DNA ResearcH 16, 249—-260, (2009) doi:10.1093 /dnares/dsp016

Rank of Correlation Coefficient as a Comparable Measure for Biological
Significance of Gene Coexpression

TakesHi Obayashi' and Kenco Kinoshita®»2*

Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo
108-8639, Japan' and Institute for Bioinformatics Research and Development, Japan Science and Technology
Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan?

(Received 30 March 2009; accepted 14 August 2009; published online 18 September 2009)

Abstract

Information regarding gene coexpression is useful to predict gene function. Several databases have
been constructed for gene coexpression in model organisms based on a large amount of publicly available
gene expression data measured by GeneChip platforms. In these databases, Pearson’s correlation
coefficients (PCCs) of gene expression patterns are widely used as a measure of gene coexpression.
Although the coexpression measure or GeneChip summarization method affects the performance of
the gene coexpression database, previous studies for these calculation procedures were tested with only
a small number of samples and a particular species. To evaluate the effectiveness of coexpression
measures, assessments with large-scale microarray data are required. We first examined characteristics
of PCC and found that the optimal PCC threshold to retrieve functionally related genes was affected by
the method of gene expression database construction and the target gene function. In addition, we
found that this problem could be overcome when we used correlation ranks instead of correlation
values. This observation was evaluated by large-scale gene expression data for four species: Arabidopsis,
human, mouse and rat.
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research, gene coexpression data provide a fundamen-
tal basis for omics studies such as the metabolome or

1. Introduction

The function of every gene depends on that of
another gene(s). To predict gene partnerships, gene
coexpression databases can be used, because coex-
pressed genes are generally expected to be involved
in related cellular functions." Many technical improve-
ments have been achieved in microarray measure-
ments, and thus coexpression databases are now
widely used for various experimental objectives, such
as gene targeting, regulatory investigations and/or
identification of potential partners in protein—
protein interactions.”® In addition to target-specified
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phenome.*® To easily extract pertinent information
from gene coexpression data, gene coexpression data-
bases with various analysing tools have been con-
structed for model organisms.c~'*

In these databases, gene coexpression data, which
are similarities of expression patterns of gene pairs
over a number of samples, have been calculated
using publicly available gene expression data pro-
duced using the Affymetrix GeneChip system, most
of which are stored in primary databases such as
GEO,'® TAIR'® and NASCArray.'” Calculation of gene
coexpression can be divided into the following three
general steps: (i) selection of microarray samples,
(ii) normalization of gene expression data and (iii) cal-
culation of gene coexpression. In many coexpression
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databases, the MAS5 algorithm'® is used for
GeneChip summarization, and Pearson’s correlation
coefficients (PCCs) are used to measure gene co-
expression. In this paper, we especially focus on
coexpression measure for construction and usage of
large-scale gene coexpression databases.

PCC is one of the most convenient measures to evalu-
ate gene expression similarities' because it is easy to cal-
culate and is familiar to experimental biologists; still,
certain caveats have been reported. Yona et al.'’
assessed five coexpression measures based on four
types of yeast microarray data. The ‘mass—distance’
measure, which they proposed, showed stably higher
performance than others, although the most effective
measure differed between data sets. Hardin et al.?°
reported the insufficiency of PCC against outliers using
a small data set based on 25 microarray slides. de la
Fuente et al.>' proposed the use of a partial correlation
coefficient with PCC to improve causal properties.
Although these studies are valuable for the calculation
of gene coexpression, it is difficult to directly apply the
results to large-scale database construction, because of
its extremely high calculation cost for large-scale collec-
tions of gene expression data. Condition-independent
gene coexpression data are constructed based on hun-
dreds or thousands of GeneChip data to generalize
specific experimental conditions; for example, for
Arabidopsis, 1310, 1779 and 1388 GeneChips are
used for PED,'© CressExpress'? and ATTED-II,'* respect-
ively. To balance high performance and easy calculation
for database construction, we re-examined coexpression
measures using large-scale gene expression data. Note
that we did not specially focus causal relationship,
but effective retrieval of coexpressed genes to find
functional partner of a gene(s) of interest.

