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Abstract
Purpose—The discovery of effective biomarkers is a fundamental goal of molecular medicine.
Developing a systems-biology understanding of radiosensitivity can enhance our ability of
identifying radiation-specific biomarkers.

Methods and Materials—Radiosensitivity, as represented by the Survival Fraction at 2 Gy (SF2)
was modeled in 48 human cancer cell lines. We apply a linear regression algorithm that integrates
gene expression with biological variables including: ras status (mut/wt), tissue of origin (TO) and
p53 status (mut/wt).

Results—The biomarker discovery platform is a network representation of the top 500 genes
identified by linear regression. This network was reduced to a 10-hub network that includes: c-Jun,
HDAC1, RELA (p65 subunit of NFKB), PKC-beta, SUMO-1, c-Abl, STAT1, AR, CDK1 and IRF1.
Nine targets associated with radiosensitization drugs link to the network, demonstrating clinical
relevance. Furthermore, the model identifies four significant radiosensitivity clusters of terms and
genes. Ras was a dominant variable in the analysis along with TO and their interaction with gene
expression but not p53. Overrepresented biological pathways differed between clusters but included:
DNA repair, cell cycle, apoptosis and metabolism. The c-Jun network hub was validated using a
knockdown approach in 8 human cell lines representing lung, colon and breast cancers.

Conclusions—We developed a novel radiation-biomarker discovery platform using a systems
biology modeling approach. We propose this platform will play a central role in the integration of
biology into clinical radiation oncology practice.
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Introduction
The discovery of novel biomarkers to better define treatment and disease outcome in oncology
are central tenets of the molecular medicine era 1. However, an efficient and coordinated
strategy to identify radiation-specific biomarkers has been lacking. Thus, in spite of significant
effort, few biomarkers have become routine in clinical radiation oncology practice.

The generation of high-throughput datasets in the “omics” era provides an opportunity to
address biomarker discovery from a different perspective. For example, gene expression
signatures have been shown to be prognostic in breast, lung, head and neck and colon cancer
2–5. Furthermore, these high-throughput technologies are central to the development of a
systems-view of complex biological systems6. In systems biology, regulatory pathways are
proposed to be organized as complex interacting networks similar to the world-wide web7, 8.
Thus, the first step in understanding a regulatory network is defining its components and
organization.

One important feature of systems biology is that it integrates biological scales (molecular,
regulatory network, cellular, tissue, organism) when modeling disease, thus representing a
more global approach to modeling 6–8. Further, it may provide insights into the central function
of a biological system by considering all scales involved. We hypothesized that developing a
radiosensitivity systems model could provide significant biological/clinical insights in our
understanding of intrinsic radiosensitivity.

Previously, we developed a linear regression algorithm to correlate gene expression (molecular
scale) and intrinsic cellular radiosensitivity (cellular scale) in a 35 cancer cell line database 9.
The model correctly predicted cellular radiosensitivity (SF2) in 22/35 cell lines (p=0.002).
Importantly, we showed that the algorithm led to biological discovery. It identified four known
genes (topoisomerase 1, rbapa48, rgs19, r5pia) that were highly correlated with
radiosensitivity. We showed that RbAp48-overexpression led to radiosensitization in three
cancer cell lines tested as predicted. Further it led to a higher proportion of cells in the G2/M
phase of the cell cycle and to de-phosphorylation of Akt, consistent with a mechanistic role
for RbAp48-overexpression in radiosensitization. Furthermore, Topoisomerase 1 was
validated by others as a target for radiosensitization 10. Thus we concluded that the linear
regression algorithm was a valid strategy to the discovery of novel radiosensitivity biomarkers.

Based on this success and the establishment of linear regression as a valid approach to relate
biological scales within the radiosensitivity biological continuum, we reasoned that we could
use a similar approach to define the pathway/regulatory network scale, in an expanded 48
cancer cell line database (Figure 1). We hypothesized that this could serve as a strategy to the
discovery of radiation-specific biomarkers.

