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Summary of Recent Advances
Non-typhoidal Salmonellae are highly prevalent food borne pathogens. High-throughput sequencing
of Salmonella genomes is expanding our knowledge of the evolution of serovars and epidemic
isolates. Genome sequences have also allowed the creation of complete microarrays. Microarrays
have improved the throughput of In vivo expression technology (IVET) used to uncover promoters
active during infection. In another method, signature tagged mutagenesis (STM), pools of mutants
are subjected to selection. Changes in the population are monitored on a microarray, revealing genes
under selection. Complete genome sequences permit the construction of pools of targeted in-frame
deletions that have improved STM by minimizing the number of clones and the polarity of each
mutant. Together, genome sequences and the continuing development of new tools for functional
genomics will drive a revolution in the understanding of Salmonellae in many different niches that
are critical for food safety.

Introduction
Non-typhoidal Salmonellae are responsible for an estimated 1.4 million cases of
gastrointestinal disease with 500 associated deaths in the United States, at a cost of $2 billion
[1]. The number of cases worldwide probably exceeds one hundred million each year. Infection
generally occurs after ingestion of contaminated food or water, and usually leads to a self-
limiting enterocolitis. The disease is characterized by diarrhea, abdominal cramps, nausea,
fever, vomiting and headache lasting 7 to 10 days, followed by a longer period of sub-clinical
fecal shedding. Infants, the elderly, and immunocompromised individuals are at risk for serious
systemic complications and death as a result of infection.

Contaminated foods, including beef, pork, poultry and egg products are frequent vectors
responsible for transmission of these organisms to humans. Livestock can harbor
Salmonellae sub-clinically resulting in carcass contamination at slaughter and in the laying of
contaminated eggs. In recent years, as the traditional routes of infection are better controlled,
large outbreaks of non-typhoidal Salmonella infection in the United States have been attributed
to fruits, vegetables and processed foods including jalapeno peppers, cantaloupe, Malto-
meal™ cereal, and peanut butter (http://www.cdc.gov/salmonella/).

Serology based on surface antigens is the standard method of classification of Salmonella. The
host-range and disease can differ considerably between serovars, making such classification
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important. Throughout the world, the most prevalent non-typhoidal serovars isolated from
human sources are serovars Typhimurium and Enteritidis and these two serovars comprise
nearly 40% of isolations from human sources in the United States [2]. These serovars can be
harbored sub-clinically in livestock for prolonged periods of time and are thus very difficult
to eradicate in the absence of a detailed knowledge of the biology of the organism in this niche.

The bacterial factors necessary for Salmonellae to persist sub-clinically in the gastrointestinal
tract of livestock and to survive and grow in other reservoirs such as crops and processed foods
is only beginning to be elucidated. This knowledge will allow the development of new
strategies and the identification of points in the production chain where producers can intervene
to improve the safety foods. We review the current status as well as the uses of complete genome
sequence information for Salmonellae, and enhancements of genetic techniques that may
rapidly increase our knowledge of the biology of this organism in these important food safety
niches.

Complete Genome Sequencing of Salmonellae
Currently, the complete genome sequences of one or more representatives of six serovars have
been determined, annotated, and published [3–8], and additional genomes in seven other
serovars are complete (Table 1). Cheaper and faster sequencing technologies, such as 454 and
Illumina Solexa [9], are now being applied to extensive sequence comparison of non-typhoidal
Salmonellae (Table 1). Use of these tools provides a new window into genetic diversity within
and between Salmonella serovars (and within and between epidemic and non-epidemic
isolates) at a level that has not previously been possible. These sequences also provide a
scaffold for functional genomic studies of Salmonella in particular environments, including
livestock models and other sources of food borne infection.

Complete genome sequences have allowed the development of open reading frame (ORF)
microarrays [10,11] and complete tiling arrays for Salmonellae [12]. Comparative Genomic
Hybridization has been performed using microarrays to characterize the gene content of non-
sequenced clinical and epidemic isolates that are commonly implicated in human food-borne
outbreaks [13–16]. One conclusion from such work is that while most serovars consist of strains
that are very similar to each other and differ in gene content from other serovars, there are
exceptions to this rule. Some individual serovars consist of strains that differ quite considerably
from each other in gene content, whereas, some serovars are very closely related and have
almost identical gene content [17]. Thus, DNA-based classification of strains is likely to be
important to further refine the host range and disease symptoms associated with particular
genome variants (called “genovars”).

