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Abstract
Purpose—Previous gene expression profiling studies of breast cancer have focused on the entire
genome to identify genes differentially expressed between estrogen receptor alpha (ER)-positive and
ER-alpha-negative cancers.

Experimental Design—Here we used gene expression microarray profiling to identify a distinct
kinase gene expression profile that identifies ER-negative breast tumors and subsets ER-negative
breast tumors into 4 distinct subtypes.

Results—Based upon the types of kinases expressed in these clusters, we identify a cell cycle
regulatory subset, a S6 kinase pathway cluster, an immunomodulatory kinase expressing cluster, and
a MAPK pathway cluster. Furthermore, we show that this specific kinase profile is validated using
independent sets of human tumors, and is also seen in a panel of breast cancer cell lines. Kinase
expression knockdown studies show that many of these kinases are essential for the growth of ER-
negative, but not ER-positive, breast cancer cell lines. Finally, survival analysis of patients with
breast cancer shows that the S6 kinase pathway signature subtype of ER-negative cancers confers
an extremely poor prognosis, while patients whose tumors express high levels of immunomodulatory
kinases have a significantly better prognosis.

Conclusions—This study identifies a list of kinases that are prognostic and may serve as druggable
targets for the treatment of ER-negative breast cancer.

Introduction
The genomic era has produced an exponential increase in our understanding of cancer biology
and has greatly accelerated cancer drug development. With the advent and implementation of
microarray expression profiling, it is now possible to evaluate gene expression in tumors on a
genome-wide basis. Gene expression analysis is now extensively used to subtype cancers,
predict prognosis and disease free survival, and determine optimal treatment (1–7).

Estrogen receptor alpha (ER)-positive breast cancers account for 60–70% of breast cancers,
but the remaining 30–40% of breast cancers are ER-negative and are poorly responsive to
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traditional therapies (8). Selective estrogen receptor modulators (SERMs), such as tamoxifen
and raloxifene, and aromatase inhibitors are currently used to treat ER-positive breast cancer
and have been shown to reduce ER-positive breast cancer recurrence by approximately 50%
(9). These agents, however, are not effective in treating ER-negative breast cancer. Currently,
chemotherapy is used to treat ER-negative tumors (10). Such therapy is generally toxic and is
not specifically targeted to ER-negative breast cancer.

A major goal of current breast cancer research has been to identify targets that are unique to
cancer cells and to identify drugs that kill only cancerous cells without affecting normal tissue.
While achieving this goal has been difficult, there are several examples of effective targeted
therapies, including development of the monoclonal antibodies trastuzumab (targeting the
HER2/neu receptor) and bevacizumab (targeting vascular epithelial growth factor) which have
been shown to be effective in treating breast cancer (11,12). Other successes include the
development of small molecule tyrosine kinase inhibitors including gefitinib and erlotinib (both
of which target the epidermal growth factor receptor), and lapatinib (a dual kinase inhibitor
targeting both the epidermal growth factor receptor and the HER2/neu receptor) (13–16).
Despite these advances, such therapies are effective only in the 10–15% of patients whose
tumors overexpress HER2. To develop targeted therapies for the remaining ER-negative breast
cancers, including the aggressive ER-negative, PR-negative, HER2-negative (“triple-
negative”) breast cancers, we have used expression microarray analysis to identify molecules
that play a role in breast cancer development and progression. Subsequent validation of these
findings, along with the development of specific targeted inhibitors of these molecules, will
certainly broaden treatment options and improve patient survival.

The purpose of this study was to identify the kinases that are over-expressed in ER-negative
breast cancer and which may serve as “druggable targets” for the treatment of ER-negative
breast cancer, and in particular, “triple-negative” breast cancer. We have used transcriptional
profiling data to evaluate the expression of the human kinome and have identified a set of
kinases which are differentially expressed and are critical for the growth of ER-negative breast
cancer. Our results also demonstrate that ER-negative breast cancer can be subdivided into
four separate subgroups based on their kinase expression profile. These kinases represent
promising targets for the treatment of ER-negative breast cancers.

Materials and Methods
Study Population and Design

All ER-negative and ER-positive tumors were collected by Dr. Jenny Chang through IRB-
approved, neoadjuvant studies to investigate gene expression changes in human tumors
following drug treatment. Diagnostic core needle biopsies were taken first, then several (up to
6) additional cores were taken for biomarker studies. These additional cores were taken before
treatment, placed immediately in liquid nitrogen, and used to prepare RNA, DNA, and protein.
Immunohistochemical (IHC) staining for ER and HER2/neu expression was done on these sets
of tumor samples as previously described (17). The tumor set comprised of pre-treatment
specimens from studies of docetaxel (18), cyclophosphamide (19), docetaxel and
cyclophosphamide (unpublished data), and trastuzumab (20). All studies were conducted with
approval from the Institutional Review Boards at Baylor College of Medicine and participating
sites.

Affymetrix microarray experiments
Total RNA from these tumor samples was isolated using Qiagen’s RNeasy kit, double-stranded
cDNA synthesized, and reverse transcription carried out followed by biotin labeling. RNA was
isolated from tumors that were not microdissected but tumor cellularity was confirmed to be
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greater than 40% in all tumor samples by IHC analysis. Additionally, about 250-fold linear
amplification and phenol-chloroform cleanup was done as previously published (1). From each
biopsy, 15 micrograms of biotin-labeled cRNA was hybridized onto an Affymetrix HGU133A
GeneChip™, which comprise around 22,000 genes (www.affymetrix.com). The experiments
were all done using the microarray core facility at the Lester and Sue Smith Breast Center at
Baylor College of Medicine. Statistical analysis was done with dChip (www.dchip.org) and
BRB ArrayTools software packages developed by Dr. Richard Simon and Amy Peng Lam.
(http://linus.nci.nih.gov/BRB-ArrayTools.html). Gene expression was estimated with dChip
software using Invariant Set normalization and Perfect Match (PM) only model (21).
Comparison of ER-negative vs. ER-positive groups was done with BRB Array Tools, using t-
test and computing permutation P-values (22). Hierarchical clustering was also done using
dChip with rows standardized by subtracting the mean and dividing by the standard deviation.
Pearson’s correlation and centroid linkage was used to generate the trees on Log2 transformed
expression data with PM/MM difference background subtraction.

