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Summary: The immunologic treatment of cancer has long
been heralded as a targeted molecular therapeutic with the
promise of eradicating tumor cells with minimal damage to
surrounding normal tissues. However, a demonstrative example
of the efficacy of immunotherapy in modulating cancer pro-
gression is still lacking for most human cancers. Recent break-
throughs in our understanding of the mechanisms leading to
full T-cell activation, and recognition of the importance of
overcoming tumor-induced immunosuppressive mechanisms,
have shed new light on how to generate effective anti-tumor
immune responses in humans, and sparked a renewed and
enthusiastic effort to realize the full potential of cancer immu-
notherapy. The immunologic treatment of invasive malignant
brain tumors has not escaped this re-invigorated endeavor, and

promising therapies are currently under active investigation in
dozens of clinical trials at several institutions worldwide. This
review will focus on some of the most important break-
throughs in our understanding of how to generate potent
anti-tumor immune responses, and some of the clear chal-
lenges that lie ahead in achieving effective immunotherapy
for the majority of patients with malignant brain tumors. A
review of immunotherapeutic strategies currently under clin-
ical evaluation, as well as an outline of promising novel
approaches on the horizon, is included to provide perspec-
tive on the active and stalwart progress toward effective
immunotherapy for the treatment of malignant brain tumors.
Key Words: Glioma, immunotherapy, brain tumor, cancer
vaccines, dendritic cells.

Despite aggressive, image-guided tumor resection,1

high-dose external beam radiotherapy or brachytherapy,
and advances in efficacious adjuvant chemotherapy, pa-
tients with glioblastoma (GBM), which is the most com-
mon and deadly malignant brain tumor, still have a me-
dian survival of less than 15 months.2,3 The estimated
cost of treatment for each patient with a malignant brain
tumor is between $30,000 and several hundred thousand
dollars annually. Thus, the annual treatment cost alone
for these patients, not accounting for the lost earning
potential of affected individuals, is greater than the entire
annual budget of the National Institute of Neurological
Disorders and Stroke.
In evaluation of the quality-adjusted life-year saved,

conventional therapy for patients with malignant brain
tumors is the most expensive medical therapy currently
provided in the United States.4 Furthermore, patients

treated with the aggressive multi-modality treatments
that are used in the standard of care management of this
disease are often left with incapacitating damage to sur-
rounding normal brain and systemic tissues.5,6 Thus, to
be more effective, therapeutic strategies for malignant
brain tumors will have to precisely target residual inva-
sive tumor cells while minimizing collateral damage to
the neighboring eloquent brain. The rationale for using
the immune system to target brain tumors is based on the
premise that the inherent biologic specificity of the im-
mune system could meet the clear and urgent need for
more precise medical therapy.

CANCER IMMUNOTHERAPY: A
PERSONALIZED MEDICINE PARADIGM

The immune system is an intricate network of innu-
merable cellular and molecular mediators that are so
exquisitely interconnected and refined that it is capable
of recognizing a foreign pathogen within minutes of
breaching the outer barriers of the human body, and
responding with a myriad of innate defense mechanisms
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and an array of specific humoral and cellular effectors
that can control a rapidly expanding and invasive infec-
tion and eliminate almost every infected cell from the
body. For more than a century now, tumor immunolo-
gists have sought to leverage this amazing cytotoxic
power and exquisite specificity against malignant cancer
cells that spread throughout afflicted hosts with as dire
consequences as an uncontrolled microbial infection.
Current efforts in oncology treatment development are

directed at the discovery of “targeted therapeutics” that
attack specific pathways operative in cancer cells and are
key to the maintenance of malignant phenotype. Delin-
eating the phenotype and genotype of tumor cells using
the variety of available “omic” technologies, such as
genomics and proteonomics to match them most appro-
priately to treatments known to be effective against can-
cers that share a genetic or proteomic “profile” consti-
tutes a major current effort to increase the efficacy of
oncology treatment regimens through proper patient se-
lection. This quest in drug discovery for more specific
and targeted cellular pathway inhibitors, coupled with
the molecular interrogation of tumor specimens to match
the most effective available pharmacologic treatments, is
often descriptive of the era of “personalized medicine”
that we are diligently working toward.7