Methods and Materials
Cell lines

Cell lines were obtained from the NCI and cultured in RPMI-1640 supplemented with
glutamine (2 mM), penicillin/streptomycin (10 U/ml) and Heat-inactivated Fetal Bovine Serum
(10%) at 37°C (5% CO2).
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Radiation Survival Assays (SF2)
SF2s were obtained from the literature in 23/48 cell lines (Table 1). For literature-based SF2s,
we used papers (published before 2004) that reported on clonogenic assays performed without
any substrate (i.e. agar) and that irradiated cells in log phase. We also required at least two SF2
values reported in the literature by different laboratories. We determined the mean SF2 and
used it for model generation. The remaining 25 SF2s were determined in our lab as previously
described9.

siRNA transfection
Cells were plated overnight (antibiotic-free medium) and transfected with either a pool of 4
negative control siRNAs (25 nM) or c-jun siRNA (25 nM) (dharmaFECT transfection protocol,
Dharmacon, Inc., Lafayette, CO). 72 hours after transfection, cells were irradiated (2 Gy).
Clonogenic survival was assessed 2–3 weeks post-irradiation.

Microarrays
Gene expression profiles were from Affymetrix HU6800 chips from a previously published
study 11. The gene expression data was preprocessed using the Affymetrix MAS 5.0 algorithm.

Gene Expression Microarray Analysis: Identification of Systems Model
A linear model was created to correlate radiosensitivity with gene expression and biological
variables (ras status, (TO) and p53 status) for each probeset in the cell line dataset using the R
software (equation in text). The model consisted of all non-singular terms (28 terms) including
gene expression, p53 mutation status, ras mutation status, TO and all possible interactions
among terms (Supplemental Table 5). TO, p53 mutation and ras mutation status are categorical
variables and were coded as dummy variables. This analysis is performed on a gene by gene
basis, totaling 7,168 probesets. The 500 gene-based models with the smallest sum of squared
residuals were selected for further analysis.

Systems Model: Network Representation
This was generated by GeneGO™ MetaCore™ software (Encinitas, CA). The software
interconnects all 500 selected genes based on literature-based annotations. Only direct
connections between identified genes were considered. Major hubs were defined as having
more than 5 connections and less than 50% of edges hidden within the network.

Evaluation of each term in the model: Ranking of terms
Term impact was compared using clustering, by obtaining p-values for each coefficient of the
variables within the models. These p-values were –log2 transformed and clustered using
complete linkage and uncentered correlation as the similarity metric in Cluster 3.0 and
visualized using Java Treeview.

Pathway Analysis
The 500 genes selected were uploaded into the GeneGO™ MetaCore™ software and p-values
for overrepresented pathways were calculated. Only significant (p<=0.05) maps were
considered further. Additional lists were generated for each of the three radiosensitivity clusters
defined by the clustering method described earlier.

Predictive Model Development
A model was developed in the 48 cell line database using gene expression from the 10 gene
(hub) system. The model is based on gene expression ranks from the highest (10) to the lowest
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expressed gene (1)12. The coefficients were determined by fitting the model in the 48 cell line
dataset (equation in text).

Predictive Model Test Set and Permutation Analysis
The pre-defined predictive model, was tested in a independent set, consisting of the 12
remaining cell lines from the NCI (60) whose SF2s were recently reported 13. To assess the
likelihood of identifying 5 /12 cell lines within 10% of the reported SF2 value by chance, we
computed 10,000 permutations of 12 random numbers generated from a uniform distribution.
We calculated the number of permutations in which 5 or more random values were correct.

Results
A linear regression algorithm to model the radiosensitivity network: Defining the pathway/
network scale using mathematics

Since we had previously been successful in establishing a correlation between the cellular and
molecular scale for radiosensitivity, and we had biologically-validated the linear regression
approach (supplemental data figure 1), we reasoned we could use a similar approach to model
radiosensitivity at the pathway/network scale (figure 1). Further we reasoned that within this
biological scale would reside pathways/molecules that could serve as potential clinical
biomarkers. Thus, we modeled the radiosensitivity network scale using a systems biology
approach with the following linear regression equation:

Single gene expression was combined with key biological variables that have been reported to
perturb the radiosensitivity network: TO 14, 15, ras status 16, 17 and p53 status 18–20. Thus, we
focused on identifying common elements of the radiosensitivity network across the molecular
diversity introduced by multiple cell lines and biological conditions.

A gene-based linear model was constructed for each gene (7168 probesets), correlating
expression and biological parameters with the measured SF2 using a least-squares fit. We
compared the sum squared error of the gene expression based linear models to the null model,
consisting of biological parameters and no expression (SSE = 1.2). The 500 genes with the
smallest sum squared error were considered in further analysis (max SSE = 0.54).