Gene ontology analysis
All gene ontology enrichment analyses were initially done using a Pathway Architect™
software package developed by Stratagene. Genes found to be overexpressed at least 2 fold
with a permutation P-value score of <.05 were used as the input list and compared against the
human kinome. Follow-up and confirmatory analysis was done using Gene Ontology Tree
Maker (GOTM) and EASE software (23).

Selection of Genes for further study
After completing all microarray experiments and performing statistical analysis genes having
a minimum of 2-fold or greater expression in E R-negative vs. ER-positive tumors with a
permutation P-value <.05 were selected for further study. This selection yielded 52 kinases.

Z-transform test in multiple datasets
To validate that the differentially expressed kinases identified in this analysis were also
differentially expressed in other publically available datasets of human breast cancer we
employed the Z-transform test described by Whitlock (24). Briefly, this method allows for the
combining of individual P-values and has proven superior to Fisher’s combined probability
test. The Z-transform test takes advantage of the one-to-one mapping of the standard normal
curve to the P-value of a one-tailed test. As Z goes from negative infinity to infinity, P will go
from 0 to 1, and any value of P will uniquely be matched with a value of Z and vice versa. The
Z-transform test converts the one-tailed P-values, Pi, from each of k independent tests into
standard normal deviates Zi. The sum of these Zi's, divided by the square root of the number
of tests, k, has a standard normal distribution if the common null hypothesis is true. The

equation:  was used in the calculation of summed z-scores, which were then related
to the reported P-values.

RNA isolation and Quantitative RT-PCR (Q-RT-PCR)
Total RNA was isolated using the RNeasy RNA isolation kit (QIAGEN). Quantitative RT-
PCR assays of transcripts were carried out using gene-specific double fluorescence-labeled
probes in an ABI PRISM 7500 Sequence Detector (Applied Biosystem). The PCR reaction
mixture consisted of 300nM each of the forward and reverse primers, 100nM probe, 0.025
units/µl of Taq Polymerase (Invitrogen), 125µM each of dNTP, 5mM MgCl2, and 1X Taq
Polymerase buffer. Cycling conditions were 95°C for 30 seconds, followed by 40 cycles at 95°
C for 5 seconds and 60°C for 30 seconds 6-Carboxy fluorescein (FAM) was used as the 5’
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fluorescent reporter and black hole quencher (BHQ1) was used at the 3’end quencher. All
reactions were performed using triplicate RNA samples. Standard curves for the quantification
of each transcript were generated using a serially diluted solution of synthetic templates.
Results were reported as average expression ± standard error of the mean.

siRNA transfection
siRNAs for all kinases (see supplementary table) were purchased from Sigma Aldrich. siRNA
transfection was performed using DharmaFECT™ 1 (Dharmacon), according to the
manufacture’s instruction. MDA-MB-468, MDA-MB-231, T47D, and MCF-7 cells were
plated in 100 mm dishes and grown to 60% confluence before being transfected with
Dharmacon siRNA dilution buffer (mock-transfection), 20 ng of kinase specific siRNA
constructs, or with scrambled siRNA as a control. 36 hours after transfection, cells were
replated in 96 well plates at a density of 2000 cells per well. RNA and protein were also
harvested at this time (as described previously), as well as on days two and four, to confirm
sufficient knockdown of kinase expression by Q-RT-PCR and western blotting, respectively.
After replating in 96 well plates, growth was measured by MTS assay every 2 days for a total
of 5 days.

Cell proliferation assays
Cell growth was measured using the CellTiter 96™ Aqueous Non-Radioactive Cell
Proliferation assay (MTS assay, Promega) according to the manufacturer’s instructions.
Briefly, cells were plated in 96-well plates at 2000 cells per well. Every 24 hours, a solution
containing 20:1 ratio of M T S ( 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium) and PMS (phenazine methosulfate) was added to the cells.
Plates were incubated at 37°C for 2 h and absorption at 550nm was determined. Each data
point was performed in heptuplicate, and the results were reported as average absorption ±
standard deviation. The data is reported as percentage of growth compared to mock transfected
controls for each cell line. Experiments were repeated at least twice and the percentage growth
inhibition is the average of the experiments.

Kaplan-Meier Survival Analysis
Gene expression profiling and survival data generated by Wang et al. and van de Vijver et
al. was used to evaluate prognostic import of the kinase clusters in this data set (3,25). Data
was obtained from GEO and hierarchical clustering performed only on the ER-negative
samples from the Wang and van de Vijver data sets. MeV and R software package were used
for data and statistical analysis. For hierarchical clustering, the expression values of the kinases
identified as being over expressed in ER-negative tumors were extracted from the data sets
using Affymetrix probe IDs. The expression values were mean centered and hierarchical
clustering based on Pearson’s correlation with complete linkage again identified our 4 subsets
of ER-negative kinase clusters. Figure of merit scoring showed that these four clusters were
stable against reclustering in both datasets. Using this information each tumor sample was
classified as falling into one of the 4 kinase clusters (cell cycle checkpoint, S6 kinase, MAPK
signaling, or immunomodulatory). After classification of tumors, Kaplan-Meier analysis using
the survival data from the ER-negative tumors in the data sets was performed using R
(http://www.r-project.org) and survival curves were generated. Chi squared scores were
calculated to determine significance.