In many ways, although the tumor immunologists can
probably not be credited with coining the phrase of per-
sonalized medicine, they very well may be credited with
the first attempts to realize such personalized medical
treatments for patients with malignancy. Effective cancer
immunotherapy captures all of the essential ingredients
of a targeted therapeutic that is uniquely matched to the
antigenic profile of a given tumor, and is specifically
designed to leverage its effects against tumor cells ex-
pressing a unique antigenic profile, while limiting “off
target” effects on normal cells that do not share expres-
sion of these antigens. The inherent premise of immu-
notherapy does not base treatment strategy on a shared
histopathologic appearance and natural disease history as
conventional treatment paradigms, but rather bases ther-
apeutic susceptibility almost entirely on the molecular
antigenic profile of the tumor, and whether the tumor
does or does not express an antigen (biomarker) that can
be effectively targeted by the immune system. A cancer
vaccine developed against an antigenic target such as
epidermal growth factor receptor variant 3 (EGFRvIII),
for example, would be expected to be effective only
against tumor cells expressing this molecular target.
Thus patients with the same pathologic diagnosis of ma-
lignant glioma selected upfront as EGFRvIII vaccine
candidates based on expression of this biomarker was
inherent in its initial clinical evaluation. Cancer immu-
notherapy may have the added advantage over other
cytotoxic or cytostatic mechanisms, in that the immune
system kills targeted cells based on the effective activa-

tion and recognition of a particular antigen(s) within the
target cell, but is not dependent on that target playing a
key role in the oncogenic phenotype for executing cyto-
lytic-killing mechanisms. Thus the validation of potential
targets for tumor immunotherapy is simplified to expres-
sion analysis in normal and malignant tissues and the
immunogenicity of the target itself. This is not to suggest
that resistance mechanisms to immunologic killing
within tumor cells do not exist nor are insignificant, but
candidates for immunotherapeutic attack can be evalu-
ated based on their differential expression in tumor cells
alone without necessitating a role in tumorigenesis.
Thus, the successful development of cancer immuno-

therapy has long been based on the now widely accepted
concepts captivated under the brand name of “personal-
ized medicine” include the following: 1) that efforts in
oncology therapeutics be directed toward the develop-
ment of treatments that exploit specific molecular differ-
ences between normal cells and tumor cells; 2) that treat-
ments are driven by biomarkers that can differentiate
susceptible tumor types from nonsusceptible ones shar-
ing the same or distinct pathological diagnosis; 3) that
treatments have limited off-target effects against normal
tissues by exploiting biological targets operative only in
tumor cells; and 4) that treatments ideally can be com-
bined to address the inherent heterogeneity of genetic
and epigenetic phenotypes that exist within most malig-
nant cancers. Furthermore, the bioavailability of the im-
mune system’s humoral and cellular effector mecha-
nisms have been shown to be system-wide, with even the
once believed to be immunoprivileged CNS being effec-
tively surveyed by host immune defenses.8

Active immunotherapy (the generation of effective
host immunity against tumor-specific antigens) has been
shown, at least in preclinical models, to posses an addi-
tional benefit that no other targeted therapeutic pos-
sesses, and that is the capacity to establish immunologic
memory recall responses against immunized antigens
that can provide long-term surveillance against tumor
recurrence.9,10

Suffice to say that with all of the apparent advantages
that immunotherapy has to offer, the clinical realization
of these advantages is still lacking in the treatment of
most human cancers. Notable exceptions to this gener-
alization have been the effective use of adoptive cellular
therapy against cancers associated with viral infections,
such as Epstein Barr virus (EBV)-associated lymphomas
and donor leukocyte infusions against lymphoprolifera-
tive diseases and some hematologic malignancies in al-
logeneic transplant recipients.11,12 Recent advances in
our understanding of the potent effects of tumor-induced
immunosuppression and homeostatic regulatory mecha-
nisms that govern lymphocyte expansion and function,
however, have provided new insights into how to achieve
and sustain potent immune responses in tumor bearing
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hosts. These advances have already begun to demon-
strate remarkable clinical responses in patients with sys-
temic tumors and hold significant promise for improving
immunotherapy for patients with malignant brain tumors.

