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Abstract

Polyamines are known to play important roles in the proliferation and differentiation of many types of cells. Although
considerable amounts of polyamines are synthesized and stored in the testes, their roles remain unknown. Ornithine
decarboxylase antizymes (OAZs) control the intracellular concentration of polyamines in a feedback manner. OAZ1 and
OAZ2 are expressed ubiquitously, whereas OAZ-t/OAZ3 is expressed specifically in germline cells during spermiogenesis.
OAZ-t reportedly binds to ornithine decarboxylase (ODC) and inactivates ODC activity. In a prior study, polyamines were
capable of inducing a frameshift at the frameshift sequence of OAZ-t mRNA, resulting in the translation of OAZ-t. To
investigate the physiological role of OAZ-t, we generated OAZ-t–disrupted mutant mice. Homozygous OAZ-t mutant males
were infertile, although the polyamine concentrations of epididymides and testes were normal in these mice, and females
were fertile. Sperm were successfully recovered from the epididymides of the mutant mice, but the heads and tails of the
sperm cells were easily separated in culture medium during incubation. Results indicated that OAZ-t is essential for the
formation of a rigid junction between the head and tail during spermatogenesis. The detached tails and heads were alive,
and most of the headless tails showed straight forward movement. Although the tailless sperm failed to acrosome-react, the
heads were capable of fertilizing eggs via intracytoplasmic sperm injection. OAZ-t likely plays a key role in haploid germ cell
differentiation via the local concentration of polyamines.
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Introduction

As many as 15% of human couples [1] are infertile, and male

infertility is associated with about half of these cases. A decrease in

sperm production has recently been reported [1]. Although

advances in medical technology have allowed some infertile

couples to have children, more than half of all infertility is

idiopathic [1]. Because unresolved environmental problems such

as global pollution might be causing endocrine disruption, a

thorough understanding of the basic mechanisms of germ cell

differentiation is critical for development of infertility treatments.

To elucidate the molecular mechanisms of spermiogenesis, we

isolated many cDNA clones specifically expressed in haploid germ

cells using a subtracted haploid germ cell-specific cDNA library

[2]. One of them (TISP15) encoded the Ornithine decarboxylase

antizyme (OAZ) known to control the intracellular concentration

of polyamines [3,4]. Full-length TISP15, also known as OAZ in

testis (OAZ-t/OAZ3), was specifically expressed in haploid germ

cells [4,5]. Polyamines, such as putrescine, spermidine, and

spermine, are essential for cell proliferation and differentiation

via binding to nucleic acids as cations [6,7]. The actual function of

polyamines is not entirely clear although significant amounts of

polyamines are synthesized and stored in the testes [3,8]. The

biosynthesis of polyamines is regulated strictly by many proteins

via the key enzyme of ornithine decarboxylase (ODC). OAZ is a

major regulator of ODC [9]. Upon stimulation with polyamines,

OAZ protein is translated by programmed +1 frameshifting to

inhibit ODC activity specifically, and the OAZ–ODC complex

drives the rapid degradation of ODC by the 26S proteasome [10–

15]. OAZ belongs to a conserved gene family with at least three

members in the vertebrate lineage. OAZ1 and OAZ2 are

expressed ubiquitously in all somatic tissues [9,16,17]. In male

germ cell, the RNA expression of somatic OAZ1 was decreased

during the later stages of haploid germ cell differentiation [4].

Further analysis of OAZ-t revealed that polyamines are capable of

inducing a frameshift at the frameshift sequence in OAZ-t mRNA
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[4], resulting in the translation of OAZ-t, as is the case for somatic

OAZ1 [10]. The transfection of OAZ-t cDNA inhibits ODC

activity in HEK293 cells [11]. OAZ-t may play important roles in

the regulation of polyamine concentration in spermiogensis. To

clarify the roles of OAZ-t specifically expressed in haploid germ

cells, we produced the OAZ-t-disrupted mice and analyzed the

effect of the disappearance of OAZ-t.