The linear model identifies a 10 gene network to represent the pathway scale: A
radiosensitivity biomarker discovery platform?

The biomarker discovery platform is a network-based representation of the 500 identified
radiosensitivity genes. To create this network, genes (nodes) and literature-based connections
(edges) were plotted using GeneGo MetaCore (Figure 2). The network architecture is
consistent with a scale-free network and represents interactions between individual targets.

Since targets with high degrees of connectivity are considered to be the most important
components of a network 21, we examined hubs with more than 5 connections. The ten hubs
are shown in Figure 3: c-Jun, HDAC1, RELA (p65 subunit of NFKB), PKC-beta, SUMO-1, c-
Abl, STAT1, AR, CDK1 and IRF1. Remarkably, several of these hubs have been previously
reported to be involved in radiation signaling 22–31and 7/10 (HDAC1, PKC-beta, NFKB, c-
Abl, STAT1, AR, CDK1) have been studied as targets for radiosensitizer development 32–37.
Further, a recent study identified an interferon-related signature that includes STAT1 (one of
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the ten hubs) and correlated signature predictions to clinical outcome in breast cancer patients
treated with chemotherapy and/or radiotherapy 38.

The 10 Gene Systems Model as a Biomarker Panel
The model proposes a 10 gene network/system to define the pathway scale within the
radiosensitivity biological continuum. Thus we explored whether the 10 gene system could
function as a biomarker panel. To determine whether this was reasonable to pursue, we
investigated connections between known radiosensitizer drug targets and the network. If the
biomarker platform models radiosensitivity then these drug targets should be connected to the
platform. We tested 9 targets associated with drugs in clinical development or routine clinical
use. All are linked by primary interconnection to at least one of the hubs (Table 2), arguing for
the biological/clinical relevance of the model. Interestingly, each target interferes with a
minority of the hubs, suggesting that our current clinical approach to radiosensitization might
be inefficient at disrupting the proposed radiosensitivity network.

The biomarker discovery platform represents the biological diversity of the network: Ras
and TO play a key role but not p53

This platform provides an opportunity to study the molecular diversity within the
radiosensitivity network (500 gene network). Figure 4 is a cluster heatmap of the impact of
each biological variable considered across the genes in the network. Thus, we tested all 28
terms within the model and ranked them in importance. The model identifies four significant
radiosensitivity clusters of terms and genes. TO, ras status and their interaction with gene
expression proved to be key variables in defining the four clusters. Interestingly, the prostate
cancer term grouped separately. Further, p53 did not have a large impact in the analysis. The
ras wt population was divided into two groups (lung and ovarian vs. other TO). The ras term
was dominant. Cell lines with mutated ras grouped closer than cell lines from the same TO, as
exemplified by breast cancer cell lines.

Radiosensitivity clusters in the platform are biologically distinct
To explore the functional difference in the radiosensitivity clusters, we performed pathway
analysis using the genes identified within each cluster. An AP-1 regulated pathway was the
only commonality between the three main clusters suggesting a key role for c-Jun in the
network. Table 3 shows key biological differences across clusters in the network. For example,
genes in cluster 2 represented pathways in metabolism, hypoxia and Akt. Genes in cluster 3
represented 29 pathways, 11 of which were cell-cycle related. Finally, genes in cluster 4 were
the most functionally diverse, representing pathways in DNA repair, cell cycle regulation,
adhesion, apoptosis, immune response and protein kinase cascades. Importantly, while many
of these pathways have been implicated in the regulation of radiation response, our model
suggests that the importance of each pathway depends on the biological context that defines
network dynamics.

Validation of c-Jun Hub
We examined the hub-based model and chose to validate the effect of c-Jun knockdown on
radiosensitivity. We chose c-Jun because it was identified as a central hub and it had the largest
number of network connections. Although c-Jun has been identified as an early response gene
in radiation response 23, 39, its functional role in radiosensitivity is still in debate. The model
ranked TO as the most important variable influencing the overall importance of c-Jun to the
network. Therefore we tested the effect of c-Jun knockdown on eight cell lines from three
different TO: lung, colon and breast cancer (Figure 5). An overall significant trend towards
radioresistance was observed across cell lines (p=0.016, paired Wilcoxon rank-sum test, n=8).
However, at the individual level significant changes were observed in 3/8 cell lines (H460
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p=0.004; Hop62 p=0.04; HCT116 p=0.02) with the main effect being observed in lung cancer
cell lines (H460, p=0.004; Hop62, p=0.04; A549, p=0.06), thus confirming TO as an important
variable influencing this hub. Interestingly, consistent with these results, our analysis identified
a direct correlation between gene expression and radiosensitivity in lung cancer cell lines
(Figure 5B). Additionally, since the network model indicates signal redundancy and feedback
among central hubs, perturbing c-Jun alone may not uniformly result in changes to
radiosensitivity.