To retrieve coexpressed gene sets, users have to set a
threshold of coexpression value, because coexpression
databases basically return continuous values indicat-
ing how strong the two genes of interest are coex-
pressed in selected samples. Aoki et al.?? specified a
minimal PCC value (0.55-0.66) for coexpressed
gene retrieval to minimize false gene function
relationships. Because the calculation was based on
downloadable coexpression data from ATTED-II,'*
this estimation is valuable for the users of this data-
base. However, experimental biologists can now use
many coexpression databases that were constructed
using different samples and different normalization
procedures. In addition, some databases provide
their own options for sample selection and/or for
coexpression measures other than PCC. Moreover,
comparison of coexpression data among different
species has been a powerful approach to investigate
functional modules.?®> A question arising from this
situation is whether users can apply a particular
threshold (e.g. PCC=0.6) to retrieve coexpressed
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genes for any databases with any options as pointed
out by Manfield et al.” Another question is whether
the PCC threshold can be applied to any genes for
various functions such as direct interactions for
protein complex formation, successive reactions by
enzymes in a particular metabolic pathway or gene
regulatory relationships. The number of coexpressed
genes under a particular PCC threshold follows a
power-law distribution.?* Namely, a small number of
genes are coexpressed with thousands of other
genes, whereas a large number of genes are not coex-
pressed with any (or only a few) other genes.
Although PCC is a convenient measure of expression
similarity between gene pairs of interest, it may not
directly indicate the strength of gene functional
relationships. The fundamental question we address
here is how the strength of gene functional relation-
ships is affected by calculation procedures or gene
functions. For simplicity, we hereafter refer to the
strength of a gene functional relationship as ‘biologi-
cal significance’.

In this study, we first investigated characteristics of
PCC as a measure of gene coexpression. The problems
we found for PCC fall into two categories, both of
which lead low comparability of PCC value. The first
case is derived from the construction of gene
expression data, which includes the selection of
microarray samples (a specific condition or a
mixture of various conditions) and of GeneChip
summarization methods [RMA,>°> GCRMA,?® MAS5'8
or PLIER (Affymetrix Technical Note, http://www.
affymetrix.com/support/technical/technotes/plier_
technote.pdf)]. The second case is derived from the
variety of cellular functions that the gene of interest
concerned. The biological significance of a PCC value
depends on each type of coexpression data, and thus
users cannot directly compare PCC values obtained
from different types of coexpression data. To obtain
a comparable coexpression measure, we tested
several measures and found that correlation rank
could normalize these differences and can be used
as the comparable measure. Four model
species—Arabidopsis, human, mouse and rat—were
used to confirm that the correlation rank was useful
to directly compare the coexpression level among
different genes, conditions and species.

2. Materials and methods

2.1. Data source of microarray experiments

To calculate condition-independent gene coex-
pression data, we constructed gene expression pro-
files using as many genes and samples as possible.
Towards this end, we selected the GeneChip plat-
forms shown in Supplementary Table S1. Because
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some samples were manually omitted due to differ-
ent GeneChip usage, e.g. ChIP-on-chip or heterohy-
bridization of close species, we used the following
number of GeneChips; 1388 for Arabidopsis, 5188
for human, 2226 for mouse and 632 for rat. The
samples used are shown in the Supplementary
data. GeneChip summarizations were performed
for each experiment using BioConducter packages.?”
PLIER was run with quantile normalization, and an
offset of 10 was added to expression values of
PLIER and MASS. If these options were not applied,
GO prediction performance in this study signifi-
cantly decreased (data not shown). All the
expression values used in this study were in base-2
logarithm. For each experiment, an average
expression level for each gene was subtracted to
normalize differences in basal expression levels
between experiments. Finally, all experiments were
combined into one large expression matrix, which
was constructed for each summarization method
and for each species.

2.2. Calculation of gene-to-gene PCC for gene
coexpression

Even if technical replications are normalized,
some data (e.g. a large series of time-course exper-
iments under a single biological condition) are
biologically redundant and result in unfairly biased
gene expression data. Because these unexpected
biases will affect the PCC values, we used a gene-
to-gene PCC weighted by the following sample
information scores Ws. The weighted PCC has been
applied to evaluate the relationships between two
variables with data samples by unbalance manner,
and also used for microarray analyses.?®?° The
weight Ws, for a sample Sa of interest was derived
from the sample-to-sample similarity  Js; s
between the sample Sa and anyone of the sample
Sx, which was calculated as PCC between the two
samples. To focus on significantly similar samples,
we introduced the cut-off threshold C. If the
sample similarity Js; s is smaller than the cut-off
threshold C, s, s is set to 0. On the other hand, if
jSa,Sx is larger than C» Jéa,sz Uga,Sx - C)/U - C)) SO
that the range of sample-to-sample similarity J§, s
becomes 0 to 1. We roughly optimized the cut-off
threshold C and used 0.4. We did not carry out a
fine optimization because the results were not sen-
sitive to this parameter. The sample redundancy Js,
for the sample Sa is calculated as the summation of
the Js; s Namely Js; = Zijga,Sx' Because a large Js,
value indicates highly redundant and thus a poorly
informative sample, weight of the sample Sa, Ws,,
was defined as the inverse of the square root of
the sample redundancy Js,. This procedure is