CURRENT EFFORTS IN IMMUNOTHERAPY
FOR MALIGNANT GLIOMAS

Tumor-specific rejection antigens and EGFRvIII
Most well-characterized tumor antigens that have been

identified represent over-expressed normal proteins.
These self-proteins are likely limited in their capacity to
generate potent immune responses to vaccination due to
some degree of tolerance, and if effectively targeted would
likely precipitate some degree of autoimmunity.13,14 Con-
versely, tumor-specific antigens derived from tumor-as-
sociated mutations in somatic genes would not be as
amenable to central tolerance. These mutations would
also less likely be associated with autoimmunity if potent
immune responses were to be generated against these
targets due to absence in normal tissues. In fact, studies
examining the immunologic recognition of tumor anti-
gens in patients with malignancy have shown that the
majority of the host immunologic response is directed
against tumor-specific antigens and not the readily stud-
ied over-expressed self antigens and differentiation anti-
gens that have been described in most tumor types.15

These antigenic mutations, however, arise sporadically
during errors in cellular division and tumor expan-
sion,16,17 and thus would be predicted to be patient-
specific and not necessarily linked to the oncogenic pro-
cess.
EGFRvIII, however, is a rare example of a frequent

and consistent tumor-specific mutation, central to the
neoplastic process, that consists of an in-frame deletion
of 801 base pairs from the extracellular domain of the
EGFR that splits a codon and produces a novel glycine at
the fusion junction.18,19 This mutation encodes a contin-
ually active tyrosine kinase20,21 that enhances tumorge-
nicity21–24 and migration,25,26 and confers radiation and
chemotherapeutic resistance27–32 to tumor cells. The
EGFRvIII mutation is most frequently seen in patients
with GBM,33–39 but has been found in a broad array of
other common cancers.33,38–45 The new glycine inserted
at the fusion junction of normally distant parts of the
extracellular domain results in a tumor-specific epitope
not found in any normal adult tissues.46 The exquisite
tumor-specificity of EGFRvIII; its clonal expression in
GBMs and other common tumors; its absence in any
normal tissues; and its importance in the oncogenic phe-
notype of tumors make EGFRvIII an ideal target for
antitumor immunotherapy.41,42,46,47

We have demonstrated in clinical studies in both
phases I and II that patients with newly-diagnosed GBM
who received vaccinations targeting a peptide spanning

the EGFRvIII mutated junction induce potent EGFRvIII-
specific immune responses and patient survival that sig-
nificantly exceeds that of historical controls.48 The effi-
cacy of these EGFRvIII peptide vaccines (CDX-110
[Celldex/Avant/Pfizer, Inc]) in patients with newly-diag-
nosed GBM is currently being evaluated in large-scale
clinical trials to confirm these promising early clinical
findings.

Peptide vaccines
Peptide vaccines are of significant interest in the field

of immunotherapy due to their ease of manufacturing
and administration, and the capacity to induce antigen-
specific cellular and humoral responses. In addition to
EGFRvIII, a growing list of candidate antigens in ma-
lignant brain tumors have been identified that could serve
as substrates for peptide-based cancer vaccines. These in-
cluded melanoma/testis antigens,49–53 viral antigens,54–58

cytokine receptors,59,60 and differentiation antigens ex-
pressed in malignant gliomas.61 Clinical trials evaluating
peptide vaccines for malignant glioma have demon-
strated capacity to induce tumor-specific immune re-
sponses in patients with primary and recurrent gliomas
and elicit early signs of clinical responses that await
confirmation in larger scale clinical trials.48,62–64 Several
clinical trials evaluating specific antigenic peptides, pep-
tide fractions eluted from tumor cell surfaces or extracts,
and peptide-bound chaperone proteins, such as heat-
shock proteins, are currently underway to assess the po-
tential efficacy of peptide-based vaccines for malignant
brain tumors.