Immunohistochemical Analysis of Immune Infiltration
Representative tumors from each of the four groups identified by gene expression profiling
(cell cycle regulatory, S6 kinase, immunomodulatory, and MAPK) were selected and slides
were prepared and stained with hematoxolyin and eosin. Each slide was analyzed and scored
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by a trained pathologist in a blinded fashion. Scoring was from 0–3 for neutrophil infiltration
and 0–3 for lymphocyte infiltration in the entire section of tissue at both low and high power
magnification. Scores of 0 corresponded to no evidence of infiltration, 1 for minimal foci of
infiltration (<1% of tumor mass), 2 for moderate amounts of immune cell infiltration (2–15%
of tumor mass) and 3 for considerable amounts of immune cell infiltration (>15% of tumor
mass). Scores for the neutrophil and lymphocyte scoring were added to give a composite score
(0–6).

Results
To identify kinases that are differentially expressed in ER-negative breast cancers, we designed
a study to compare kinase expression levels in ER-positive and ER-negative human breast
tumor samples. A summary of the study design is outlined in Supplementary Figure S1.

Patient Population
A total of 102 patients with invasive breast cancer were recruited through IRB-approved,
neoadjuvant studies to investigate gene expression in human tumors before and after drug
treatment. Breast biopsies using a core needle were taken before initiation of any treatment
and were used in this study. Because the patients did not receive systemic adjuvant or
neoadjuvant therapy prior to the biopsy, the results from the gene expression analysis represent
basal gene expression in these breast cancers. For these gene expression profiling experiments,
102 breast tumors were studied, 58 of which were ER-positive and 44 ER-negative by IHC-
staining (24 of which were confirmed as “triple-negative”). The tumors were all stage III or
IV from pre- and post-menopausal women, with all tumors showing >40% cellularity. The
women were from several racial groups (as shown in Table 1) and the majority had no palpable
nodes at baseline. Most of the women were premenopausal and presented with relatively large
tumors (ranging from 2.5 to 25 cm). The clinical and demographic features of these tumors are
summarized in Table 1.

Affymetrix Gene Expression Profiling Identified Kinases Overexpressed in Human ER-
Negative Breast Tumors

To identify signaling molecules that are differentially expressed in ER-negative breast cancers,
we performed Affymetrix gene expression profiling to compare human ER-negative and ER-
positive breast tumors. Data analysis and clustering for this study was limited to the known
kinome with interrogation of the 779 known and putative human protein, nucleotide, and lipid
kinases as well as kinase-interacting proteins and regulatory subunits as previously described
(26–28). These kinases and kinase-associated genes are listed in Supplementary Table S1. We
first performed analysis to identify those kinases that were differentially expressed in ER-
positive and ER-negative breast tumors. Our analysis revealed a significant difference
(permutation P-value< 0.05, hereafter referred to as P-value) in the expression of 86 kinases
or kinase-associated genes between ER-negative and ER-positive tumors (see Supplementary
Table 2 and Table 3). To visualize the clustering of the ER-positive and ER-negative tumors,
hierarchical clustering analysis was done using only those kinases identified as being
differentially expressed between the two groups (Fig. 1A). Hierarchical clustering showed that
these 86 kinases or kinase-associated genes were able to segregate ER-positive and ER-
negative tumors and that the highest percentage of the HER2-positive tumors were ER-
negative. As BRCA1 and BRCA2 mutations have been shown to be enriched in ER-negative
tumors, especially basal-like tumors, we show relative BRCA1 and BRCA2 gene expression
values in figures 1A. BRCA1 and BRCA2 gene expression was generally lower in the ER-
negative samples than in the ER-positive samples, and in the tumors which were basal-like in
their gene expression profile. Additionally, ER, PR, and HER2 status is listed above the figure,
as is the subtype of breast cancer identified based on the application of the intrinsic gene list
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identified by previous groups to these breast tumor samples (Fig. 1A). Upon further analysis,
52 of these 86 differentially expressed genes were expressed at least 2 fold higher with a P-
value <.05 in the ER-negative breast tumors as compared to ER-positive tumors. These 52
genes were selected for further study.

Unsupervised Clustering Analysis Revealed Four Distinct Subtypes of ER-negative Breast
Cancer

We next determined whether this list of 52 kinases or kinase-associated genes overexpressed
in ER-negative breast cancers could subcluster the ER-negative tumors in an unbiased manner.
We performed unsupervised clustering analysis using only the ER-negative breast cancer
samples and found that these tumors clustered broadly into 4 distinct subtypes of ER-negative
breast cancer (Fig. 1B, labeled as groups 1–4). Upon further inspection of these four subsets
of tumors, there was one subset of tumors defined by kinases involved in cell cycle checkpoint
control and mitogenesis, including CHK1, BUB1, TTK, and AK2 (group 1 termed the “cell
cycle checkpoint group”). Another tumor subset was defined by kinases involved in the S6
kinase signaling pathway and includes RPS6KA3, SMG-1, and RPS6KA1 kinases (group 2
termed the “S6 kinase group”). Of the two other ER-negative clusters, one is defined by kinases
that are involved in modulating the immune system (IRAK1, TLR1, LCK, and LYN) (group 3,
termed the “immunomodulatory group”). The fourth group is defined by kinases that govern
paracrine growth signaling and include mitogen activated protein kinases MAP4K2,
MAP4K4, and MAPK1 (group 4 termed the “MAPK group”). In these later two groups, many
of the tumors were HER2-positive by IHC staining. HER2 itself did not act as a cluster driver
because despite being more highly expressed in the ER-negative samples, it did not meet our
strict P-value criterium and thus was not included in the list of kinases and kinase-associated
genes that were used in the unsupervised clustering of the ER-negative samples.