T. Obayashi and K. Kinoshita

251

analogous to the calculation of the standard error
from the standard deviation, where the number of
samples corresponds to the sample redundancy. If
the sample S is replicated four times without exper-
imental error, the reliability of the data for the
sample S is doubled. Finally, the weighted PCC was
calculated between two probes, according to the
formula of weighted PCC?® with the weight
described here. This weighted PCC was used as
PCC in this study. Negative PCC values were used
as is, namely treated as weaker relationships than
zero PCC value, because negative correlations did
not promote gene function prediction in our data
(see also Fig. 2C, where red dots indicating the
same GO annotation to each of the reference gene
did not significantly appear in right-bottom anti-
correlation region). The effectiveness of the weight
was not fully evaluated and it can be different with
data set. In our data set, the weighted PCC gave
slightly better performance than non-weighted
PCC, but the differences were not so large in our
data set.

In the case of Arabidopsis, genes with a single probe
set are used, so that a probe-to-probe correlation direc-
tory indicates gene-to-gene correlation. For human,
mouse and rat cases, the probe-to-probe correlations
are transformed to gene-to-gene correlations using
the maximum correlation value between all pairs of
probes between the two genes, because most of
genes in these three species are supported by multiple
probe sets.

2.3. Calculation of PCC rank and mutual rank for gene
coexpression

When we focus one gene of interest, we can obtain
coexpressed gene list sorted by PCC values between
the gene of interest and all other genes on the micro-
array. ‘PCC rank’ used in this study is the rank of the
gene in the PCC-ordered gene list. When gene A is
third strongly coexpressed genes for gene B, PCC
rank of gene A to gene B is 3. This PCC rank was
used as one of coexpression measures. Since PCC
rank between two genes of interest can be different,
we introduced another coexpression measure,
mutual rank (MR), by taking a geometric average of
the PCC rank from gene A to gene B and that of
gene B to gene A. The reason why we used ‘geometric
average’ rather than arithmetic average is that we
think that the difference of PCC ranks will change as
logarithmic manner. For example, the impact of the
difference of 1 and 3 in PCC rank can be similar
with that of 100 and 300. Actually, the geometric-
averaged MR showed slightly better gene prediction
performances than arithmetic-averaged MR (data
not shown).
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2.4. Extraction of GO terms for the assessment of gene

coexpression

Each of the three categories of Gene Ontology (GO)
Annotation,'® namely biological process (BP), cellular
component (CC) and molecular function (MF), was
used to annotate gene function. Because GO terms
have hierarchical topology with different importance,
we selected appropriate GO terms to represent gene
function. The selection was conducted based on the
information content of GO terms.?® All annotations
were first mapped to all upper GO terms up to the
root terms. Because terms that are associated with
too many genes have less informative annotations,
and thus could not be used to construct new exper-
iments, we used GO terms associated with >4 and
<20 genes. As a result, 729 BP terms, 147 CC
terms and 391 MF terms were selected on average
for the four species. Although we chose this range of
gene numbers (ie. >4 and <20) based on the
characteristics of the randomized coexpressed gene
lists to be AUC = 0.5 (see next section for AUC), we
reached the same conclusion even using other
ranges. The statistics of the selected GO terms are
shown in Supplementary Table S2.

2.5. Prediction of gene function

We iteratively applied the nearest neighbour
approach to predict GO annotations for each refer-
ence gene. The actual procedure was conducted as
follows. First, we applied it to GO annotations of the
most strongly coexpressed gene to the reference
gene. Then, the GO annotations of the second-most
strongly coexpressed gene were applied. In the same
way, GO annotations of all coexpressed genes were
iteratively applied. One of the characteristics of this
prediction method is that it does not require par-
ameter optimization. Another characteristic is that
we can introduce any thresholds to define valid coex-
pressed genes. Using the predicted result on various
thresholds, we generated receiver operating charac-
teristic (ROC) curves, which is a plot of true-positive
rate [TP/(TP + FN)] against false-positive rate [TN/
(FP +TN)] with all possible threshold values, where
TP, FN, TN and FP are the number of true positives,
false negatives, true negatives and false positives,
respectively. In gene function prediction, the number
of positive gene-to-function relationships is far
smaller than that of negative relationships. To evalu-
ate such unbalanced data, evaluation measure such
as overall accuracy, the Mathews correlation coeffi-
cient and F-measure is not adequate. A representative
ROC curve is shown in Supplementary Fig. S1. Because
the ROC curves produced in this analysis showed stan-
dard convex-upward shapes, we simply showed the
area under the ROC curve (i.e. AUC) to compare the
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effectiveness of the coexpression data. For example
of BP in Arabidopsis, 376 GO annotations for 2280
genes were tested (Supplementary Table S2), where
all possible associations were 857 280, and positive
associations were 3705. We calculated true- and
false-positive rates for all possible thresholds
(857 280) to draw the ROC curve, and then AUC
were obtained as the average of the true-positive
rates for the false-positive rate ranging from 0 to 1
by 0.0001 steps.