Results

OAZ-t/OAZ3 homozygous mutant males are infertile
A targeting vector was constructed (Figure 1A) and homologous

recombination was used to generate embryonic stem (ES) cell

clones that were heterozygous for the OAZ-t mutation. To produce

chimeric mice, transgenic ES cells were injected into blastocysts

that were subsequently implanted into pseudopregnant mice.

Correct recombination was confirmed by Southern blotting

(Figure 1B) and PCR (Figure 1C). No OAZ-t expression was

detected in the testes of the homozygous null OAZ-t mutant mice

by northern (Figure 1D) or western blotting (Figure 1E). Crossing

of heterozygous mutant pairs produced the expected numbers of

wild-type, heterozygous, and homozygous offspring, according to

classical Mendelian inheritance patterns. Matings between homo-

zygous OAZ-t knockout males and wild-type females did not result

in any successful pregnancies over a period of more than three

months of continuous cohabitation, although vaginal plugs were

observed in the paired wild-type females (Table 1). All heterozy-

gous OAZ-t males and homozygous females were fertile (Table 1).

Neither the homozygous null mutant nor the heterozygous males

Author Summary

Polyamines are essential for cell proliferation and differen-
tiation, but their role in these processes is unknown.
Ornithine decarboxylase antizymes (OAZs) are enzymes that
control the concentration of polyamines in cells. To
elucidate the role of one of these enzymes, OAZ-t, in the
regulation of polyamine concentration during sperm
formation, we generated mutant mice in which the OAZ-t
gene was disrupted. When we observed sperm from the
mice lacking a functional Oaz-t gene, we found that the
sperm heads separated easily from the tails, indicating that
OAZ-t is essential for the formation of a rigid junction
between the head and tail during sperm development.
Many of the headless tails could continue swimming, but
they were unable to participate in the signaling processes
required for successful fertilization. However, tailless heads
could produce healthy pups when injected into unfertilized
eggs. Such a phenotype has not been previously found. The
mutant mice evoked rare cases of infertile human patients
whose sperm behaves in a proper fashion. Our study
underscores the importance of research into the processes
of spermatogenesis and fertilization.

Figure 1. Generation of OAZ-t knockout mice. (A) Schematic representation of the methods used for gene targeting of the OAZ-t genome. The
gene targeting construct contains Neo (open box) between the 4-kb 59-arm and 9-kb 39-arm (thick lines). As a result, exons 1–5 were replaced with
Neo. Exon 1 includes the first methionine. Arrows indicate the transcriptional direction of OAZ-t. S indicates SacI restriction sites. (B) The targeted allele
was identified by the Southern blotting of genomic DNA digested with SacI using a probe created from the 39 fragment. (C) The mice were
genotyped by PCR using two sets of primers: one set for the amplification of the Neo gene (Neo) and one set for the amplification of the OAZ-t gene.
+/+: wild-type; +/2: heterozygous mutant; 2/2: homozygous mutant. (D) Analysis of gene expression by northern blotting. No OAZ-t transcripts
were detected in the testes of OAZ-t homozygous mutant mice. The same membrane was rehybridized with AZ-1 or Gapdh cDNA as a control. (E)
Western blotting of testicular lysates from adult mice using anti-OAZ-t polyclonal antibodies. OAZ-t was not detected in the lysates from the
homozygous mutant mice (22 kDa). The 19-kDa band may be a degradation product of OAZ-t. The asterisk indicates a non-specific band. b-Actin
(ACTB) was used as a control.
doi:10.1371/journal.pgen.1000712.g001

Defective Spermatogenesis in OAZ-t Mutant Mice
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exhibited a significant differentiation in body mass (Table S1).

Female body mass and the weights of various organs, including the

testes and seminal vesicles in the adult OAZ-t homozygous mutant

mice, were identical to those in the heterozygous mice (Table S1).

The serum testosterone levels and polyamine contents in the adult

OAZ-t homozygous mutant male mice were identical to those in

the wild-type mice (Table S1 and Table S2).