Gene-modified tumor cell vaccines
One immunotherapeutic strategy is to use entire ma-

lignant tumor cells modified to render them more immu-
nogenic and incapable of forming new tumors as the
basis for vaccine formulation. These gene-modified tu-
mor vaccines are then inoculated in patients with the aim
of inducing immune responses against the myriad of
uncharacterized and patient-specific antigens present in
transformed tumor cells. Fakhrai et al.65 used autologous
tumor cells genetically modified with a transforming
growth factor-beta2 (TGF-�2) antisense vector to re-
verse the immunosuppressive effects of TGF-�2 and
elicit immunologic responses in patients with GBM. The
investigators treated six patients with progressive GBM
and reported objective clinical responses in two patients
and disease stabilization in two patients, as well as the
induction of tumor-specific immunity as measured by
DTH testing and antibody titers.
Okada et al.66,67 have used autologous glioma cell

vaccines secreting interleukin(IL)-4 or co-injected with
IL-4 secreting fibroblasts in patients with recurrent
GBM. These vaccines were without any adverse reac-
tions other than local inflammation at the vaccine site
(i.e, the thigh). The authors also report induction of sys-
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temic tumor-specific immunologic responses and radio-
graphic responses in treated patients, highlighting the
potential promise of this treatment, but they also cite the
duration of time required for vaccine preparation (i.e.,
greater than 7 weeks) as a major limitation for usage in
patients with recurrent glioma.
Several gene-modified tumor vaccines are under cur-

rent clinical evaluation using autologous glioma cells
modified to secrete a variety of cytokines such as IL-4,
granulocyte/macrophage colony stimulating factor (GM-
CSF), or IL-12 that have shown promise in preclinical
therapeutic models of malignant glioma.

DENDRITIC CELL THERAPY

Dendritic cells (DCs) are potent immunostimulatory
cells that continuously sample the antigenic environment
of the host and specifically activate CD4� and CD8�
T-cells and B-cells.68,69 They are at the crossroads of
many of the elegant networks of the immune system, and
DCs may represent the most promising contemporary
biologic entity for realizing the promise of immunother-
apy. Potent immune responses and encouraging clinical
results have been seen in phase I and II human clinical
trials in systemic cancers,70–86 and numerous animal
studies, including many of our own,9,10,87 have demon-
strated potent antitumor responses using DC-based im-
munotherapy against CNS tumors.88,89

DC VACCINES TARGETING
TUMOR-SPECIFIC ANTIGENS

We completed a phase I clinical trial in which 16
patients with malignant gliomas (i.e., 13 GBM, 3 World
Health Organization grade III glioma) received intrader-
mal (i.d.) immunizations with autologous DC pulsed
with a keyhole limpet hemocyanin (KLH) conjugate of a
peptide spanning the mutated region of EGFRvIII after
completion of radiation therapy.90 The i.d. route of admin-
istration was supported by evidence that DC delivered in
this manner will migrate to lymph nodes91,92 and subse-
quently present antigen to T lymphocytes, as well as by
prior studies comparing the ability of various routes of
administration to elicit strong T-cell-mediated immunity.93

The enrolled patient population consisted of adults with
malignant gliomas who had undergone gross total tumor
resection and radiotherapy. Patients underwent leukaphere-
sis to remove autologous peripheral blood mononuclear
cells (PBMC), which were cultured in GM-CSF and IL-4 to
generate DC. The DCs were pulsed with peptide spanning
of the mutated region of EGFRvIII/KLH and matured in a
cocktail of tumor necrosis factor-�, IL-1�, and IL-6 (but not
prostaglandin E2 [PGE2], due to some concern over a coun-
terproductive effect on DC IL-12 production94) before be-

ing delivered back to the patient in 3 biweekly i.d. injec-
tions.
Immunized patients demonstrated induction of immu-

nologic responses, which were not detectable prior to
vaccination, without any evidence of adverse events
other than grades I and II local reactions at the vaccina-
tion site. For patients with GBM (n � 13), the median
survival time was 110.8 weeks, which compares favor-
ably with other published reports in similar patient pop-
ulations using temozolomide95 or carmustine wafers,96 in
which median survivals were 63.3 weeks and 59.6
weeks, respectively. These findings suggest that autolo-
gous mature DCs loaded with the tumor-specific antigen,
peptide spanning the mutated region of EGFRvIII, are
safe and may induce beneficial immunologic and clinical
responses in patients with malignant gliomas.