Immunohistochemical Analysis Shows No Significant Increase in Lymphocytic Infiltrate
With the identification of 4 distinct subsets of ER-negative disease, and with one of those
subsets being marked by high expression of many immunomodulatory genes, we investigated
whether the gene expression signature from these tumors was derived from the epithelial tumor
compartment or from infiltrating immune cells. To address this we characterized the proportion
of infiltrating immune cells in the tumors (prior to treatment) by examining the hemotoxylin
and eosin (H&E) stained slides from the tumors used in this study. The histological appearance
and lymphocytic infiltration was scored by a trained pathologist in a blinded fashion.
Comparison of the four groups (cell cycle checkpoint, S6 kinase, MAPK-associated, and
immunomodulatory) showed no increase in lymphocytic infiltration in the immunomodulatory
tumors (Supplementary Fig. S2). Thus, this data argues that the immunomodulatory gene
expression profile associated with this subtype of ER-negative breast cancer is not just the
result of immune cell infiltration into the tumor tissue.

Gene Ontology Analysis
To gain insight into the function of kinases highly expressed in ER-negative breast cancer, we
performed gene ontology (GO) enrichment analysis using EASE and found that several classes
of biological function were highly enriched in our selected sets (Table 2). We observed
enrichment for kinases involved in the regulation of metabolism (P-value <10−14), cell cycle
checkpoint control (P-value <10−12), DNA damage checkpoint control (P-value <10−11), cell-
to-cell signaling (P-value <10−9), and apoptosis regulation (P-value <10−9). Many of these
kinases fell in linear pathways, for example TTK, CHK1, and BUB1 kinases (group 1), all of
which play a role via sequential phosphorylation and activation in regulating G2/M
transitioning as well as DNA damage checkpoint control pathways, and PIK3CB, RPS6KA1,
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and SMG-1 kinases (group 2), that mark tumors with activated cytoplasmic kinases involved
in mitogenesis and signal transduction.

Differentially Expressed Kinases Validated Using Publicly Available Data Sets
Having identified differentially expressed kinases using gene expression profiling in a test set
of tumors, we next investigated whether these kinases were differentially expressed in an
independent set of human breast tumors. To demonstrate that these kinases are indeed
overexpressed in ER-negative tumors compared to ER-positive tumors, we analyzed gene
expression data from 12 additional publically available data sets. This data set from multiple
investigators includes over 1800 additional tumor samples (556 ER-negative and 1282 ER-
positive tumors) for which there is gene expression profiling data and is the most
comprehensive breast tumor set available (3,25,29–37). Data for analysis was compiled and
downloaded from GEO and used for analysis. Additionally, as verification, we used calculated
P-values from the Oncomine™ repository for use in the Whitlock Z-transforms test. To utilize
the power of such a large combined dataset, we employed a technique recently described by
Whitlock that relies on a weighted Z-method to combine P-values (24). This robust approach,
superior to Fisher’s combined probability test, revealed that all of the selected 52 kinases
validated as being significantly more highly expressed (with extremely high z-scores and low
P-values) in ER-negative breast tumors as compared to ER-positive tumors in an effective
sample size of over 1800 tumors (Supplementary Table S4).

Validation of Kinase Overexpression in an Independent Set of Human Breast Tumors
To confirm that the overexpression identified using Affymetrix gene expression profiling could
be validated using another technique, we used an independent set of 60 human breast tumors
from the tumor bank at Baylor College of Medicine for further validation. After identifying
equal numbers of ER-positive and negative samples, we used quantitative RT-PCR (Q-RT-
PCR) to confirm the overexpression of the kinases identified in the array profiling. 34 of the
34 kinases assayed were significantly more highly expressed in ER-negative human breast
tumors than ER-positive tumors in this additional tumor set (P-value <0.05). Representative
results from these experiments showing expression of six kinases (CHK1, BUB1, PTK7, TTK1,
TLR1, and RAF1) are displayed in Figure 2A.

Validation of Kinase Overexpression in Breast Cancer Cell Lines
To conduct further in vitro experimentation in cell lines, we investigated whether the kinases
identified in ER-negative human breast tumors were also overexpressed in ER-negative breast
cancer cell lines. Twelve ER-positive or ER-negative breast cancer cell lines were chosen and
the expression of the identified kinases was measured under basal growth conditions. Of 42
kinases evaluated to date, all 42 were found to be statistically significantly increased (P-value
<.05) in this panel of ER-negative breast cancer cell lines as compared to ER-positive cell lines
using Q-RT-PCR. Representative results for several of these kinases (CHK1, BUB1, PTK7,
TTK1, TLR1, and RAF1) are shown in Figure 2B.

Cluster of Human Breast Cancer Cell Lines using the Kinase Profile
To determine whether the 52 kinases and kinase-associated genes could accurately subgroup
breast cancer cell lines, we used available expression data from 51 breast cancer cell lines.
Recent work by Neve et al. showed that the recurrent genomic and transcriptional
characteristics of breast cancer cell lines mirror those of primary breast tumors (38). These
investigators performed Affymetrix gene expression profiling on a set of 51 ER-positive and
ER-negative breast cancer cell lines and used hierarchical clustering to show that the cell lines
clustered into three main groups: basal A, basal B, and luminal (38). We used this expression
information from breast cancer cell lines to determine whether our list of 52 genes would group
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these cell lines into the similar groups as with the profiling of human tumors (cell cycle
checkpoint control, S6 kinase, immunomodulatory, and MAPKs groups). When hierarchical
cluster analysis was performed on the expression data from these 51 cell lines using the list of
52 genes identified here, the cell lines were accurately clustered into ER-positive or ER-
negative groups (Supplementary Fig. S3A). Furthermore, the overexpressed kinases were able
to subset ER-negative breast cancer cell lines into 4 groups in an unsupervised manner
(Supplementary Fig. S3B). These results indicate that the expression profile of the identified
kinases is sufficiently robust to accurately discriminate between ER-positive and ER-negative
breast cancer cell lines and may serve as a reliable diagnostic tool to categorize human tumors
in the future.

