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This special issue focuses on the theme of sensory
processing dysfunction in schizophrenia. For more than
50 years, from approximately the time of Bleuler until
the early 1960s, sensory function was considered one of
the few preserved functions in schizophrenia (Javitt1). For-
tunately, the last several decades have brought a renewed
and accelerating interest in this topic. The articles included
in the issue range from those addressing fundamental bases
of sensory dysfunction (Brenner, Yoon, and Turetsky) to
those that examine how elementary deficits in sensory pro-
cessing affect the sensory experience of individuals with
schizophrenia (Butler, Kantrowitz, and Coleman) to the
question of how sensory-based treatments may lead to im-
provement in remediation strategies (Adcock). Although
addressing only a small portion of the current complex
and burgeoning literature on sensory impairments across
modalities, the present articles provide a cross-section of
the issues currently under investigation. These studies
also underscore the severe challenges that individuals
with schizophrenia face when trying to decode the complex
world around them.
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Introduction

Bleuler,2 while aware that patients often complained of
altered sensory experience, nevertheless, attributed
them to more basic deficits in association and emotion.
Sensory processing was considered one of the intact sim-
ple functions. While correct about a great many issues in

schizophrenia, recent findings suggest that in this case
Bleuler may have been wrong.
The recent focus on sensory dysfunction in schizophre-

nia arises from a confluence of findings. First, careful
psychophysiological studies beginning in the 1960s began
to document objective deficits in sensory processing that
could not be attributed easily to either attention or emo-
tion. Key events included the description byMcGhie and
Chapman3 of sensory distortions spontaneously reported
by individuals experiencing early symptoms of schizo-
phrenia as well as subsequent studies begun by Holzman4

documenting objective psychophysiological deficits using
eye tracking among other measures.
Subsequent studies documented deficits in processes

such as backward masking5 or sensory gating.6 Much
of the renewed interest in sensory processing arises
from the development of new techniques, such as
event-related potentials (ERP) or functional magnetic
resonance imaging (fMRI) that permit objective assess-
ment of neural activation at the level of primary sensory
cortices. These techniques permit objective evaluation of
‘‘early sensory processes,’’ ie, responses that occur both
early in time following delivery of a sensory stimulus
(generally within the first 100–200 ms) and also within
hierarchically early brain regions such as primary and
secondary sensory regions.
Second, within the basic neuroscience community,

there has been increasing appreciation for the complexity
of processing that takes place even within early sensory
regions. These regions were once thought to play amostly
‘‘hard wired’’ role in cognition—simply passing along
veridical electrical representations of the sensory environ-
ment to higher cognitive brain regions, where the infor-
mation was further processed. More recent models,
however, focus on the complexity of processing that is
found even within primary sensory regions.
For example, Baddeley7 discussed the existence of au-

ditory and visual ‘‘slave’’ memory systems that function
outside the control of the central executive. Other theo-
rists, such as Cowan,8 emphasized the preconscious filter-
ing out and filtering in of information that occurs at the
level of sensory cortex. Overall, these studies pointed out
that much more occurs within early sensory regions than
is detected with routine visual or audiometric testing and
that breakdown of these early processes can significantly
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impair the type and complexity of information that is
available for subsequent processing.

Etiological Models of Schizophrenia

In addition to newer developments within the basic sen-
sory research literature, newer etiological models of
schizophrenia also push increasingly toward renewed
focus on sensory dysfunction. For decades, the dopamine
model served as the primary organizing theme for schizo-
phrenia. In rodents, dopamine systems target primarily
frontal and limbic brain regions, leading to strong focus
on those regions in the pathophysiology of schizophrenia.