Tumor lysate or unfractionated peptide pulsed DC
vaccines
The first trial of DC vaccination in patients with ma-

lignant glioma was published by Yu et al.88 in 2001. A
demonstrable increase in tumor-specific cytotoxicity was
successfully developed in four out of seven testable pa-
tients who received DC pulsed with major histocompat-
ibility complex-I peptides eluted from the surface of
autologous glioma cells. Furthermore, two out of four
patients who underwent reoperation demonstrated robust
CD8� and memory (CD45RO�) T-cell infiltrates in ar-
eas of the tumor. Based on the small sample size, no
reliable data on survival could be generated, but the
treatment proved safe.88

Parajuli et al.97 have reported the results of an in vitro
human DC study that examined the ability of different
DC-based strategies to induce effective T-cell responses
against malignant astrocytomas. DCs were generated
from patient PBMC and were fused with autologous
tumor cells or pulsed with total tumor RNA or tumor
lysate. They were then assayed for their respective abil-
ities to stimulate tumor-specific T-cell proliferation and
cytotoxic T lymphocyte responses in vitro. No significant
differences were found between the various DC arms in
their T-cell stimulatory capacity; all showed enhanced
cytotoxicity that was further augmented by addition of
CD40 ligand during T-cell stimulation.98 The data
should be helpful in designing protocols for DC-based
immunotherapy of malignant astrocytomas.
Liau et al.99 reported the results of a phase I trial of DC

pulsed with peptides that were acid-eluted from the sur-
face of resected, autologous tumor, and were adminis-
tered to 12 GBM patients in 3 bi-weekly i.d. injections.
There were no adverse effects of treatment and evidence
of increased immunologic responses against autologous
tumor was observed in half of the treated patients. Prom-
ising prolongation of survival (median survival, 23.4
months) compared with historical controls was observed,
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and a multi-center randomized clinical trial was initiated
for further confirmation of these results.
In the largest series of DC vaccinated patients pub-

lished to date, De Vleeschouwer et al.100 reported the
results of 56 patients (both pediatric and adult) with
relapsed GBM who were given at least three vaccina-
tions with autologous mature DCs loaded with autolo-
gous tumor lysates. The treatment was well tolerated
with a single serious adverse event of vaccine-related
edema in a patient with gross residual disease. The me-
dian progression-free survival and overall survival of the
group was 3 months and 9.6 months respectively, with a
2-year overall survival of 14.8%. Patients were treated in
three consecutive cohorts, with progressively shorter
vaccination intervals per cohort. The investigators ob-
served a trend toward improved progression-free sur-
vival with a shorter vaccination interval (4 weekly injec-
tions with boosts of intradermal injections of 1.5 mg of
autologous tumor lysate). The vaccination of patients
with recurrent disease and likely significant tumor-in-
duced immunosuppression may have contributed to the
limited overall clinical responses, although the authors
note a small but encouraging 2-year survival rate in some
patients with recurrent disease.
Recently, Wheeler et al.101 reported a statistically sig-

nificant correlation between vaccine-induced immune re-
sponses in patients with GBM receiving autologous tu-
mor lysate pulsed DCs and times to tumor progression
and survival. Responders were classified as patients with
a greater than 1.5-fold enhancement of interferon-	 pro-
duction (measured by qPCR in total PBMCs stimulatated
by autologous tumor-lysate pulsed DCs) relative to pre-
vaccine levels and post-vaccine tumor progression sur-
vival was significantly longer in responders (642 � 61
days) than nonresponders (430 � 50 days) when all
patients were analyzed as a group (both recurrent and
newly-diagnosed GBM) (p � 0.041). Separate analysis
of patients with recurrent disease showed a similar trend
toward increased survival in responders, but this did not
reach statistical significance (p � 0.067). This phase II
study using a single immunologic response marker (in-
terferon-	) suggests that the establishment of validated
immunologic markers for treatment responsiveness to
immunotherapy may be feasible in larger studies of im-
munotherapy in patients with malignant glioma.