A Predictive Model of Cellular Radiosensitivity
We developed a linear regression algorithm to predict radiosensitivity in the 48 cell line
database, using gene expression rank of the 10 hubs. This rank-based model is given below:

This model which predicts a continuous variable (SF2) was independently tested in the 12
remaining cell lines from the NCI (60) using SF2s recently reported 13. We defined a correct
prediction as values within ±10% of the measured value 9. This accounts for the reported
average variability of the clonogenic assay 40. A comparison of SF2s in our dataset compared
with Amundson (supplementary figure 3), shows a mean difference of ± 17% with only 17/48
cell lines falling within ±10% between the two datasets. Thus, this definition is on the
conservative side of the mean SF2 variability ranges observed. The model predicted 5/12 cell
line SF2 correctly (p=0.07, compared to chance, Table 4). Since this is not a binary prediction
(e.g. radiosensitive vs. radioresistant), the likelihood that a prediction will be correct by chance
is about 20% .

Interestingly, the model is most inaccurate in predicting leukemia cell lines, a finding consistent
with our previously published model 9. If leukemia cell lines are excluded, the results are
significant (5/9 correct, p=0.02).

Discussion
The identification of novel biomarkers is fundamental to the development of biologically-
guided treatment strategies in radiation oncology. In this paper we present a discovery platform
that we propose as a rational strategy to the identification of novel radiation-specific
biomarkers. The platform applies a systems biology approach to modeling the radiosensitivity
network in a database of 48 human cancer cell lines. It proposes a highly interconnected
radiosensitivity network with ten central hubs and significant signal redundancy, a key feature
of complex and robust biological systems 41.

The applicability of the platform as an approach to biomarker discovery is supported by several
observations. First, the platform identified 10 hub genes that are proposed to play a central role
in determining radiophenotype. Indeed, these hubs are known to play a mechanistic role in
radiation response 22–31 or have been identified as potential targets for development of
radiosensitizers 32–37. Further, we confirmed the influence on radiophenotype of one hub in
the 10 gene system: c-Jun. Interestingly, the model ranked TO as the most important variable
for c-Jun in the system. We confirmed this analysis by showing that the induction of
radioresistance by c-Jun knockdown is primarily observed in lung but not breast or colon cancer
cell lines. Furthermore, we developed a ranked-based linear regression model of cellular
radiosensitivity based on the 10 gene systems model. This was independently validated in the
remaining 12 cell lines in the NCI (60) and SF2 was accurately predicted in 5/12 cell lines
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(p=0.07). However, the model was inaccurate when predicting leukemia cell lines and when
these cell lines were excluded the predictive test was significant (5/9, p=0.02). A possible
explanation for this finding is that radiation-induced death occurs via different mechanisms
between epithelial and leukemia cells (mitotic cell death vs. apoptosis) 42. Since the majority
of cell lines in the database are of epithelial origin, it is possible the model is more accurately
representing the biological networks of epithelial cells. One strategy to improve accuracy
would be to exclude leukemia cell lines from model development. However since leukemia
cell lines only represent 3/48 cell lines in the database, we think its likely individual impact
across the model is small. Another possibility would be to include the observed SF2
heterogeneity in model development.

Recently, an interferon-related signature was identified as a predictive marker of outcome in
breast cancer patients treated with chemotherapy and/or radiation therapy. This signature was
cross-validated against our published cell line dataset, to determine whether there was any
association with radioresistance. Indeed 36/49 signature genes were in the top 25% of all genes
ranked by their correlation to SF2 with Stat1 being the most highly correlated. 38. Finally, we
have demonstrated that the gene expression model is an accurate predictor of response or
prognosis after concurrent chemoradiotherapy in three independent cohorts of 118 patients
with rectal, esophageal or head and neck cancer (see companion paper).