In primates, dopaminergic systems project more widely
than in rodents, but nevertheless sensory cortices remain
sparsely innervated,9 leading to a conceptual disinterest
in sensory processes. Over recent years, however, limita-
tions of the dopamine model have become increasingly
apparent. In particular, although dopamine models ac-
count well for positive symptoms of schizophrenia, they
account poorly for negative symptoms and cognitive dys-
function. More recent models focus on more generalized
neurotransmitter systems such as glutamate,10,11 gamma-
amino-butyric acid (GABA),12 and nicotine13 and partic-
ularly on dysfunction of transmission at N-methyl-D-
aspartate (NMDA)-type glutamate receptors.14

NMDA models of schizophrenia are supported by the
ability of phencyclidine (PCP), ketamine, and other
NMDA antagonists to induce not only symptoms but
also cognitive deficits that closely resemble those of
schizophrenia. As opposed to dopaminergic agents, acute
administration of NMDA antagonists reproduces the
pattern of positive and negative symptoms commonly
seen in early schizophrenia and exacerbates symptoms
in remitted patients.15 Similarly, NMDA antagonists,
even following acute administration, induce a generalized
pattern of cognitive deficits similar to that seen in schizo-
phrenia. Following chronic administration, more pro-
longed schizophrenia-like symptoms may emerge.16

Given the widespread distribution of transmitters such
as glutamate, GABA, and nicotine and of receptors
such as NMDA, the critical issue in schizophrenia may
not be what brain regions are involved but rather what
specific processes are impaired within each region.
Patients with schizophrenia as a group are neither blind
nor deaf. However, the fact that some processes within
each modality are intact no longer precludes the possibil-
ity that other functions may be impaired.

Auditory Dysfunction in Schizophrenia

Deficits in sensory processing in schizophrenia are per-
haps best documented in the auditory system, where
integrity of sensory function can be assessed using
well-characterized ERP such as P50, N100, and, most
recently, mismatch negativity (MMN). Deficits in P50

gating were first described in schizophrenia in the early
1980s and provided some of the first evidence for deficits
in inhibitory processes17 and subsequently for impaired
nicotinic function.18 Deficits in N100 generation have
similarly been documented for over 25 years19 and
have been widely replicated over that time20 with strong
specificity for schizophrenia over other disorders.21 Both
of these potentials are generated within auditory sensory
regions and point to breakdown of processing at early
stages of stimulus evaluation.
As opposed to P50 and N100, which are elicited in

response to simple repetitive stimuli, MMN is elicited
only in response to stimuli that deviate from a predictable
sequence. As such, it occupies the interface between sen-
sory/perceptual and cognitive processing. Nevertheless,
MMN, as commonly recorded, is generated independent
of attention. Deficits in MMN generation to attributes
such as stimulus pitch22 or duration23 deviance were first
reported in the early 1990s and have been confirmed re-
peatedly since that time.24 Deficits in MMN generation
are accompanied as well by impaired function of the au-
ditory ‘‘echoic’’ memory system, which maintains brief
representations of the physical attributes of individual
auditory stimuli and thus participates in processes such
as delayed tone matching.25 Because the echoic memory
system, like MMN, functions preattentively, deficits can-
not be easily ascribed to impaired attention, emotion, or
motivation.
ERP indices, such as P50, N1, orMMN, have also been

useful for investigating neurophysiological bases of
cortical dysfunction in schizophrenia. An advantage of
studying sensory processes in general, and auditory re-
sponse in particular, is that they are highly amenable
to implementation in animal models. MMN is elicited
inmonkeys using stimuli identical to those used in clinical
studies and can thus be studied at the level of the cortical
microcolumn.26 Deficits similar to those observed in
schizophrenia are induced by administration of PCP, ket-
amine, or other NMDA antagonists in both monkeys27

and normal human volunteers.28–30 Similar deficits
have recently been demonstrating in rodents31,32 as
well, supporting the use of rodent models of sensory
processing dysfunction in schizophrenia.33

The latest in the series of informative auditory para-
digms is the auditory 40 Hz response.34–36 This response
is elicited by a series of rapidly presented brief stimuli that
entrain the elementary auditory responses and so index
functioning of local circuit excitatory/inhibitory net-
works within auditory cortex. This circuit underlying
generation of the auditory steady-state response is ame-
nable to modeling at the basic neurophysiological level,
as described by Brenner et al in this volume. As further
detailed by Brenner et al, however, deficits in oscillatory
responses in schizophrenia are not limited to ‘‘gamma
range’’ responding but occur even at slower frequencies
in other systems.
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Visual Dysfunction in Schizophrenia