RNA-loaded DC vaccines
Tumor material is often limited in patients with ma-

lignant brain tumors, and thus vaccine preparations de-
pendent on obtaining sufficient tumor tissue may be lim-
ited in broad application to patients. The use of RNA to
encode tumor antigens for DCs was pioneered by Drs.
Nair and Gilboa, but the ability of RNA-loaded DCs to
stimulate potent antitumor immunity has been indepen-
dently confirmed in murine and human systems.102,103 In

fact, there is accumulating evidence that RNA transfec-
tion represents a superior method for loading antigens
onto DCs.104–106 This novel and innovative approach to
DC-antigen loading has multiple conceptual advantages
over other forms of antigen delivery as well. RNA-based
antigen loading does not require knowledge of major
histocompatibility complex restriction, and responses are
not restricted to single major histocompatibility complex
haplotypes or to a narrow B- or T-cell repertoire. This
diversity increases the likelihood of inducing effective
and sustained antitumor immune responses by simulta-
neous activation of both cytotoxic T lymphocytes and
helper T-cells.107–109 Using molecular techniques, RNA
can be amplified, and in vitro it can be transcribed from
DNA templates from cloned tumor antigens or from
RNA libraries isolated from as few as 100 tumor cells,
thus providing a renewable source of tumor antigen for
vaccine preparation.110 Furthermore, in direct compari-
sons, RNA-loaded DCs have been found to be better
stimulators of antigen-specific T-cells than other ap-
proaches.105 Finally, RNA also carries a significant
safety advantage, not possessed by other nucleic acid or
viral vectors, in that it can not be integrated permanently
into the host genome. However, the time required for
generation of tumor-specific RNA, either isolated from
tumor cells or in vitro transcribed from cloned cDNA
templates, and the labile nature of RNA molecules are
potential limitations to the use of RNA as a source of
tumor antigens.
Caruso et al.111 used tumor RNA-pulsed DCs to vac-

cinate seven children with recurrent brain cancers (ana-
plastic astrocytoma [n� 1], GBM [n� 2], ependymoma
[n � 2], pleomorphic xanthoastrocytoma [n � 1], and
ependymoma [n � 1]) in a phase I clinical study. Induc-
tion of tumor-specific immune responses was observed
in two patients, and clinical responses were observed in
three patients as assessed by MRI (two disease stabili-
zations and one partial response).
Methods for loading DCs with RNA have been signif-

icantly improved since the publication of these trial re-
sults, as the investigators used simple co-incubation of
DCs with “naked” tumor RNA for loading with tumor
antigens. Electroporation of RNA into DC has proven to
achieve much higher expression from antigen-encoding
RNA and likely will significantly improve immunologic
responses against RNA pulsed DCs in humans.112 We
are currently evaluating RNA-electroporated DC vac-
cines in the context of several clinical trials at our insti-
tution.
Although the use of antigen-pulsed DCs appears prom-

ising in early clinical trials for treatment of brain tumors,
these cells have also been shown to be quite capable of
initiating significant autoimmune responses in murine
models, and there has been one incident of a spontaneous
generalized vitiligo that occurred after intravenous infu-
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sion of DCs in a patient with melanoma.113 Although our
group and others have demonstrated that DCs loaded
with unselected tumor-derived antigens induce potent,
specific, and clinically effective immune responses
against brain tumors in rodent models without the induc-
tion of autoimmune reactivity,10,87,89,114 and although no
autoimmune reactions have been identified in human DC
trials in patients with malignant brain tumors,88 immu-
nization in preclinical studies has only been effective
when given before tumor challenge or in the context of
very small established tumors. These data suggest that
for DC-based immunotherapy to be effective in the con-
text of large human tumors, a very strong and sustained
antitumor immune response will be required.115 In ani-
mal models, when such responses have been generated
against tumor-associated antigens that are shared with
host cells, severe and clinically significant autoimmune
disease has occasionally resulted.116 Thus, as our capac-
ity to engender more potent immunologic responses in
humans continues to advance, careful and long-term tox-
icity evaluation will be necessary to ensure the safe and
effective development of this promising modality.