Several classification methods have been developed to complement serology. Examples of
tools for classification at the serovar and genovar level include multilocus enzyme
electrophoresis (MLEE [18]), and DNA-based methods including multilocus sequence typing
(MLST [19,20], and multiplex PCR targeted to genes specific to subsets of serovars or genovars
[21,22]. The DNA-based methods pulsed-field gel electrophoresis (PFGE) [23–25] and
variable number of tandem repeat analysis (VNTR, or Multiple Loci VNTR Analysis (MLVA))
[26,27] detect more rapid genomic changes making these techniques useful for epidemiology.
Genome-wide single nucleotide polymorphism analysis is just beginning to be used for
genomic typing [28,29], and will likely be used heavily in the future.

Genetic Approaches to Find Genes Needed During Colonization of Foods
A better understanding of the Salmonella genes that are required for the colonization and
persistence in foods will allow us focus future safety and HACCP programs. Complete genome
sequencing and annotation can suggest a likely function for some genes. However, other
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methods must be used to determine the function or molecular role of most genes and the
particular conditions where each gene is important. Strategies currently in use for the
identification of Salmonella genes involved in colonization of specialized niches such as
livestock and food products generally involve two basic approaches: determination of genes
expressed under particular conditions and forward genetic analysis of Salmonella mutants.

Gene expression
Determining genes that are expressed in a particular condition or environment has been used
as a first step to define groups of candidate genes that are necessary for survival and growth.
Microarray technology has been used to determine gene expression in particular environments,
some of which are relevant to food safety [30–33], but thus far this technique has not been
directly used to define Salmonella genes expressed in or on foods. Expression analysis using
RNA has disadvantages, particularly the difficulty of obtaining Salmonella RNA from highly
complex environments, including livestock, animal carcasses, live shellfish and produce.
However, methods to capture such RNA for analysis have been developed, including strategies
that can enrich RNA from very few bacteria, including purification from inside eukaryotic cells
by capturing PCR products of RNAs using the bacterial genome [34].

Another strategy that sidesteps the issue of RNA abundance is in vivo expression technology
(IVET), which identifies active promoters in a specific environment (for a comprehensive
review see [35]). IVET is a promoter trap strategy employing a library of random genomic
fragments ligated to a promoterless reporter gene. This library is used to identify promoters
that are differentially active in vivo but not in vitro by assaying the transcriptional activity of
promoter-reporter fusions. The bacteria carrying these promoter clones can then be expanded
in vitro for characterization of the promoter by sequencing.

IVET was adapted for the in vivo identification of S. enterica genes expressed in mice [36].
Reporter constructs used in IVET include promoterless genes essential for growth (purA)
[36], antibiotic resistance cassettes [37], recombinase-based systems (RIVET) [38], and
promoterless GFP [39,40]. IVET and more recent modified protocols including differential
fluorescence induction (DFI) and recombinase-based IVET have been used extensively for
identification of Salmonella in vivo induced genes in mice and macrophages [41–44]. One of
the few applications of this method to a food safety issue is by Huang et al., who recently used
a recombinase-based in vivo expression system coupled with a PCR- based method to rapidly
identify activated promoters, to identify genes expressed during infection of swine [45]. 31
genes were identified in this screen that were expressed during colonization of the porcine
intestine and/or tonsil including several known adhesins and colonization factors (bcfA, hscA,
rffG), that are likely necessary for attachment to and colonization of the epithelial surfaces in
the porcine intestine. Furthermore yciR, a diguanylate cyclase phosphodiesterase motif
containing protein (GDDEF-EAL) previously shown to be important for the ability of
Salmonellae to form biofilms [46], was also induced in the porcine intestine [45]. This finding
suggests that biofilm formation may be involved in colonization of the swine intestine. Thus,
control of Salmonella biofilm formation may be a future area for the development of novel
approaches to increase food safety. Recently, the ability to make discoveries using IVET
methods has been accelerated by the hybridization of mixtures of hundreds or thousands of
GFP-expressing clones to a tiling microarray that can identify each individual region
represented in the mixture [44]. Continuing improvements may encourage greater use of these
methods in pathogenic bacteria that contaminate food.

Finally, chromatin immunoprecipitation (ChIP) is a method for identifying targets of DNA-
binding regulatory proteins. In this technique, proteins are cross-linked to DNA in live cells,
and antibody specific for a regulatory protein of interest is used to isolate DNA fragments
binding that protein. Bound DNA is amplified and characterized using DNA tiling arrays.
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Tiling arrays of the Salmonella genome have allowed a characterization of the binding patterns
of particular regulatory proteins [12]. ChIP and other such approaches will be critical in
generating a systems biology description of Salmonella as a pathogen.