OAZ-t is essential in sperm formation
Histological analyses of the testes by light microscopy showed

normal morphology (Figure 2A and 2B). In mice, the spermato-

genic cycle that occurs in each tubule of the seminiferous

epithelium is divided into 12 stages, and the germ cells in the

seminiferous tubules are enclosed by Sertoli cells [18]. Spermato-

gonia, spermatocytes, and spermatids were systematically arranged

in the seminiferous tubules of the heterozygous mutant and wild-

type testis: spermatogonia were found in the tubule walls, whereas

spermatids were located in the tubule centers and spermatocytes

were observed between the two (Figure 2A). Tubules with an

abnormal arrangement of cells undergoing spermatogenesis were

rarely observed in the homozygous mutant mice (Figure 2B). To

identify apoptotic cells, we performed terminal deoxynucleotidyl-

transferase-mediated dUTP nick end-labeling (TUNEL) staining

using an in situ apoptosis detection kit (Takara, Shiga, Japan)

according to the manufacturer’s instructions. There was no

statistical difference in signal between testicular sections prepared

from the homozygous and heterozygous mutant mice (Figure 2D

and 2E). Fully differentiated sperm were observed in the

seminiferous tubules by light microscopy and there was no

difference in weight between the homozygous and heterozygous

mutant testes (Table S2). Electron microscopic analysis revealed

that flagellar formation and nuclear condensation occurred

normally in spermatids until step nine (data not shown) and in

elongated spermatids in the testes of homozygous mutants

(Figure 3A and 3B). However, the direction and location of each

flagellum was arranged incorrectly at the caudal pole of the

nucleus during maturation in the epididymis (Figure 3C and 3D,

and Figure S1). The mitochondria and the outer dense fibers were

arranged normally, with few mitochondria to drop out in the

cytoplasm. Separation of the sperm head and tail was observed in

spermatozoa in the cauda epididymis (Figure 4). In wild-type

sperm, the components connecting the sperm head to the

flagellum were observed as described in earlier studies [19–22].

The basal plate attaching to the outer membrane of the nuclear

envelope was identified in wild-type and mutant sperm (Figure 4A

and 4B). The capitulum, consisting of electron-dense material, was

observed between the basal plate and striated columns, which

continued to the axoneme (Figure 4A). In the mutant mouse, the

capitulum and striated columns were not apparent in the

cytoplasm of the separated head (Figure 4B), but they were

observed in the separated tail (Figure 4C). These results strongly

suggest that separation occurred between the basal plate and

capitulum. Disengagement of the tail from the head was

accompanied by plasma membrane, and both stumps were sealed

(Figure 4B–4D).

Table 1. Fertility rates among the mutant mice.

Genotype +/2 2/2

Male Fertility (no. of fertile males/no. of males) 10/10 0/10

Litter size (avg. no. of newborn pups) 6.961.8 0

Female Fertility (no. of fertile females/no.of females) 10/10 10/10

Litter size (avg. no. of newborn pups) 6.460.3 6.560.5

Values are means6SEM.
doi:10.1371/journal.pgen.1000712.t001

Figure 2. Histological analysis and TUNEL staining of testicular sections of mutant testes. Hematoxylin- and eosin-stained cross-sections
of heterozygous (A) or homozygous mutant (B) testes from adult mice are shown. Greek numerals indicate the stages of seminiferous tubules, as
defined by Russell et al. [18]. Morphologically normal spermatogenesis rarely occurred in the mutant testes. Arrowheads indicate a few germ cells
located irregularly at the luminal region of the mutant seminiferous tubules. TUNEL staining of cross-sections of heterozygous (C) or homozygous
mutant (D) testes from adult mice are shown. Apoptotic signals were rarely observed in the heterozygous and homozygous mutant testes.
Bar = 50 mm.
doi:10.1371/journal.pgen.1000712.g002
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Figure 3. Electron microscopic observation of morphology for sperm maturation in testis and epididymis. The head-tail junction in
testicular sperm of wild-type (A) and OAZ-t null mutant (B) is shown. The sperm tail in the homozygous OAZ-t mutant epididymis (C,D) was
improperly arranged at the head tail junction. Arrows indicate the abnormal head-tail jounction. Bar = 1.0 mm (A–D).
doi:10.1371/journal.pgen.1000712.g003