ADOPTIVE CELLULAR THERAPY

Adoptive immunotherapy encompasses treatments
that involve transfer of autologous lymphocytes that
have been expanded ex vivo against tumor specific an-
tigens. Treatment approaches have differed in the types
of cells administered, the route of administration, and the
activation status of the cells. Cell types that have been
used in adoptive immunotherapy for malignant brain
tumors include 1) PBMC;117,118 2) lymphokine-activated
killer cells;119–121 3) mitogen-activated killer cells;122,123

4) tumor-infiltrating lymphocytes;124 and 5) antigen-spe-
cific and unselected cytotoxic T-cell lymphocytes.125,126

Routes of administration have generally been either sys-
temic or into the tumor cavity (also known as. intrale-
sional or loco-regional). Clinical studies evaluating these
approaches have demonstrated the safety of these treat-
ments in patients with malignant brain tumors and a
minority of patients was observed to have achieved ob-
jective clinical response to treatment.
Recent advances using genetically engineered lym-

phocytes with redirected specificity for antigens ex-
pressed in malignant brain tumors provides an opportunity
to generate large numbers of tumor-specific lymphocytes
from easily accessible pools of peripheral blood lympho-
cytes and shows exciting potential as a novel treatment
strategy.127 However, due to the complexity and labor
intense nature of adoptive cellular therapy protocols, in
general, this modality has lagged significantly behind
effort in development of active vaccinations using DCs,
tumor cells, or defined antigens delivered as peptides or
through viral and nonviral expression vectors.

However, striking advances have recently been made
in the success of treating advanced metastatic melanoma
using nonmyeloablative and myeloablative chemother-
apy conditioning regimens for lymphodepletion prior to
adoptive T-cell transfer and exogenous IL-2 sup-
port.128,129 The mechanistic principles underlying these
treatment advances have also been begun to be eluci-
dated in experimental mouse models.130,131 Thus, adop-
tive cellular therapy after lymphodepletion has recently
emerged as the most effective treatment strategy to date
for advanced refractory melanoma with objective re-
sponses achieved in greater than 50% of treated pa-
tients.132 Leveraging the concepts elucidated in this treat-
ment strategy toward effective immunotherapy against
malignant brain tumors seems to be of paramount inter-
est, especially given that complete regressions of meta-
static lesions within the CNS have been observed in
patients treated with this approach.

EMERGING CONCEPTS IN
IMMUNOTHERAPY FOR MALIGNANT

BRAIN TUMORS

Lymphopenia and homeostatic proliferation
After periods of lymphopenia, there is a homeostatic

proliferation of the remaining lymphocytes of the host,
which is designed to recover normal lymphocyte
counts.133 Probably as a result of a surge in cytokines
(IL-7, IL-15) in response to lymphopenia, lymphocytes
undergoing homeostatic proliferation enjoy a reduced
activation threshold133,134 and differentiate directly into
effector memory T-cells capable of rapid and intense
response to antigen.135 Still, lymphocytes must encoun-
ter their cognate antigen and compete for limiting
amounts of these homeostatic cytokines to proliferate
even under these conditions.133 Thus, B- or T-cells spe-
cific for antigens that predominate during this recovery
period, such as those provided in the form of a vaccine or
adoptively transferred after ex vivo expansion against
specific antigens, have a competitive advantage and be-
come disproportionately over-represented in the recov-
ering lymphocyte population both in murine mod-
els136,137 and in humans.138 These skewed homeostatic
responses have been shown to enhance antitumor immu-
nity,136,137,139 but can also increase the risk of autoim-
munity.140,141 Futhermore, lymphodepletion may re-
move inhibitory regulatory T-cells, further accentuating
the effectiveness of antitumor immunotherapy.142,143

Leveraging this principle, Dudley et al.144 have used
intentional nonmyeloablative lymphodepletion to en-
hance the preferential expansion and maintenance of
adoptively transferred, tumor-specific T-cells. This has
resulted in dramatic clinical responses,145–149 along with
some autoimmune toxicity, in patients with advanced
malignant melanoma.132,144 These studies have shown
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that under these conditions, transferred T-cells can ex-
pand dramatically in the lymphopenic host to constitute
up to 90% of the T-cell repertoire of the host, and can be
maintained for months after adoptive transfer.132,150

These studies demonstrated that clinical regression of
systemic disease correlates with the frequency of tumor-
specific T-cells achieved in the peripheral blood and
persistence of these cells in vivo.145-149,151 At least in
murine models, this antitumor effect was also signifi-
cantly enhanced by autologous stem cell support.152

Immunosuppression in GBM and IL-2R��

regulatory T-cells
A substantial barrier to the activation of antitumor

immune responses in patients with GBM is their well-
documented impairment of T- and B-cell immunity. Al-
though immunosuppressive factors secreted by the tumor
clearly play a role, we have recently demonstrated that a
major contributor to depressed cellular immunity in pa-
tients with GBM is an increased level of regulatory T-
cells (TRegs).