Genes required in particular environments
Even though expression analysis and IVET identify genes expressed in a particular
environment, these techniques cannot define genes that are required to colonize a given
ecological niche. Furthermore, required genes may be only transiently expressed at low levels,
and thus may be missed by some RNA expression and IVET-based strategies. A more direct
method for finding the subset of required genes is to use forward genetic screening.

Signature Tagged Mutagenesis (STM) is a negative selection strategy developed to identify
virulence factors of Salmonella enterica serovar Typhimurium in mice [47]. In the original
version of STM, a collection of mutants generated with uniquely marked transposons was
pooled and passed through a selective condition. The unique tags present in the input pool but
missing in the output pools identify mutants that are unable to survive in the selective condition
of interest. Such mutants are identified by hybridization to arrays of signature tags [47,48].
More recently the internal tag in the transposon has been replaced by using transcripts of the
unique genome sequence adjacent each transposon generated from a T7 promoter located inside
the transposon [49–51]. STM combines the advantages of transposon mutagenesis with the
ability to screen a larger number of mutants using fewer animals, a factor that is critically
important when using livestock models that are cumbersome and expensive.

Signature tagged mutagenesis has been used much more extensively than IVET to identify
genes in various Salmonella serovars necessary for colonization of livestock that are the
primary sources of contaminated meat and poultry products consumed by humans. In
publications that each use a few hundred random transposon mutants for STM, a number of
Salmonella candidate genes necessary for colonization of calves, chickens and swine have been
observed in the broad host range serovar Typhimurium and the narrow host range isolates
Gallinarum, Cholerasuis and Dublin that are much less frequently studied [48,52–55]. For
example, the Salmonella pathogenicity islands 1 and 2 (SPI-1, SPI-2) are needed to colonize
the intestinal epithelium of both cattle and swine [48,52]. These studies are also beginning to
outline the genes necessary only in a particular host. For example, the genes of SPI-4 are
required for colonization of the bovine intestine, but are not required for colonization in swine
[48,52]. Genes of SPI-6, in contrast, are necessary for colonization in swine but not in calves.
The genes of the major pathogenicity islands SPI-1 and SPI-2 are required for colonization of
both bovine and porcine intestinal epithelium, but are not required for colonization of intestinal
contents in poultry [48,52]. Genetic requirements for Salmonella growth and survival have
also been examined for less complex conditions that are relevant to food safety using signature
tagged mutagenesis [56]. Exquisitely sensitive techniques such as STM should also be used to
investigate the ecology of Salmonella and E. coli growth on other foods, including those
consumed raw.

Recent Advances in Functional Genomics of Salmonellae
One limitation of using random transposon mutagenesis is that very large numbers of mutants
are needed to ensure complete coverage of the genome. This factor is a significant disadvantage
in circumstances where the population of bacteria experiences random loss, also termed a
‘founder effect’ or bottleneck. For example, when a population of Salmonellae passes from
the intestine to systemic sites only a small fraction of the bacteria arrive in the new niche. Thus,
only a few hundred or a few thousand bacteria can be pooled in circumstances where founder
effects lead to random loss of mutants from the population. Furthermore, transposon mutants
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can have polar effects on downstream gene expression, and occasionally on upstream gene
expression by producing interfering transcripts.

To circumvent these limitations, we have employed complete genome sequence information
to generate ordered libraries of targeted non-polar deletion mutants of individual genes using
the lambda-red PCR-recombination method of Datsenko & Wanner [57]. We have developed
a strategy in which pools of these specific knockout mutants are studied using a negative
selection strategy similar to STM (Figure 2) (Santiviago et al. unpublished). We have also
constructed defined mutants that delete multiple adjacent genes, thereby reducing the
complexity of a pooled mutant library even further (Santiviago et al., unpublished). Similar to
other recent STM strategies, the mutants present in the input but selected for or against in the
output pools are identified using microarray analysis.

The main advantages of this approach for screening in complex environments such as livestock,
is the 10-fold or even 100-fold reduced complexity of the pool of defined mutants relative to
the complexity of a random transposon pool needed for equivalent coverage of the genome.
Other advantages include the reduction of polar effects, and the existence of targeted clean
deletion mutants for confirmation of phenotypes identified by screening. These improvements
enhance the ability to efficiently and accurately detect which Salmonella genes have a role in
a host of diverse environments and allow more comprehensive screening of the Salmonella
genome in complex environments than has previously been possible. The methods should be
adaptable to other food borne bacterial pathogens.

Finally, as the cost of sequencing continues to plummet, and is combined with the ability to
multiplex many biological samples in one sequencing run, it is possible that sequencing will
replace microarrays for determining the population structure of RNAs [58], for characterizing
protein DNA-complexes in chromatin immunoprecipitation [59], and for monitoring mutants.