Kinase Knockdown Exerts Differential Growth Effects on ER-negative and ER-positive
Breast Cancer Cell Lines

While the expression array profiling data allowed us to evaluate which kinases were
differentially expressed, we investigated whether these kinases are critical for the growth of
ER-negative breast cancer. To do this we performed siRNA knockdown studies to determine
the effect of individual kinase knockdown on breast cancer cell proliferation. ER-positive
(MCF-7 and T47D) and ER-negative (MDA-MB-468 and MDA-MB-231, both “triple-
negative”) cells were transfected with siRNAs for 20 of the 52 genes identified in our screen.
All siRNA constructs used in the study showed at least 70% knockdown of target kinase
expression for 4 days after transfection (representative examples are shown in Fig. 3A).

Of the 20 kinases evaluated, 14 were critical for the growth of ER-negative breast cancer.
Knockdown of 9 (EPHB4, LIMK2, DAPK1, YES1, RYK, VRK2, PTK7, RAF1, UCK2) had a
significant growth-inhibitory effect on ER-negative breast cancer (MDA-MB-468 and MDA-
MB-231) but had little or no effect on ER-positive breast cancer cells. An additional 5 of 20
kinases (BUB1, CHK1, IRAK1, CCL4, TTK) inhibited growth of all breast cancer cell lines.
Knockdown of 5 of the 20 kinases (STK38L, PIM1, SFRS1, PKXL, TLR1) had no effect on the
growth of any breast cancer cell lines, while knockdown of 1 of 20 kinases (MPZL1) had a
significant growth-stimulatory effect on all breast cancer cell lines examined. Representative
growth curves from these knockdown experiments are shown in Fig. 3B.

Knockdown of many of the genes in the “cell cycle checkpoint” cluster of ER-negative breast
cancer had a profound inhibitory effect on ER-negative breast cancer cell growth but no effect
on ER-positive breast cancer, while knockdown of certain genes in the “immunomodulatory”
cluster inhibited the growth of all breast cancer cell lines examined. A summary of results is
shown in Supplementary Fig. S5, with bolded genes exhibiting a differential growth phenotype
between ER-negative and ER-positive breast cancer cell lines. These results indicate that many
of the kinases found to be highly expressed in ER-negative breast cancers are indeed critical
for breast cancer cell growth (actual percentage of growth inhibition values can be found in
Supplementary Fig. S4).

S6 kinase Subtype of ER-negative Breast Cancer Predicts Poor Metastasis-Free Survival
To determine whether the identified list of differentially-expressed kinases provided prognostic
information, we analyzed the survival data from the Wang (25) and van de Vijver (3) data sets
using the genes that we identified as being overexpressed in ER-negative breast tumors. The
Wang dataset was obtained using breast cancer samples from patients with lymph-node
negative breast cancer who were treated with breast conserving surgery or modified radical
mastectomies from 1980–95. These patients also received radiotherapy when indicated, but
did not receive systemic chemotherapy or hormonal adjuvant therapy. This time period was
also prior to the development of the anti-HER2 therapy, trastuzumab (Herceptin), and these
patients were not treated with trastuzumab (Herceptin). 219 patients had undergone breast-
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conserving surgery and 67 modified radical mastectomy. Radiotherapy was given to 248
patients (87%), and metastasis-free survival was tracked in all patients. In this data set, we first
determined whether our list of 52 kinases and kinase-associated genes overexpressed in ER-
negative breast tumors could subcluster the Wang dataset tumors into the 4 subtypes of ER-
negative tumors identified in our analysis. Hierarchical clustering of the ER-negative tumors
from the Wang dataset using expression values of the genes identified in this analysis did indeed
identify 4 groups of ER-negative tumors (Fig. 4A). Figure of merit analysis showed that these
four groups were stable against reclustering. Furthermore, these 4 clusters were similar in their
kinase expression profiles to those previously identified, again identifying an S6 kinase
signature cluster, a cell cycle checkpoint cluster, an immunomodulatory cluster, and a MAPK
cluster.

Kaplan-Meier analysis of the metastasis-free survival between the different subgroups of ER-
negative tumors from the Wang dataset shows that women with the S6 kinase signature-
expressing tumors have a much worse prognosis than the other groups, while women with
breast cancers expressing the immunomodulatory kinases have a much better prognosis (Fig.
4B). To provide additional validation of these results, we performed the same analysis in the
van de Vijver (3) data set. In this dataset, all patients had stage I or II breast cancer and were
younger than 53 years old; 151 had lymph-node–negative disease, and 144 had lymph node–
positive disease. Ten of the 151 patients who had lymph-node–negative disease and 120 of the
144 who had lymph-node–positive disease had received adjuvant systemic therapy consisting
of chemotherapy (90 patients), hormonal therapy (20), or both (20). As with the Wang dataset,
hierarchical clustering of the ER-negative tumors identified the four groups of ER-negative
tumors, which were again stable against reclustering.

Patients whose tumors had high expression of the immunomodulatory genes had a significantly
better overall survival than those with high expression of the S6 kinase and cell cycle
checkpoint clusters. These data suggest that our list of differentially-expressed kinases can be
used to identify distinct subtypes of ER-negative breast tumors, and that the tumor clusters
defined by the expression of these kinases have either a good prognosis (immunomodulatory
group) or a particularly poor prognosis (S6 kinase signature group) based on their kinase
expression profile.