Although network hubs can be used as biomarkers of radiosensitivity, they can also be
investigated as potential drug targets. Since these hubs are the most highly connected nodes,
disrupting them may lead to the most significant downstream signaling changes. Consistent
with this, we found that nine radiosensitizing targets are linked to at least one network hub by
primary interconnection. However, the platform suggests that targeting single hubs would be
an inefficient clinical strategy for radiosensitization/radioprotection since the network has
significant signal redundancy. For example, we observed that c-Jun knockdown resulted in
induction of radioresistance in lung cancer cell lines but not in breast cancer cells lines

Therapeutically targeting a single hub could lead to inconsistent system outputs, since
phenotypic response could be driven by competing signals. The radiosensitivity platform
provides a systems-level view of the signaling networks that could be used to identify
competing signaling networks. For example, a model could be developed by generating
experimental data of radiophenotypic changes as a result of hub gene expression perturbations
(siRNA-knockdown). This could serve as a framework to identify clinical strategies to more
effectively target the network.

Although biological targets can be identified within the network, the importance of these targets
may vary depending on clinical context. For instance, genes important in RAS-mutated cell
lines were more biologically diverse than in RAS wild-type. The platform can be utilized to
develop a RAS-specific radiosensitivity network, thus allowing the integration of biological
context into rational targeting strategies. Additionally, ras was the dominant term in the model
over TO and p53. This suggests that it is reasonable to consider ras status in clinical trial design.
This is supported by the demonstration that wild-type Kras is required for panitunumab efficacy
43.

There are inherent biases to our analysis that are important to consider. First, the analysis will
favor well-studied genes, since literature-based primary interconnections are key criteria
utilized to build the network. We took this approach since hub connectivity is correlated with
biological importance in yeast studies 21. Thus, the current model may not be as effective at
identifying orphan genes that function as central hubs in the network. Second, there is the
notable absence of microenvironment-related genes in the identified hubs. Although clusters
2 and 4 represented a hypoxia-related pathway, these genes were dropped when primary
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interconnections were considered. This is not surprising since the data was generated in tissue
culture under normoxic conditions. Further, none of the genes in the 10 hub system is involved
in double-strand break (DSB) repair, an important process mediating radiosensitivity 44. To
address this concern we identified all 31 DSB repair genes present in the HU-6800 chip and
mapped their relationship to the 10 gene system. Almost all DSB genes considered interact
with the network either by direct connection or by an intermediary (supplemental section table
13 and supplemental section figure 2). Thus changes in DSB repair could influence the network
and vice-versa.

In conclusion, we developed a discovery platform for the identification of novel radiation-
specific biomarkers. The platform identifies a biologically diverse radiosensitivity network
with ten central hub genes. We propose this platform may play a central role in the integration
of biology into clinical radiation oncology practice.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Defining the pathway scale by mathematical modeling
A linear regression algorithm is used to model the pathway/network scale in the radiosensitivity
continuum. Biological variables (ras status, p53 status and TO) known to influence
radiosensitivity along with gene expression are included in the model
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Figure 2. The radiosensitivity network
GeneGO™ MetaCore™ was used to generate a network of direct connections between the 500
genes selected for analysis. Red, green and gray arrows indicate negative, positive and
unspecified effects.
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Figure 3. A hub-based network view of the radiosensitivity model
Hubs were identified as having more than 5 connections within the network. STAT1, IRF1,
NFKB, AR, and c-Jun are indicated as transcription factors while HDAC1, CDK1, PKC and
c-Abl are annotated as enzymes. SUMO1 is annotated as a protein.
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Figure 4. Integration of biological parameters in the gene expression/SF2 model
500 gene-based linear models of radiosensitivity were clustered based on the impact of each
term within the model. Each spot in the heatmap represents a p-value from a single coefficient
within each individual gene-based model. Terms include gene expression (y), TO (tissueType),
ras status (RASmut) and p53 status (P53mut). The combination of two terms (e.g. y:RASmut)
indicates an interaction term.
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Figure 5. Biological validation of c-Jun
A. c-Jun was knocked down in eight cell lines using siRNA and SF2 was determined. The
mean and standard errors from at least five independent experiments in triplicates are
represented. Down-regulation of c-Jun was verified by Western blot.B. C-Jun gene
expression is directly proportional to radiosensitivity in lung cancer cell lines. Graphic
representation of c-Jun gene expression and SF2 in lung cancer cell lines in the 48 cell line
dataset (A549, H460, HOP62, NCIH23, HOP92, EKVX).
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Table 1
SF2 values for 48 cell lines in the database