The Future
Complete genome sequencing of Salmonellae is allowing us to better understand their genetic
diversity, to develop novel tools, and to improve existing genetic techniques to understand the
complex biology of these important food borne pathogens. Approximately half of the genes in
Salmonella still have no known phenotype in the environment. Frontiers for further study of
Salmonella for improved food safety using modern genetic tools are likely to include
determination of the genes necessary for environments where Salmonella must survive outside
the host, such as in feces, soil, water, and plants. Understanding how Salmonella completes its
entire host-to-host life cycle in agriculture may reveal previously unknown vulnerabilities that
will be susceptible to novel intervention and allow us to break the chain of transmission.
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Figure 1. The Influence of Complete Genome Sequencing on Salmonella Genetics
Complete genome sequencing has revolutionized comparative genomics of Salmonellae, and
allowed the development of DNA microarrays and targeted deletion libraries. These tools are
accelerating both the accuracy and the coverage obtained in gene expression studies and
forward genetic analysis of mutants.
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Figure 2. Forward Genetic Method to Identify Salmonella Genes Selected in an Environment of
Interest
Forward Genetic Method to Identify Salmonella Genes Selected in an Environment of Interest.
Libraries of targeted deletion mutants are constructed. Mutants are passed through a selective
condition as a pool. Genomic DNA from both the input pool and the output pool is sheared,
polyadenylated, and nested PCR is used to specifically amplify junction fragments containing
the T7 promoter. The resulting amplified product is used for T7 in vitro transcription with direct
incorporation of fluorescent nucleotides. Mutants selected for or against are determined by
comparison of the labeled transcripts in the input pool to the labeled transcripts in the output
pool using an oligonucleotide microarray of genomic sequences directly adjacent each mutant.
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Table 1
Current Status of Genome Sequencing for Salmonellae

Sequences Completed Method Sequencing Center GenBank Accession # Citation

* Arizonae 62:z4,z23:-- ABI WU CP000880.1

Agona SL483 ABI JCVI CP001138.1

Choleraesuis SC-B67 ABI Taiwan AE017220.1 [7]

Dublin CT_02021853 ABI TIGR CP001144.1

Enteritidis P125109 ABI Sanger AM933172.1 [8]

Gallinarum 287/91 ABI Sanger AM933173.1 [8]

Heidelberg SL476 ABI JCVI CP001120.1

Newport SL254 ABI TIGR/JCVI CP001113.1

Paratyphi A ATCC 9150 ABI WU CP000026.1 [5]

Paratyphi B SPB7 SGSC4150 ABI WU CP000886.1

Schwarzengrund CVM19633 ABI TIGR CP001127.1

Typhi E98-0664/Kenya 1998i 454 Sanger NZ_CAAU00000000 [9]

Typhi 150(98)S/Vietnam 2004 Illumina GS Sanger [9]

Typhi 404ty/Indonesia 1983 454/Illumina GS Sanger NZ_CAAQ00000000 [9]

Typhi 8(04)N/Vietnam 2004 Illumina GS Sanger [9]

Typhi AG3/Vietnam 1998 454/Illumina GS Sanger NZ_CAAY00000000 [9]

Typhi CT18/Vietnam 1993 ABI
Illumina GS

Sanger AL513382.1 [4]
[9]

Typhi E00-7866/Morocco 2000 454 Sanger NZ_CAAR00000000 [9]

Typhi E01-6750/Senegal 2001 454 Sanger NZ_CAAS00000000 [9]

Typhi E02-1180/India 2002 454 Sanger NZ_CAAT00000000 [9]

Typhi E02-2759/India 2002 Illumina GS Sanger [9]

Typhi E03-4983/Indonesia 2003 Illumina GS Sanger [9]

Typhi E03-9804/Nepal 2003 Illumina GS Sanger [9]

Typhi E98-2068/Bangladesh 1998 454 Sanger NZ_CAAV00000000 [9]

Typhi E98-3139/Mexico 1998 454/Illumina GS Sanger NZ_CAAZ00000000 [9]

Typhi ISP-03-07467/Morocco 2003 Illumina GS Sanger [9]

Typhi ISP-04-06979/Africa 2004 Illumina GS Sanger [9]

Typhi J185SM/Indonesia 1985 454 Sanger NZ_CAAW00000000 [9]

Typhi M223/Unknown 1939 454 Sanger NZ_CAAX00000000 [9]

Typhi Ty2 Russia 1916 ABI
Illumina GS

U Wisconsin
Sanger

AE014613.1 [6]
[9]