Discussion
In this report we show that Affymetrix gene expression profiling of human breast tumors is
able to identify kinases that are differentially-expressed in ER-negative breast cancers as
compared to ER-positive breast cancers. Our analysis also revealed that ER-negative tumors
can be clustered into 4 distinct groups, depending on the specific kinases and kinase-associated
genes expressed and the level of their expression. Analysis of publicly available breast tumor
data sets confirmed that these identified kinase and kinase-associated genes are indeed
upregulated in ER-negative breast cancer. Studies in which knockdown of selected kinases
using siRNA demonstrated which of the identified kinases are critical for ER-negative,
including “triple-negative”, breast cancer growth. Finally, analysis of kinase and kinase-
associated gene expression in human breast tumors demonstrated that the individual subtypes
of ER-negative breast cancer identified by their kinase profile here have widely different
outcomes. Specifically, women whose ER-negative tumors highly express the S6 kinase group
kinases have a particularly bad prognosis, while women whose tumors highly express
immunomodulatory genes have a relatively good prognosis. Such results suggest that
characterization of human tumors based on kinase expression can be used to select patients
appropriate for novel therapies. In addition, this study identifies potential targets for the
treatment of ER-negative breast cancer, including the aggressive “triple-negative” form of
breast cancer.
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This is the first report to show that ER-negative breast cancers can be subdivided into
biologically distinct groups based on expression levels of specific kinases. Our data indicate
that ER-negative breast tumors can be subdivided into 4 distinct groups, of particular
importance are group 2 (S6 kinase group) and group 3 (immunomodulatory group), and that
patients whose tumors express these kinases have very different prognoses. The
immunomodulatory group (group 3) identified in this report has recently become of a focus of
increasing scientific inquiry. In this report, we show differential expression of these
immunomodulatory genes in the epithelial compartment (as demonstrated by high expression
in breast cancer cell lines grown in vitro). There remains a question of whether these kinases
and kinase-associated genes are also expressed in the non-epithelial cells present in breast
tumors, specifically in infiltrating immune cells. Three lines of evidence suggest that this
difference is predominantly due to gene expression in epithelial cells. First, recent work by
Neve et al. (38) validates the differential expression identified in this report (including the
immunomodulatory cluster) in ER-negative breast cancer epithelial cell lines as compared to
their ER-positive cell line counterparts. Their experiments were conducted using a purified,
homogenous population of breast cancer epithelial cell lines that show the same differential
expression we note in our human tumor studies. Secondly, the siRNA knockdown experiments
reported herein also show that knockdown of these immunomodulatory kinases in vitro in
epithelial breast cancer cell lines have a differential effect on cell growth. Finally, to definitively
address this issue, we examined H&E slides taken from the tumors at the time of diagnostic
biopsy. These slides were analyzed in a blinded fashion by a trained pathologist and scored as
to their histology and level of lymphocytic infiltration. There was no increase in lymphocytic
infiltration in the tumors that comprise the “immunomodulatory” subtype as compared to the
other subsets of ER-negative breast cancer (Supplementary Fig. S2).

The role of the immune system in cancer has historically investigated how the immune system
itself responds to the “foreign” cancer as the primary focus. It is now being appreciated that
the tumor itself may act autonomously to influence the stromal microenvironment and evade
recognition by the immunosurveillance machinery. It is possible that the immune-regulatory
genes expressed by the epithelial cancer cells affect this local immune response to these tumors.
Recent work by Teschendorff et al. supports our findings (39). This group also identified an
immunomodulatory profile in ER-negative breast cancer which was shown to confer better
prognosis (39). It will be interesting to investigate in the future whether modulation of intrinsic
gene expression by the tumor is an important mechanism by which cancer cells can avoid
immunosurveillance, including the proper controls meant to keep aberrant growth in check
(39,40).

These studies provide a large number of promising new targets for the treatment of ER-negative
breast cancer. ER-positive breast cancers are now routinely treated using SERMs and
aromatase inhibitors, and these cancers are now even prevented using such pharmacologic
intervention (9). Recent studies have shown that intrinsic breast cancer subtypes differ
depending on the ethnicity of the patient from whom the tumor is obtained. Carey et al. refined
an IHC-based assay to categorize the prevalence of varying breast cancer subtypes in different
populations (8). It was shown that the prevalence of the basal-like subtypes was strongly
influenced by race and menopause status. The highest prevalence of basal-like tumors was
noted in premenopausal African American breast cancer patients (8,41). Basal-like tumors,
which are almost uniformly ER-negative, PR-negative, and HER2 negative (“triple-negative”),
are more aggressive, carry a higher proliferative capacity, occur at a younger age, and carry a
particularly bad prognosis (41,42). This work provides the rationale for targeted therapy using
specific kinase inhibitors to treat this type of breast cancer more prevalent among a traditionally
underserved population.
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One particularly promising agent for the treatment of triple-negative breast cancer is the
multiple kinase inhibitor dasatinib. Dasatinib is an oral kinase inhibitor that blocks BCR/Abl
and c-Src and is currently approved for the treatment of chronic myelogenous leukemia (CML)
and acute lymphoblastic leukemia (ALL) (43). Intriguingly, this kinase inhibitor blocks the
activity of many of the kinases identified in this analysis including YES1, EPHB4, and
EPHA2. Additionally, dasatinib blocks the activity of many other kinases identified in this
analysis as being overexpressed in ER-negative tumors, including Abl, c-Src, and KIT, though
these kinases did not meet our strict P-value inclusion criteria and thus are not part of our
restricted list of 52 kinases. These kinases have, however, been shown to be elevated in other
datasets. There is increasing pre-clinical and clinical data to suggest that this multi-kinase
inhibitor may be an effective treatment for triple-negative breast cancer. Initial experiments in
both prostate and breast cancer cell lines demonstrated that dasatinib significantly inhibited
breast cancer cell line growth (44). Further in vitro experimentation shows that dasatinib is
especially efficacious at inhibiting basal-like and post-EMT ER-negative breast cancer cell
line growth and these studies led to the identification potential biomarkers of response (45).
Clinical trials are currently being conducted using dasatinib in women with ER-negative breast
cancer in the metastatic setting.