3. Results and discussion

3.1. Problems with PCC values

We first used the PCC value as a measure of coex-
pression but found that the inferred biological signifi-
cance varied depending on the type of coexpression
data. This problem can be attributed to two main
factors: (i) different gene expression data and data
treatments were used in each database, and (ii) differ-
ent kinds of cellular functions require differences in
the strength of gene coexpression. Examples of these
two possibilities for Arabidopsis are shown in Figs 1
and 2, respectively.

The first factor is related to the expression data con-
struction. Specifically, it depends on the choice of
sample set (Fig. 1A) and the choice of normalization
method for the expression data (Fig. 1B). Figure 1
shows the distribution of the gene-to-gene PCCs
between each gene and the most strongly coex-
pressed gene. In Fig. 1A, the black line shows the dis-
tribution of the PCC values calculated from the 1388
Arabidopsis GeneChip slides downloaded from TAIR,'©
and the red line was calculated from the 237 samples
related to developmental experiments (TAIR-
ME00319) and the green line was calculated from
the 328 samples related to abiotic stresses (from
TAIR-ME00325 to ME0O0330), both of which were a
subset of the 1388 samples containing various exper-
imental conditions. As seen in the figure, the red- and
green-line distributions are shifted to the right com-
pared with the black-line distribution, indicating
that high coexpression around PCC = 0.8 was com-
monly observed in the PCCs from the developmental
samples, whereas high coexpression pairs were rarely
observed in the unselected samples (black-line
distribution). Two possible reasons—one biological
and the other mathematical—can account for the
differences in PCC values. The biological reason is
that gene expression changes among developmental
samples were far larger than those elicited in response
to environmental stresses. Such large changes in
gene expression amplitude can decrease experimental
noises that decrease any gene correlations. Therefore,
absolute values of the PCC obtained from developmental
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Figure 1. Distributions of PCC values between each gene and its strongest coexpressed gene in Arabidopsis. (A) Distribution of PCC values
calculated from 1388 GeneChip slides (black), 237 slides (red) and 328 slides (green), both of which were summarized by RMA.
(B) Distribution of PCC values calculated from 1388 GeneChip slides summarized by four methods (RMA, GCRMA, MAS5 and PLIER).

experiments will be higher than those from experiments
with unselected samples. On the other hand, the math-
ematical reason isthat a smaller sample numbertendsto
produce larger amplitude of correlation values between
any two genes as discussed previously.'? This can easily
be understood by considering an extreme case using
only two microarray slides, for which all the PCC
values between the most highly coexpressed gene
pair should be 1.0 from the definition of PCC.
The mathematical issue can be resolved by using stat-
istical significances of the PCC values. In fact, some
coexpression databases, such as ACT,” CSB.DB’ and
CressExpress,'? calculate the statistical significance of
every PCC value. In the later part of this paper, we intro-
duced rank of PCC. For a given expression matrix, the
effect of rank is identical to PCC and to its P-value,
because the order of PCC and its P-value of PCC
were identical.

In the same way, the choice of the normalization
method of microarray data affects the PCC values.
Figure 1B shows that distributions of the highest
PCCs from RMA- and GCRMA-summarized data man-
ifested as a single peak, whereas those of MAS5 and
PLIER were bimodal. The peak around PCC=10.2
observed in MAS5 and PLIER was derived from genes
with low expression level (data not shown), where
noises in microarray experiments may strongly
affected the observed expression patterns to calcu-
lated gene coexpression. Similar to Fig. 1A, high PCC
values (e.g. PCC=0.8) were more frequently
observed in RMA- and GCRMA-summarized data,
whereas those values were less frequently observed
in MAS5- and PLIER-summarized data.