Typhimurium LT2 ABI WU AE006468.1 [3]

Sequencing In Progress
* Arizonae 05-0715 ATCC
BAA-1577

454 WU -

* Diarizonae 61:1,v:1,5 ABI WU -

* Diarizonae ATCC BAA-1579
05-0625 48:i:z

454 WU -

* Houtenae SARC13 ATCC
BAA-1580 45:a:e,n,x

454 WU -

* Houtenae SARC14 ATCC
BAA-1581 11:b:e,n,x

454 WU -
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Sequences Completed Method Sequencing Center GenBank Accession # Citation

* Indica ATCC BAA-1576 ABI WU -

* Indica ATCC BAA-1578 ABI WU -

* Salamae ATCC BAA-1583
(05-0626) 47:b:1,5

454 WU -

* Salamae SARC3 58:d:z6 454 WU -

* Salmonella bongori 12149 ABI Sanger -

4,[5],12:i:- CVM23701 ABI TIGR NZ_ABAO00000000

Abortusovis SSM0041 454 WU -

Bovismorbificans 01-05481 PT13 454 WU -

Braenderup S-500 454 WU -

Brandenburg KMR12 ABI Korea -

Dublin ABI U Illinois -

Enteritidis 48-0811 Illumina GS WU -

Enteritidis LK5 ABI U Illinois -

Enteritidis SARB17 454 WU -

Enteritidis SARB19 Illumina GS WU -

Hadar ABI Sanger

Hadar RI_05P066 ABI TIGR/JCVI NZ_ABFG00000000

Heidelberg SL486 ABI TIGR/JCVI NZ_ABEL00000000

Indiana KMR53 ABI Korea -

Infantis ABI Sanger

Infantis SARB27 454 WU -

Javiana GA_MM04042433 ABI JCVI NZ_ABEH00000000

Kentucky CDC 191 ABI JCVI NZ_ABEI00000000

Kentucky CVM29188 ABI TIGR NZ_ABAK00000000

Miami ATCC BAA-1586 (02-3341) 454 WU -

Montevideo SARB30 454 WU -

Muenchen SARB32 454 WU -

Muenchen SARB34 454 WU -

Muenster ATCC BAA-1575
(0065-00)

ABI WU -

Newport CVM36720 ABI UMIGS -

Newport SL317 ABI JCVI NZ_ABEW00000000

Panama KMR64 ABI Korea -

Paratyphi A AKU_12601 ABI Sanger FM200053.1

Paratyphi B ATCC BAA-1585 ABI WU -

Paratyphi B SARB47 454 WU -

Paratyphi B tartrate (+) [Java] ATCC
BAA-1584 (S-1241)

454 WU -

Paratyphi C RKS4594, SARB49 ABI
Illumina GS

Peking University
WU

-
-

Poona SGSC4934 454 WU -

Pullorum ABI U Illinois -
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Sequences Completed Method Sequencing Center GenBank Accession # Citation

Saintpaul SARA23 ABI TIGR NZ_ABAM00000000

Saintpaul SARA29 ABI TIGR NZ_ABAN00000000

Schwarzengrund KMR78 ABI Korea -

Schwarzengrund SL480 ABI JCVI NZ_ABEJ00000000

Sendai 55-2461 454 WU -

Senftenberg SARB59 454 WU -

Stanley SARB60 454 WU -

Tennessee CDC07-0191 ABI CDC NZ_ACBF00000000

Thompson SARB62 454 WU -

Typhi SGSC2661 Illumina GS WU -

Typhi Ty21a ABI Naval Med. Res.
Center

-

Typhimurium 14028s 454 WU -

Typhimurium D23580 ABI Sanger -

Typhimurium DT104 ABI Sanger -

Typhimurium DT2 ABI Sanger -

Typhimurium SL1344 ABI Sanger -

Virchow SL491 ABI TIGR/JCVI NZ_ABFH00000000

Weltevreden HI_N05-537 ABI TIGR/JCVI NZ_ABFF00000000

*
All sequences are from Salmonella enterica subspecies enterica except the marked strains, which are from other subspecies and Salmonella bongori.

WU = Washington University, St. Louis. Sanger = Wellcome Trust Sanger Institute. JCVI = J. Craig Venter Institute, UMIGS = University of Maryland

ABI – Sequencing of large fragments by the Sanger Method, using automated detection of an ABI DNA sequencer.

454- 454 Sequencing- (Roche) – sequencing of short fragments attached to beads by sequencing based on synthesis.

Illumina GS- Massively parallel sequencing of millions of fragments using proprietary terminator based sequencing chemistry.
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