The results reported here demonstrate that genomic profiling of human breast cancers can
identify subtypes of ER-negative breast cancer, but even more importantly, can also identify
new targets for effective treatment of these aggressive breast cancers. Given the current
difficulty in treating ER-negative breast cancer, and particularly the triple-negative form of
breast cancer, the identification of the kinases that are critical for the growth of these cancers
represents the first step towards effective individualized targeted therapy for these poor
prognosis ER-negative breast cancers.

Translational Relevance

Estrogen receptor alpha (ER)-negative breast cancers remain a very difficult cancer to treat.
There are few effective treatments for such cancers which are generally more aggressive,
rapidly growing, and are often not cured by traditional chemotherapy. Furthermore, the
signaling pathways that govern ER-negative cancer growth are poorly described. This study
identifies critical growth regulatory molecules in ER-negative breast cancer that represent
novel targets for the treatment of ER-negative breast cancer, specifically the aggressive ER-
negative, PR-negative, HER2-negative or “triple negative” breast cancer, using gene
expression profiling and siRNA knock-down studies. This is the first study to specifically
evaluate differential expression of kinases in ER-negative breast cancer in human tumors.
In the studies reported in this manuscript, we used gene expression profiling and siRNA
knockdown to identify specific kinases that are required for the growth of ER-negative, but
not ER-positive breast cancer cells. These kinases represent potential “druggable” targets
for the treatment of these aggressive ER-negative tumors. In addition, our results divide
these aggressive human ER-negative tumors into 4 groups, including one group which has
a relatively good outcome (immunomodulatory) and another group that has an extremely
poor outcome (S6 kinase). Thus, kinase gene expression profiling of ER-negative breast
cancers could be used to identify patients who will respond very poorly to standard therapy.
The kinases identified as overexpressed in this poor prognosis group of tumors may be
targeted to more effectively treat these aggressive “triple-negative” breast cancers.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Supervised hierarchical clustering identifies different subsets of ER-negative breast cancer.
(A) Hierarchical clustering analysis of kinases that distinguish ER-positive from ER-negative
human breast tumors. Gene expression analysis of 102 human breast tumors reveals 86 kinases
and kinase-associated genes that are differentially expressed between ER-negative and ER-
positive human breast tumors with a permutation P-value <.05. (B) Unsupervised hierarchical
clustering analysis of only ER-negative tumors using kinases and kinase-associated genes
overexpressed in ER-negative breast cancers reveals 4 distinct subsets of ER-negative breast
cancer. These four subset are defined by kinases that are involved in cell cycle checkpoint
control (group 1), S6 kinase signaling (group 2), immunomodulatory (group 3), or paracrine

Speers et al. Page 16

Clin Cancer Res. Author manuscript; available in PMC 2010 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



signaling involving many MAPKs (group 4). Subtype refers to the breast cancer subtypes
identified by Sotiriou et al. (46). BRCA1 and BRCA2 relative gene expression has been
included for comparison.
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Fig. 2.
Kinase overexpression validated in independent human tumor sample data sets and in a panel
of breast cancer cell lines. (A) The expression of 34 of 34 kinases and kinase-associated genes
identified in the array profiling were validated as being more highly expressed in ER-negative
tumors compared to ER-positive tumors as measured by Q-RT-PCR in an independent set of
breast tumors. Expression data for 6 representative kinases (CHK1, BUB1, PTK7, TTK,
TLR1, and RAF1) are shown. Asterisks indicate P-value <0.01. Data are represented as mean
± SEM. (B) The expression of 42 of 42 kinases was significantly higher in ER-negative breast
cancer cell lines as compared to ER-positive cell lines. Again, expression data as measured by
Q-RT-PCR, this time in a panel of breast cancer cell lines, for 6 representative kinases (CHK1,
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BUB1, PTK7, TTK, TLR1, and RAF1) are shown. Asterisks indicate P-value <0.01. Data are
represented as mean ± SEM. Validation of kinase overexpression was also done in 12 human
breast tumor datasets (Table S4).
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Fig. 3.
Effect of siRNA knockdown on the growth of ER-negative and ER-positive breast cancer cells.
(A) Knockdown of target kinase expression was achieved using siRNA against the identified
kinases, with representative data of DAPK1, PTK7, and RYK knockdown in MDA-MB-468
cells shown. Knockdown was confirmed by Q-PCR at day 2 and day 5 and was >70% in all
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experiments. (B) DAPK1, PTK7, and RYK knockdown inhibited growth in the ER-negative
breast cancer cell lines MDA-MB-468 and MDA-MB-231 but not in the ER-positive breast
cancer cell lines MCF-7 and T47D. Asterisk denotes significant difference in curves between
kinase of interest knockdown and siLuc transfected growth curves, P-value < 0.05. A complete
summary of results of the kinase inhibition cell growth studies are shown in figure S4 and
figure S5. Data are represented as mean ± SD.
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Fig. 4.
Hierarchical clustering and Kaplan-Meier metastasis free and overall survival analysis of ER-
negative tumors in multiple datasets. (A) Hierarchical clustering of only ER-negative tumors
identified the 4 clusters of ER-negative breast tumors in the Wang data set (25). The tumors
were classified based on the expression level of the kinases identified in the analysis. Tumors
that fell into the immunomodulatory cluster had a decreased risk of metastasis, and tumors in
the cell cycle regulatory and S6 kinase clusters had a substantially elevated risk of metastasis
at 5 years. (B) Similar results were found when hierarchical clustering was done in the van de
Vijver data set (3). Overall survival was substantially higher in the immunomodulatory group
than in the S6 kinase or cell cycle checkpoint groups. Overall P-value was calculated based on
the assumption that there would be no difference between any of the survival curves and was
initially used to determine whether any one of the curves were significantly different. Further
P-values were calculated comparing the designated two groups with the calculation of Chi
square values. Immune refers to immunomodulatory group, CCC to the cell cycle checkpoint
group, and S6 kinase to the S6 kinase group.
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Table 1
Clinical characteristics of the patients and tumor samples used in the study
Characteristics of 102 patients with breast cancer. Tumors from these patients were used for gene expression profiling
to identify overexpressed kinases and kinase-associated genes in ER-negative breast tumors