Gene function is another factor causing differences
in biological significance of a PCC value. In Fig. 2A and
B, two examples show relationships between PCC

values and gene function. The black line in Fig. 2A
indicates PCC values of coexpressed genes to a gene,
At3g20000 (mitochondria outer membrane protein
TOM40), in descending order. Genes with the same
function by GO BP annotation as the reference gene
(At3g20000) are highlighted by red dots. Because
genes with the same cellular function can be expected
to be coexpressed, it is reasonable that the red dots
accumulated at the top-left area in the graph.
Figure 2B is another example with a different refer-
ence gene, At5g06140 (PHOX domain-containing
protein). Good accumulation of genes with the same
function was again observed in the top-left area.
However, the absolute PCC values of the red dots
were different in these two graphs. Most of red dots
in Fig. 2A accumulated around PCC = 0.6, whereas
most red dots in Fig. 2B accumulated around PCC =
0.3. This observation suggested that the required
strength of gene coexpression might be different for
each reference gene. At3g20000 (Fig. 2A) requires
stronger gene coexpression than At5g06140
(Fig. 2B) to realize its function. To check the generality
of this observation, the correlation curves for all genes
were overlaid in Fig. 2C and D (Fig. 2D is a close-up
view of Fig. 2C). If the absolute value of PCC directly
indicates biological significance, these red dots
should accumulate in the upper area in these
graphs. This was not the case, however, as they accu-
mulated in the left-most region. Especially in the
region of the top-most 20 genes, there is almost no
relationship between the PCC values and functional
relationship. These results suggest that the rank of
PCC is a more effective measure of coexpression (to
identify functionally related genes) than the PCC
value itself. In the following sections, we focus on
the characteristics of the rank of PCC value for each
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Figure 2. Relationships of PCC values and GO term agreement. Decay curves of PCC values for gene coexpression are shown for Arabidopsis
genes. Decay curves of PCC values of coexpressed genes from two particular genes: At3g20000 (A) and At5g06140 (B). Red dots
indicate genes that have the same annotations of GO BP terms as the reference gene. Statistical significance of non-random
distribution of the red dots was established by the Kolmogorov—Smirnov test. (C) The same curves in A and B are overlaid for all

Arabidopsis genes. (D) Detailed view of the 0-400 range of C.

reference gene, which we call ‘PCC rank’ against
normal ‘PCC value’, hereafter.

3.2. PCC rank can normalize inconsistencies caused by
different sample compositions or different
GeneChip summarization methods

From the analyses of the relationship between PCC
value and gene function, we proposed that the PCC
rank might be a good measure of coexpression.

Next, we assessed how PCC rank is affected by differ-

ences in expression data observed in Fig. 1. We

observed the distribution between developmental
samples and all samples for PCC values (Fig. 3A, left)
and PCC ranks (Fig. 3A, right), and that between

RMA- and GCRMA-summarized data for PCC value

(Fig. 3B, left) and PCC rank (Fig. 3B, right). The left

panel of Fig. 3A is a density plot between PCC values
calculated from 1388 Arabidopsis GeneChips on the
x-axis and PCC values calculated from 237 develop-
mental samples on the y-axis. Each original dot was
calculated for all gene pairs and shown as a density
plot in logarithmic scale. The distribution was a
broad S-shape, indicating weak correspondence of
the two types of PCC values. On the other hand,
when we used PCC rank instead of PCC value, the dis-
tribution aligned on the diagonal (Fig. 3A, right
panel), meaning there was a linear correspondence
of PCC ranks between the different samples.
Notably, the genes in the highest (bottom-left) and
the lowest (top-right) rank regions were highly popu-
lated between the two types of coexpression data,
indicating that PCC ranks, as opposed to PCC values,
were robust with respect to different sample
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Figure 3. Inconsistency of the PCC values and consistency of the PCC ranks for differently constructed expression data. Degree of
coexpression is compared using PCC value (left panels) or PCC rank (right panels). (A) The x-axes indicate coexpression calculated
from 1388 Arabidopsis GeneChip slides, whereas the y-axes indicate coexpression calculated from 237 developmental slides. (B) The
x-axes indicate coexpression calculated from RMA-summarized data, whereas the y-axes indicate that from GCRMA-summarized
data. All distributions are represented by density plots in logarithmic scale.

compositions when the correlation was relatively high
in each reference gene. In the same way, differences in
PCC values caused by different GeneChip summariza-
tion methods shown in Fig. 1B can be normalized by
PCC rank (Fig. 3B). Although it was generally well cor-
related in both panels, some gene pairs showed
exceptionally high values for GCRMA in PCC value
(Fig. 3B, left) as was the case in Fig. 1B. Again, these
PCC ranks showed very good agreement (Fig. 2B,
right). This result indicated that PCC rank was more
stable than PCC value with respect to the selection
of GeneChip summarization methods, and thus is
suitable as a comparable coexpression measure.
Correspondence between RMA-MAS5 and MAS5-
PLIER showed similar results (Supplementary Fig.
S2). Our observation that PCC values obtained after

GCRMA summarization were higher than those
obtained after RMA summarization is consistent
with the report for GCRMA problems by Lim et al.,*'
and thus these problematic characteristics of
GCRMA may be a general feature.