Most psychiatric researchers are well aware of the degree
to which prefrontal cortices increase in size from rodent
to primate to human. However, less well publicized is the
extraordinary increase in size and complexity of visual
regions in primates compared with other lineages.
Even carnivores, such as cats, ferrets and canines have
relatively simple visual systems designed primarily to
permit capture of attention by motion and convey low-
resolution visual representations. Other mammalian
orders, such as rodents, lagomorphs, and artiodactyla,
rely even less on visual information. By contrast, pri-
mates, and especially simians, are visual animals with
a far more complex visual system than is present in
any other mammalian order or primate suborder.
Our visual system is thought to have evolved primarily

to allow us to recognize colored fruit standing out against
green leaves37 or possibly snakes, which were primary
predators or early simians.38 These days, however, it is
used far more often to decipher the complex symbolic
representations that we use to represent language or to
‘‘read’’ other people’s facial expressions. In order to pro-
cess fine environmental details, we evolved 2 separate
visual pathways, a magnocellular system that is most
closely related to the ancestral mammalian visual system
and a parvocellular system with unique sensitivity to
wavelength (color) of light and the unique ability to
produce high-resolution visual images (figure 1).
The parvocellular system extracts far more informa-

tion but functions far more slowly than the older magno-
cellular system but is concentrated foveally and thus can
engage only limited portions of the complex visual scene
at any single time. Complex local circuit and magnocel-
lular/parvocellular interactions within the early visual
system are used to extract patterns from the complex vi-
sual environment to which we are exposed. The magno-
cellular system, in particular, plays a key role in guiding
parvocellular processing, eg, providing a general low-res-
olution ‘‘frame’’ for the visual environment, which is then
‘‘filled in’’ by details from the slower parvocellular sys-
tem. In schizophrenia, physiological deficits affect func-
tioning of the magnocellular visual pathway, which relies
heavily on NMDA-based mechanisms and nonlinear
gain mechanisms, leading to loss in these framing func-
tions. The parvocellular system, however, can also func-
tion nonlinearly and in some circumstances may show
impairments as well.39 Impairments in early visual pro-
cessing have now been well documented in schizophrenia
using methods, including steady-state40 and transient41

ERP approaches, along with fMRI42, and lead to impair-
ments in processes such as motion detection43,44, object
recognition,45 and reading.46

Several of the articles in this theme focus on the still
emerging literature regarding visual dysfunction in
schizophrenia. Brenner et al reviews the neurophysiolog-

ical literature regarding visual function and concludes
that deficits most likely represent interplay among mag-
nocellular and parvocellular systems occurs at multiple
levels. Yoon et al show deficits in center surround sup-
pression in schizophrenia, also supporting an early visual
deficit. Because the magnocellular system conducts more
rapidly than the parvocellular system, humans, in gen-
eral, show a ‘‘global advantage’’ in which they focus
on the overall structure of a visual scene (the ‘‘forest’’) be-
fore they focus on the fine details (the ‘‘trees’’). Coleman
et al shows loss of the normal global advantage in patients
performing a global/local discrimination task, consistent
with dysfunction of magnocellular systems.
Kantrowitz et al show how early visual deficits contrib-

ute to impairments in visual depth perception in individ-
uals with schizophrenia and also how it renders patients
more susceptible to some illusions even while they remain
less susceptible to others. Finally, Butler et al shows how
deficits in early visual processing, particularly involving
the magnocellular system, interfere with ability of
patients to read visual expressions. Overall, these studies
not only highlight the importance to early-stage visual
dysfunction to higher order cognitive processing but
also highlight that even small changes in the visual char-
acteristics of stimuli (eg, size, contrast, illumination) may
fundamentally alter the processing pathways engaged
and thus the degree of impairment in schizophrenia.

Other Sensory Systems

Although most work has concentrated on the auditory
and visual systems in schizophrenia, disturbances within
other sensory systems should not be excluded. For exam-
ple, the somatosensory system, like the auditory system,
maintains brief representations of sensory information,
permitting individuals to compare weights, textures, or
other stimulus qualities across brief periods of time

Fig. 1. Schematic Representation of theHumanVisual System. The
magnocellular (M)systemandthedorsal streamprojectionpathway
are shownwith thick lines. The parvocellular (P) system and ventral
stream projection pathway are shown with thin lines.
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(seconds to tens of seconds). As in the auditory system,
patients show reduced sensitivity to stimulus features (eg,
weight) but normal ability to retain representations once
they are formed.47 Similar deficits are seen following
treatment with NMDA antagonists in normal volun-
teers.15 Other sensory deficits, like impaired 2-point dis-
crimination48 or elevated pain thresholds49 are also well
documented. Thus, sensory deficits in schizophrenia are
in no way limited to the auditory and visual systems, al-
though psychopathological significance of other sensory
deficits has yet to be fully explored.