Characteristic Tumor Set
N=102 (%)

Age

  Mean 48.1

  Range (32–72)

Race

  Caucasian 50 (57%)

  Hispanic 7 (8%)

  African-American 23 (27%)

  Asian 7 (8%)

Menopausal Status

  Pre 49 (62%)

  Post 30 (38%)

BMI

  Mean 29.7

  Range (16.1–48.3)

Baseline Tumor Size, cm

  Mean 6.3

  Range (2.5–25.0)

Palpable Nodes at Baseline

  Yes 20 (21%)

  No 77 (79%)

ER

  Positive 57 (56%)

  Negative 45 (44%)

  Unknown 0 (0%)

PR

  Positive 37 (36%)

  Negative 47 (46%)

  Unknown 18 (18%)

HER2/Neu

  Positive 27 (26%)

  Negative 58 (57%)

  Unknown 17 (17%)
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Table 2
Kinases identified in analysis as most highly overexpressed in ER-negative tumors
52 overexpressed kinases in ER-negative breast cancer fall into 4 distinct subsets with varying biological functions.
Gene ontology analysis shows that these kinases have varying biological functions, but most regulate growth,
metabolism, affect cell cycle, or are involved in DNA damage sensing and repair.

Cell cycle checkpoint cluster Gene Bank Assession Kinase function

  BUB1 NM_001211 cell cycle checkpoint

  CHK1 checkpoint homolog NM_001274 cell cycle checkpoint

  TTK protein kinase NM_003318 cell cycle checkpoint

  serum/glucocorticoid regulated kinase NM_005627 cell cycle checkpoint

  SFRS protein kinase 1 NM_003137 cell cycle checkpoint

  maternal embryonic leucine zipper kinase NM_014791 cell cycle checkpoint

  RYK receptor-like tyrosine kinase NM_001005861 positive regulation of proliferation

  vaccinia related kinase NM_006296 anti-apoptosis

  phosphoglycerate kinase 1 NM_000291 metabolism

  selenophosphate synthetase 1 NM_004226 metabolism

  uridine-cytidine kinase 2 NM_012474 metabolism

  UDP-glucose pyrophosphorylase 2 NM_006759 metabolism

  adenylate kinase 2 NM_001625 metabolism

  aurora kinase B NM_004217 cell cycle checkpoint

  cell division cycle 2 NM_001786 cell cycle checkpoint

  cell division cycle 7 homolog NM_003503 cell cycle checkpoint

S6 kinase pathway cluster

  ribosomal protein S6 kinase, 90kDa, polypeptide 1 NM_001006665 positive regulation of proliferation

  PI-3-kinase-related kinase SMG-1 NM_015092 DNA repair

  EPH receptor B4 NM_004444 positive regulation of proliferation

  serine/threonine kinase 38 like (NDR2) NM_015000 positive regulation of proliferation

  PI3K catalytic subunit beta NM_006219 positive regulation of proliferation

  death-associated protein kinase 1 NM_004938 anti-apoptosis

  pim-1 oncogene NM_002648 anti-apoptosis

  LIM domain kinase 2 NM_001031801 cell adhesion

  phosphoribosyl pyrophosphate synthetase 1 NM_002764 metabolism

  EPH receptor B6 NM_004445 nervous system development

  EPH receptor B2 NM_017449 maintainance of polarity

  EPH receptor A2 NM_004431 signal transduction

  ribosomal protein S6 kinase, 90kDa, polypeptide 3 NM_001006665 positive regulation of proliferation

MAPK cluster

  mitogen-activated protein 4K4 NM_004834 response to stress

  mitogen-activated protein kinase kinase 6 NM_002758 DNA damage, cell cycle arrest

  mitogen-activated protein kinase 1 (ERK2) NM_002745 positive regulation of proliferation

  mitogen-activated protein 4K2 NM_004579 positive regulation of proliferation

  mitogen-activated protein 3K5 NM_005923 regulation of apoptosis
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Cell cycle checkpoint cluster Gene Bank Assession Kinase function

  mindbomb homolog 1 (14-3-3) NM_020774 receptor mediated endocytosis

  v-raf-1 murine leukemia viral oncogene homolog NM_002880 anti-apoptosis

  protein kinase, X-linked NM_005044 unknown

  PTK7 protein tyrosine kinase 7 NM_002821 cell adhesion

  myelin protein zero-like 1 NM_003953 cell to cell signaling

  phosphofructokinase, platelet NM_002627 metabolism

  epidermal growth factor receptor NM_005228 positive regulation of proliferation

  MET proto-oncogene NM_000245 activation of MAPK activity

Immunomodulatory cluster

  toll-like receptor 1 NM_003263 immune system modulation

  LYN NM_002350 positive regulation of proliferation

  MALT lymphoma translocation gene 1 NM_006785 anti-apoptosis

  serine/threonine kinase 17b NM_004226 anti-apoptosis

  interleukin-1 receptor-associated kinase 1 NM_001569 positive regulation of transcription

  chemokine (C-X-C motif) ligand 10 NM_001565 immune system modulation

  lymphocyte-specific protein tyrosine kinase NM_001042771 immune system modulation

  chemokine (C-C motif) ligand 4 NM_002984 cell to cell signaling

  pyridoxal (pyridoxine, vitamin B6) kinase NM_003681 metabolism

  v-yes-1 NM_005433 positive regulation of proliferation
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