PCC values and its distribution on a given set of
experiments can also be affected by the quality of
microarray data, where more noise in microarray
experiments causes lower PCC values. On the other
hand, we can neglect the original PCC values and its
distributions by taking the rank of the PCC values.
This may be one of the reasons why rank-based
values can compare different coexpression data. As
inextricably linked aspect of this comparability, rank-
based values do not include any information to esti-
mate the quality of original microarray data.



256

This phenomenon is quite similar with RMA summar-
ization of GeneChip compared with MAS5, where the
rank of probe intensity is used to reconstruct common
distribution.

3.3. Large-scale assessment of PCC rank and MR

For large-scale assessment of PCC rank, we pre-
dicted gene function using coexpressed gene lists
sorted by PCC value or by PCC rank and compared
the results, because many recent studies used gene
coexpression data to identify gene function (see
review>?). After constructing a coexpressed gene list
for each gene, we predicted GO annotations assigned
to the reference gene using the following procedure
(see Section 2 for details). First, the GO annotations
for the gene that was most strongly coexpressed
with the reference gene were applied as the first pre-
diction. Then, the GO annotations of the second-most
strongly coexpressed gene were applied, and so forth
until all coexpressed genes under a given threshold
of coexpression were applied. On the basis of ROC
curves of this prediction, the AUCs were compared
as prediction performance. AUC= 1.0 indicates a
perfect prediction, whereas AUC=0.5 means
random prediction. We evaluated the performance
for each GO category, i.e. BP, CC and MF.

We compared the performance of the GO annota-
tion prediction based on PCC values and PCC ranks
(Fig. 4). In all the cases for GO BP, CC and MF predic-
tions, PCC rank was more effective than PCC value.
This result agreed well with the result in Fig. 2D,
which showed that genes with same GO BP annota-
tion accumulated in the high PCC rank region (the
left-most region in Fig. 2D) rather than the high
PCC value region (top region in Fig. 2D). Note here
that we introduced ‘MR’ by taking a geometric
average of the PCC rank from gene A to gene B and
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~| M PCC rank [
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Figure 4. Effect of rank-based coexpression measures to predict GO
annotations. The y-axis indicates AUCs to predict three types of
GO annotations (BP, CC and MF) from gene coexpression data
represented by PCC value, PCC rank and MR. Note that the
AUCs on the y-axis do not start from 0.5, which corresponds
to random prediction, because we focused on differences in
AUCs rather than the absolute value of AUCs. BP, biological
process; CC, cellular component; MF, molecular function.
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that of gene B to gene A, because the two ranks
between genes A and B are usually different and
thus are not convenient to use like a PCC value. The
performance of MR was almost the same as or slightly
better than PCC rank (Fig. 4). To further confirm the
statistical significance of the difference between PCC
value and the other two measures, we randomly
selected half of the entire genes, and constructed
PCC table and calculated PCC rank and MR, and then
AUCs of gene function predictions were obtained as
the same procedure in this study. This procedure was
repeated 100 times and calculated the standard devi-
ation of the difference of AUCs. The result showed clear
difference in performances between PCC value and
the rank-based measures (Supplementary Table S3).
Note that no difference between PCC rank and MR
was observed.

Our observation that PCC value was less effective for
predicting gene function than PCC rank is probably a
consequence of the different requirements of coex-
pression for different biological functions. When we
consider genes for a protein complex, strength of
required gene coexpression may depend on the stab-
ility of monomers. Strong coexpression should be
required for unstable monomers, whereas loose coex-
pression may be sufficient for stable monomers, the
half-life of which may be regulated by phosphoryl-
ation and/or protein subcellular localization. In the
same way, when we consider genes for enzymes of a
particular metabolic pathway, strength of required
gene coexpression may depend on the stability or tox-
icity of the metabolites. If the intermediate metab-
olite(s) between any reactions is unstable or toxic,
strong coexpression of the enzyme genes will be
required.