Figure 4. Morphology of mature sperm in the cauda epididymis. The image in (A) shows the neck region of a sperm cell from a wild-type
mouse. In the implantation fossa, several typical components of the connection between head and tail can be identified: the basal plate (BP), the
capitulum (C), and striated columns (Sc). NE: nuclear envelope, PM: plasma membrane. The image in (B) shows the neck region of a separated head
obtained from a mutant mouse. The basal plate (BP) is apparent at the outer nuclear membrane, but the remaining connecting components (i.e., the
capitulum and striated columns) are absent. The image in (C) shows the distal end of the separated tail. Note that the capitulum (C) and striated
columns (Sc) are present. Bar = 0.5 mm. (D) Schematic presentation of mature sperm in OAZ-t null mutant.
doi:10.1371/journal.pgen.1000712.g004
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Heads and tails of sperm were active
Although similar numbers of sperm were recovered from the

cauda epididymides of the homozygous and heterozygous

mutants, almost all of the sperm heads from the homozygous null

mice were detached from tails during incubation in culture

medium (Figure 5). Meanwhile, the headless tails showed

surprisingly normal energetic swimming ability (Videos S1 and

S2). They maintained their swimming ability even after 15 h of

incubation. The movement of the separated tails looks normal,

although no sign of hyperactivation is evident. We also examined

the viability of the tailless sperm heads by staining with propidium

iodide (PI). The heads could be considered as maintaining

membrane integrity because they were resistant to PI staining

(Table 2). It is well known that sperm have no fertilizing ability

upon ejaculation, undergoing physiological (capacitation) and

morphological change (acrosome reaction) before acquiring the

ability to fuse with eggs [23]. Acrosome reaction was known to be

artificially induced by a treatment of sperm with calcium

ionophore A23187. Therefore, we examined whether or not the

tailless heads which were found to be ‘‘alive’’ could respond to the

ionophore and undergo induced acrosome reaction. As shown in

Table 2, these tailless sperm heads showed no response to the

ionophore and acrosome reaction did not take place. The role of

OAZ-t in acrosome reaction is not clear at present. However, if we

recall research indicating the existence of acrosome reaction-

related molecules such as AKAPs [24,25] and CatSpers [26] in

tails, it is possible to assume that the induction of acrosome

reaction in the head requires signals from tails [27].

Sperm of OAZ-t mutant mice can produce viable
embryos

The homozygous mutant sperm were not able to fertilize eggs

by in vitro fertilization (IVF) assays (data not shown). Therefore,

we injected sperm heads derived from heterozygous and

homozygous OAZ-t mutant mice into cytoplasm of unfertilized

eggs (ICSI). Twenty-two and fifteen two-cell-stage embryos were

obtained from the heterozygous and homozygous OAZ-t mutant

sperm, respectively. They were transferred to the oviducts of

pseudopregnant females and three healthy pups were sired by each

genotype. Thus the infertile nature of OAZ-t null sperm is not

derived from the defects in the quality of the head itself.

Discussion

Previous study showed that the polyamine concentration in the

germ cells increased after meiotic division, whereas the level of

ODC activity declined [28,29]. It has been proposed that Sertoli

cells provide polyamines to germ cells [30]. OAZ-t plays to

regulation of polyamine concentration in spermiogenesis instead of

OAZ1 and 2. OAZ1 binds to ODC with about a three-fold higher

potency than OAZ2 [31]. OAZ1 accelerates proteasomal ODC

degradation, whereas OAZ2 does not [31]. OAZ1, OAZ2, and

OAZ3/OAZ-t indeed differ in their effect on ODC activity in

vitro or in bacteria [4,16,32,33]. The concentrations of polyamines

in testis and sperm were not affected by the disruption of OAZ-t.