Cell Line Recorded SF2 Cell Line Recorded SF2

BREAST_HS578T 0.79 COLON_COLO205 0.69

BREAST_MDAM B231 0.82 COLON_HCC-2998 0.44

COLON_HCT116 0.38 COLON_HT29 0.79

COLON_HCT15 0.4 COLON_KM12 0.42

COLON_SW620 0.62 MELAN_LOXIMVI 0.68

LEUK_CCRFCEM 0.185 MELAN_M14 0.42

LEUK_HL60 0.315 MELAN_MALME3M 0.8

LEUK_MOLT4 0.05 MELAN_SKMEL28 0.74

MELAN_SKMEL2 0.66 MELAN_SKMEL5 0.72

NSCLC_A549ATCC 0.61 MELAN_UACC257 0.48

NSCLC_H460 0.84 MELAN_UACC62 0.52

NSCLC_HOP62 0.164 NSCLC_EKVX 0.7

NSCLC_NCIH23 0.086 NSCLC_HOP92 0.43

OVAR_OVCAR5 0.408 OVAR_OVCAR3 0.55

RENAL_SN12C 0.62 OVAR_OVCAR4 0.29

BREAST_BT549 0.632 OVAR_OVCAR8 0.6

BREAST_MCF7 0.576 OVAR_SKOV3 0.9

BREAST_MDAM B435 0.1795 PROSTATE_DU145 0.52

BREAST_T47D 0.52 PROSTATE_PC3 0.484

CNS_SF268 0.45 RENAL_7860 0.66

CNS_SF539 0.82 RENAL_A498 0.61

CNS_SNB19 0.43 RENAL_ACHN 0.72

CNS_SNB75 0.55 RENAL_CAKI1 0.37

CNS_U251 0.57 RENAL_UO31 0.62
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Table 2
Radiosensitization targets link to the network.

Target Incoming Edge (Network to Target) Outgoing Edge (Target to Network)

TOP1 c-AblPKC-betaSUMO-1 c-Jun

Ras/Raf/Mek/Erk ARCDK1STAT1 c-JunAR

EGFR ARPKC-beta c-AblSTAT1

COX2 c-JunSTAT1NFKB ---

DNAPK c-Abl c-Abl

PARP1 HDAC1 NFKB

BIRC5 CDK1NFKB ---

HSP90 STAT1 AR

TGFB1, TGFB2 c-JunARNFKBHDAC1 ---
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Table 3
Clusters in the radiosensitivity network are biologically distinct.

Cluster Map Cell Process p value

transcription, proteolysis, 0.00059

Role of Akt in hypoxia induced HIF1 activation protein kinase cascade

2 Glycolysis and gluconeogenesis Carbohydrates metabolism 0.00066

0.02093

Role of AP-1 in regulation of cellular metabolism transcription

Role SCF complex in cell cycle regulation cell cycle 0.00349

3 Role of AP-1 in regulation of cellular metabolism transcription 0.00428

Role APC in cell cycle regulation cell cycle 0.00769

transcription, transcription, protein 0.00010

Role ASK1 under oxidative stress kinase cascade

Role of Brca1 and Brca2 in DNA repair cell cycle 0.00033

Role of IAP-proteins in apoptosis cell death, apoptosis 0.00188

Role of AP-1 in regulation of cellular metabolism transcription 0.00364

4 Chemokines and adhesion cell adhesion 0.00435

Regulation of G1/S transition (part 2) cell cycle 0.01252

ATM/ATR regulation of G1/S checkpoint cell cycle 0.02392

FAS signaling cascades cell death, apoptosis 0.02701

IL2 activation and signaling pathway immune response 0.03031
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Table 4
Model Predictions vs. Measured Value for independent test set

Cell Line Predicted Reported

SF2 SF2

BREAST_MCF7ADRr 0.57 0.56

BREAST_MDN 0.45 0.70

CNS_SF295 0.23 0.73

LEUK_K562 0.82 0.05

LEUK_RPMI8266 0.64 0.10

LEUK_SR 0.73 0.07

NSCLC_NCIH226 0.79 0.63

NSCLC_NCIH332M 0.56 0.65

NSCLC_NCIH522 0.52 0.43

OVAR_IGROV1 0.49 0.39

RENAL_RXF393 0.57 0.67

RENAL_TK10 0.71 0.52
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