PCC is not the only measure of gene coexpression.
For example, Spearman’s correlation coefficient
(SCC), mutual information content and partial corre-
lation have also been used in gene coexpression
studies.?"3"32 According to our results, the perform-
ance of PCC and SCC values was almost the same for
GO term prediction (Supplementary Fig. S3).
Although PCC may still have limitations with respect
to outliers, as reported previously,’® the outlier
effect was smaller in large-scale microarray data.
Compared with the difference between SCC and
PCC values, PCC rank is very different from PCC
value. It may be understood by considering that SCC
value as well as PCC value is two-body relationship
whereas PCC rank is multi-body relationship, i.e. PCC
value can be calculated from just two genes of inter-
est, and PCC rank reflects the distribution of PCC
value around the two genes of interest. In this sense,
the relationship between SCC and PCC values was
more similar than that of PCC value and PCC rank.
This viewpoint was also supported by our preliminary
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observation that SCC rank had a similar effect to PCC
rank (data not shown).

3.4. Performance of PCC rank and MR in other species

Although to this point we have focused solely on
Arabidopsis data, we also tested the effectiveness of
PCC rank and MR with respect to gene coexpression
in other species to evaluate the generalities of PCC
rank. We used RMA-summarized data for Arabidopsis
(Fig. 4), and here we show the results with different
GeneChip summarization methods (GCRMA,?°
MAS5'® and PLIER) for different model species
(human, mouse and rat), which have been used in
several gene coexpression databases. Because the
pattern of the results was almost the same for the
BP, CC and MF categories of GO (Fig. 4), we show
only the average AUC values for the other species
and other normalization methods (Fig. 5). Figure 5A
shows the results of the gene function prediction in
Arabidopsis. AUC values on the y-axis were compared
for three coexpression measures (PCC value, PCC rank
and MR) and for four GeneChip summarization
methods (RMA, GCRMA, MAS5 and PLIER). For all
four GeneChip summarization methods, PCC rank
and MR showed higher prediction efficiency than
PCC values. Figure 4B—D shows the results for
human, mouse and rat, respectively. Although the
gene expression data for the four species were com-
pletely different with respect to sample size and
sample composition and the quality or density of
GO terms is quite different in each species, PCC rank
and MR were consistently more effective at predicting
gene function than PCC value, strongly suggesting
that the relatively higher performance of PCC rank is
a general feature.

3.5. Effects of PCC rank with respect to different

summarization methods of GeneChip data

Figure 5 shows the performance of different
GeneChip summarization methods. The selection of
the GeneChip summarization method is one of the
most analysed issues of GeneChip data. Although
many studies have compared GeneChip summariza-
tions, there has been no general consensus. For
example, lIrizarry et al3® showed superiority of
GCRMA, whereas relatively low performance of
GCRMA was shown by titration experiments.3*
Srinivasasainagendra et al.'? discussed RMA superior-
ity compared with GCRMA and MAS5 based on their
unpublished result using redundant probeset pairs,
which should be separated from the probeset pairs
randomly selected. This disagreement is partially
caused by different assessment systems. The focus of
our assessment was to obtain more information
from gene coexpression data. From this point of
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Figure 5. Effect of summarization methods for GO predictions. The
four types of summarization methods were assessed for their
ability to predict GO annotations. The y-axes indicate average
AUC values of the ROC curves to predict GO BP, CC and MF.
Note that the AUCs on the y-axis do not start from 0.5, which
corresponds to random prediction, because we focused on
differences of AUCs rather than the absolute value of AUCs.

view, Lim et al.®! reported MAS5 superiority and the
requirement for GCRMA modification when using
human GeneChip data. Although our results do not
support the inferiority of GCRMA, MAS5 showed the
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highest performance for humans and, in that sense,
supports the results by Lim et al.3' As for basic prop-
erties of GeneChip summarization methods, MAS5
returns relatively high accuracy of gene expression
values, but reproducibility of the value is relatively
low compared with  other summarization
methods.?® Because the number of human samples
was larger (5188 samples) than that for the other
species (1388, 2226 and 632 samples for
Arabidopsis, mouse and rat, respectively), the short-
coming of low reproducibility using MAS5 summar-
ization may be overcome by a large number of
samples. In fact, when we used 500 randomly
selected human samples instead of all 5188
samples, MAS5 showed lower performance than
RMA (data not shown). However, MAS5 still has
merits to construct coexpression data, because it can
be applied to a single GeneChip slide and because
the number of available data from MAS5 in public
database is larger than that from other methods
which requires raw data registrations. Note that we
did not use detection call of MAS5 (Present,
Marginal and Absent), which provides significance of
expression against background noise. Although the
effectiveness of detection call of MAS5 has been
reported,®®> we did not use it to avoid managements
of missing values. This probably caused lower per-
formance of MAS5.