Since the activity of ODC was not regulated only by OAZ-t but by

other regulatory proteins such as OAZ inhibitor (AZI) [33], it was

assumed that the polyamines amount was kept normal by other

factors. OAZ-t was dispensable in regulation of total cellular

polyamine concentration. A previous study showed that exogenous

primary amines induced head-tail dissociation as a result of the

separation of the inner and outer nuclear envelope membranes

adjacent to the tail basal plates [21]. These results indicated that

the concentration of primary amines affected construction at the

head2tail junction of sperm. Because polyamines are alkanes and

include primary amines, the segregation of sperm heads and tails

may be caused by a change in the local concentration of

polyamines.

The orthologue of the OAZ-t gene is reported in human. One

team investigated the relationship between OAZ-t polymorphism

and male infertility. The researchers found one Pro164Ser

mutation in one of the azoospermic patients but it is not clear if

this substitution affects OAZ-t function. The researchers did not

claim an association of OAZ-t polymorphism to human male

infertility [34]. In previous studies, decaudated tails and decapi-

Figure 5. Characteristics of OAZ-t-null sperm. Epididymal sperm were cultured in TYH medium for 1 h. The OAZ-t-null heads were easily
separated and aggregated. The nuclei were stained with PI after PFA fixation. Analysis of OAZ-t-null sperm by optical microscopy.
doi:10.1371/journal.pgen.1000712.g005

Table 2. Acrosome reaction.

Genotype 1 hour 3 hours 6 hours Calcium Ionophore* Living sperm**(%)

+/+ 39.763.2 48.862.1 63.0613.7 95.362.5 60.6660.35

+/2 30.065.3 39.762.1 50.067.5 81.363.8 60.8760.67

2/2 11.360.6 28.362.5 33.765.7 34.363.8 61.5560.95

Values are means6SD; n = 3 assays.
*Calcium ionophore A23187 was added to the medium after 3 hours.
**Propidium iodide-negative sperm was measured by flow cytometer after 6 hours.
doi:10.1371/journal.pgen.1000712.t002
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tated heads lacking the implantation fossa and basal plate at the

caudal pole of the nucleus were observed in infertile patients

[35,36]. This phenotype is consistent with the null mutation of

OAZ-t in mice. OAZ-t may thus be one of the genes responsible

for decaudated tails and decapitated heads in human sperm,

although the neckpieces of human and mouse sperm are not

identical. Our OAZ-t-disrupted mouse line may offer insight into

the mechanism of spermatogenesis.

Materials and Methods

Ethics statement
All animal experiments conformed to the Guide for the Care

and Use of Laboratory Animals and were approved by the

Institutional Committee of Laboratory Animal Experimentation

(Nagasaki International University, Nagasaki, and the Research

Institute for Microbial Diseases, Osaka). The mice were kept

under controlled temperature and lighting conditions throughout

the experiments and were provided with food and water ad libitum.

Construction of the targeting vector and the production
of OAZ-t targeting mice

The OAZ-t targeting construct was created by the amplification

of a homologous 4.0-kb 59-arm and 9.0-kb 39-arm using 129Sv

genomic DNA as the template. The primers used to amplify the

arms were designed to incorporate synthetic enzyme sites at both

ends. The amplified fragments were digested to create sticky ends

and the clone was sequentially ligated into the poly-linker cloning

sites on either side of the neomycin resistance gene in the targeting

vector backbone. The targeting vector contained the neomycin

resistance gene and a thymidine kinase gene, both under the

control of the PGK promoter. The vector plasmid was linearized

by NotI digestion prior to electroporation into W9.5 ES cells. Of

720 G418 gancyclovir-resistant clones screened, two were found to

have undergone homologous recombination correctly by Southern

blot analysis. The four targeted cell lines were injected into

C57BL/6J blastocysts, resulting in the birth of male chimeric

mice. Highly chimeric males were mated with C57BL/6J wild-

type females to generate F1 offspring, half of which were

heterozygous for the targeted allele. Of the two ES cell lines

injected, both lines produced a high percentage of chimeras that

entered the germline. Heterozygous F1 males were then crossed to

C57BL/6 females to obtain heterozygous F2 animals. The

heterozygous F2 animals were bred to produce homozygous

mutants and to check for Mendelian inheritance.