153 TRegs are a physiologic subset of CD4
�

T-cells that normally comprise 5 to 10% of this compart-
ment and serve to thwart pathological responses toward
self antigens. They constitutively express high levels of
the high-affinity IL-2R� (CD25) on their surface,154 and
they can be identified even more specifically by expres-
sion of the intracellular transcription factor, FOXP3.
TRegs potently inhibit T-cell cytokine secretion and prolif-
eration,155–159 directly curtail the generation and expansion
of endogenous or induced immune responses,154,160–168

and appear to play a significant role in hindering immu-
nity to normal and tumor-associated antigens.169,170 Ac-
cordingly, increased levels of TRegs have been found in the
tumors and peripheral blood of patients with various tu-
mors including GBM.153,171–175 The relative importance
and precise interactions between systemic and intratu-
moral TRegs has not been established.

176–178 Strategies to
inhibit or deplete TRegs including CD25 blockade using
MAbs, CD25-binding immunotoxins, or pharmaco-
logic inhibition of TReg activity are under current clin-
ical and preclinical evaluation in our laboratory and
others.179–181

BEYOND PROOF-OF-CONCEPT AND
TOWARD CLINICAL EFFICACY

The debate as to whether human tumors express pro-
teins capable of serving as tumor rejection antigens that
pre-occupied much of the early decades of tumor immu-
nology and immunotherapy research has now been set-
tled. It is clear that the immune system can recognize and
mount significant cellular and humoral responses against
over-expressed self antigens, as well as novel tumor-
specific antigens in human tumors, including malignant
brain tumors. Also, it is well-accepted that the once

believed to be “immunoprivileged,” and therefore inac-
cessible CNS, is readily surveyed by activated effector
cells of the immune system, although less extensively
and perhaps with attenuated function compared with
lymphocytes surveying tissues in the periphery.
Therefore, continued advancement of immunothera-

peutic efforts in the treatment of malignant brain tumors
will be dependent on a concerted effort to push past the
now-established feasibility and safety demonstration of
immunotherapeutic treatments, and even beyond basic
immunologic monitoring efforts using nonstandardized
and noncomparable immunologic assays. Future efforts
will need to focus on methods to significantly enhance
the magnitude of immune responses and proportion of
responding patients against targeted glioma antigens.
These responses will need to be evaluated using stan-
dardized immunologic assays that can be compared
across clinical trials within a given institution and ideally
among different institutions. Although a myriad of newer
targets and interventional strategies will undoubtedly
continue to spring forth, investigators will need to con-
quer the difficult, but essential, task of quickly and ob-
jectively evaluating what likely constitutes a significant
advance in treatment strategy, and therefore justifies a
change in direction versus continuing to forge forward
with incremental improvements in existing treatment
strategies against identified antigenic targets.
An effort in understanding the molecular differences

between clinical and immunologic responders and non-
responders to immunotherapeutic interventions will be
very helpful in guiding further improvements and also in
patient selection, and innovative trial designs are needed
to rapidly evaluate complex biological therapies in larger
scale and more definitive clinical studies.
The current emphasis on targeted molecular therapies

and use of biomarkers and tumor signatures to guide
treatment selection is optimally suited to match the ex-
quisite specificity and precise targeting capacity of im-
munologic treatment regimens. Therefore, in our opin-
ion, cancer immunotherapy represents a contemporary
treatment modality whose time has finally come for a
comprehensive and forward-looking clinical evaluation
and rational investigational plan for the successful inte-
gration into the mainstay of effective therapies for treat-
ment of malignant brain tumors.
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