3.6. Gene coexpression data for Arabidopsis are more

powerful than those for mammalian species

The AUC of GO term prediction for Arabidopsis
genes was higher than for the mammalian genes
(Fig. 5). This may be because Arabidopsis has a
simpler morphology and gene structure than
mammals, i.e. Arabidopsis has fewer tissues and a
lower degree of tissue differentiation. For example,
flowering plant tissues have totipotency, and thus
the developmental programme for each tissue can
be maintained independently, e.g. cutting the bulb is
not lethal. On the other hand, Arabidopsis has many
paralogous genes to increase the variation of tran-
scripts instead of using an alternative splicing strategy
that is common in mammals.3® This characteristic in
Arabidopsis probably results in a more accurate
measurement of the gene expression pattern,
because gene expression microarrays cannot dis-
tinguish between splicing variants. Also, the sample
variety of GeneChip data might be higher in
Arabidopsis. The GeneChip data for Arabidopsis
include many time-course experiments for external
stimuli in addition to precise tissue samples collected
by AtGenExpress,®” 32 whereas this type of exper-
iment may be more difficult to obtain for mammalian
species. In fact, gene coexpression data are extensively
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used for gene targeting in Arabidopsis research,
whereas this is not a major approach used in mam-
malian studies.

3.7. MR effects on hierarchical clustering

To evaluate the effect of MR on multiple reference
genes, we conducted hierarchical clustering using
PCC or MR as the metric; (1 — PCC) was used as the
PCC metric. Since the result of hierarchical clustering
depends on a selected linkage rule, we applied seven
methods available in ‘hclust’ function of statistical
package R (http://www.r-project.org). To assess hier-
archical clustering result, we counted the number of
junction whose nodes are filled with a single GO
annotation, i.e. the nodes with the same function
(Supplementary Fig. S4A). As a result, MR metric
showed generally better performance than PCC
metric, and the difference between MR and PCC was
remarkable for single, centroid and median linkage
methods (Supplementary Fig. S4B—D). It may be
noteworthy that MR showed very stable performance
for every linkage method compared with the variable
performances in PCC values. This result may suggest
that MR already included some effects caused by mul-
tiple gene reference induced by some linkage rules as
average, mcquitty, ward and complete, where all pairs
of the cluster members are considered to calculate
the distance between clusters.

3.8. Conclusion

In this study, we investigated the characteristics of
PCC (value and rank) as a coexpression measure.
The biological significance of PCC could be altered
by expression data construction and gene function.
We found that PCC rank could normalize differences
in biological significance, and we propose a new
measure for coexpression analysis, MR, because a
single index for a pair of gene is more convenient.
MR is easy to calculate from PCC and can be directly
compared among different coexpression data. This
universality of MR enabled us to introduce a
common threshold to all reference genes and to cal-
culate average distances among multiple genes. As a
consequence, hierarchical clustering and a combined
coexpressed gene list for multiple reference genes
can be available more effectively. Tools for these func-
tions based on MR are available in our databases.''*

Although selection of the GeneChip summarization
method strongly affected the performance of coex-
pression data, MR could reduce the difference. This
result applies directly to coexpression database con-
struction, because much of the GeneChip expression
data have been stored in public repositories as MAS5-
summarized data. Our results provide a standard
calculation procedure for condition-independent gene
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coexpression data to elucidate gene-to-gene functional
relationships.

The generalities and easy calculation of PCC rank or
MR will enable the users to directly compare results
obtained from different coexpression databases, and
this will strongly promote comparative transcrip-
tomics using public databases. Searching conserved
coexpression is one of the possible important appli-
cations, which is also provided in our databases.'®'#
In this study, we did not pay attention to anti-corre-
lation. To analyse anti-correlation using rank-based
measures, some normalization such as taking percen-
tile of PCC rank or MR may be useful to standardize
the measures from zero to one.

3.9. Data availability

Coexpression data represented by the PCC value and
the MR based on RMA-summarized GeneChip data
used in this study are available at (http://atted.jp/
download.shtml) for Arabidopsis and (http://
coxpresdb.jp/download.shtml) for human, mouse
and rat.

Supplementary data: Supplementary data are
available at www.dnaresearch.oxfordjournals.org.
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