward. Individual differences in
this parameter were then correlated with reinforcement-related brain activation. Results
indicate that, in a network of regions including the lateral striatum (top right), this weight-
update parameter (x-axis) predicts whether brain activations to large rewards are associated
with subsequent risky (y-axis positive values) or non-risky (negative values) choices. In this
case, individual differences proved critical for understanding how reinforcements guide
subsequent decisions: for some subjects reward-related activity predicted increased likelihood
of making a subsequent risky choice, whereas for others it predicted decreased likelihood,
according to their estimated parameters. See Cohen and Ranganath, 2005, for details.
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