One system that appears ripe for psychopathological
investigation is the olfactory system. Deficits in odor dis-
crimination in schizophrenia have, by now, also become
well documented.50,51 Although early literature on olfac-
tory deficits tended to focus on issues such as hedonics
and potential limbic involvement, subsequent studies
demonstrated severe impairments even at the level of
identification and discrimination. NMDA receptors are
known to play a critical role in olfactory processing, par-
ticularly in processes such as discrimination and habitu-
ation.52 Other transmitters and receptors also play well-
defined roles, potentially permitting the behavioral dis-
section of the role of different neurotransmitter
systems in olfactory dysfunction in schizophrenia.

The olfactory system also provides a unique model sys-
tem in which to investigate neurochemical and neuro-
physiological mechanisms underlying sensory-level
impairments in schizophrenia. As with other sensory sys-
tems, neural substrates are well known and amenable to
investigation using ERP, magnetic resonance imaging,
and other brain imaging modalities. Uniquely, however,
olfactory cells can be harvested noninvasively through
nasal epithelial biopsy and cultured for further investiga-
tion. As described by Turetsky et al (this volume), these
cells contain many of the receptors (eg, dopamine,
NMDA, nicotine, GABA) and secondmessenger systems
(eg, cyclic adenosine monophosphate) that are of most
interest in schizophrenia research. This system thus pro-
vides the unique opportunity to relate objective behav-
ioral and neurophysiological changes in schizophrenia
to alterations in neurochemistry and physiology of spe-
cific neuronal elements.

Bottom-up vs Top-down Models

The contributions of sensory dysfunction to overall cog-
nitive impairment in schizophrenia is perhaps easiest to
conceptualize as ‘‘bottom up’’ vs ‘‘top down.’’ However,
such dichotomization runs the risk of oversimplifying the
critical involvement of sensory dysfunction in schizo-
phrenia. Few investigators would claim that the complex
constellation of neuropsychological deficits in schizo-
phrenia are due entirely to sensory dysfunction. Indeed,
distributed neurochemical models predict that similar
neurophysiological deficits should be present throughout

cortex. From a theoretical point of view, therefore, the
competing models of overall neurocognitive dysfunction
in schizophrenia are best conceptualized as ‘‘generalized’’
vs top down, with the critical issue being whether specific
regions are preferentially involved in schizophrenia or
whether deficits are widespread, with characteristic
impairments observed across all brain regions, including
those responsible for sensory processing.
Nevertheless, in looking to correct deficits in cognitive

functioning, it is clear that bottom-up sensory dys-
function may be a bottleneck. For example, ‘‘social
cognition’’—the ability to infer another person’s internal
emotional state—depends upon the ability to interpret
their facial expressions and tone of voice. If patients
cannot accurately process faces because of early visual
deficits, as argued by Butler et al in this issue, or process
the pitch changes that allow one to interpret tone of voice
as has been proposed previously,53–55 then trying to re-
mediate social cognition as a construct becomes futile.
Bottom-up remediation thus becomes the logical first

step in remediation of generalized cognitive dysfunction.
Adcock et al in this issue lays out the case for both bot-
tom-up and top-down remediation approaches. In med-
icine, the ‘‘proof of the pudding’’ is in the treating. If
bottom-up remediation approaches are successful, as
suggested by Adcock et al, then discussions of whether
cognitive dysfunction in schizophrenia is driven bottom
up or top down become purely academic.
Overall, this issue highlights the importance of sensory

dysfunction to overall impairment in schizophrenia. It is
axiomatic that if patients experience the world around
them differently, they will react to it differently as well.
Until such deficits can be effectively treated or remedi-
ated, clinicians and caregivers must be aware of the im-
pact that these early deficits have on the ability of patients
to interact effectively with the complex world that
surrounds them.

Supplementary Material

Figure 1 is available in color at http://
schizophreniabulletin.oxfordjournals.org.
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