Breeding of the mice
The mice were bred and maintained in our laboratory animal

facilities and used in accordance with the guidelines for the care

and use of laboratory animals set forth by the Japanese Association

for Laboratory Animal Science. Genomic DNA was extracted

from the tails of the mice using standard procedures. Southern

blotting was conducted to determine the site of integration for the

gene trap sequence in the oaz-t locus and to genotype the mice. A

39 external probe was generated by PCR (primers 59-CAT-

GATGTCACTGACTCTTTCC-39 and 59-CAATGGAAGAT-

GGAAGAATATG-39) from mouse genomic DNA. Genomic

DNA samples (10 mg) were digested with SacI and electrophoresed

on 0.8% agarose gels. All hybridizations were performed using

standard protocols. The mice were genotyped by PCR using two

sets of primers (Figure 1C) as follows: one set of primers (59-

ATCTGGACGAAGAGCATCAGGGG-39 and 59-CCTCAGA-

AGAACTCGTCAAGAAG-39) to amplify the Neo gene and one

set of primers (59-TCAGGCCTTGGATCAAGGCAACCG-39

and 59- CATACTCCAGTGTTGCTGTCAAGC -39) for the

oaz-t gene. To examine the expression of oaz-t, northern blotting

was performed according to the manufacturer’s instructions using

PerfectHyb (Toyobo, Osaka, Japan) [4]. Western blotting was

performed according to a previously-described protocol [4].

Morphological observation of the testes and epididymal
sperm

For morphological observation, testes were fixed in Bouin’s

solution, embedded in paraffin, and sectioned at a thickness of

8 mm. Deparaffinized sections were stained with hematoxylin and

eosin. Sperm from the cauda epididymis were cultured in TYH

medium (119 mM NaCl, 4.8 mM KCl, 1.7 mM CaCl2, 1.2 mM

KH2PO4, 1.0 mM MgSO4, 25 mM NaHCO3, 5.6 mM glucose,

0.5 mM sodium pyruvate, and 4 mg/ml BSA) for 30 min, spotted

onto glass slides, and dried.

Electron microscopy
Testes and the caput, corpus, and cauda epididymis of wild-type

and mutant mice were fixed in fixative consisting of 4%

paraformaldehyde, 2% glutaraldehyde, 0.05 M HEPES-KOH

buffer (pH 7.4) and 0.02% CaCl2 for 2 h at room temperature.

Spermatozoa from the cauda epididymis were suspended in PBS

and centrifuged at 10006 g for 5 min. The pellets were fixed with

the same fixative as mentioned above. All fixed samples were post-

fixed with 1% reduced osmium for 1 h, dehydrated in a series of

graded ethanol solutions, and embedded in Epon. Thin sections

were stained with lead citrate and examined with a Hitachi H7650

electron microscope.

Analysis of the sperm
The status of the acrosome was evaluated by staining with

FITC–PNA (Sigma-Aldrich), which binds the outer acrosomal

membrane. Sperm samples were dried on glass slides and fixed

with 70% methanol at 220uC for 5 min after incubation in TYH

medium at 37uC in a humidified incubator containing 5% CO2/

95% air. A23187 (Sigma-Aldrich) was added at a final concen-

tration of 10 mM to induce the acrosome reaction [37].

Fluorescence-activated cell sorting (FACS) analysis was used to

monitor the activity of the sperm following PI staining. ICSI was

performed as described [38]. Briefly, sperm collected from the

epididymides of the mice were suspended in 12% polyvinylpyr-

rolidone (360 kDa; PVP) and decapitated with a Piezo pulse

(Prime Tech Ltd., Tokyo, Japan). The detached heads were then

introduced into the cytoplasm of unfertilized cumulus-free eggs.

After being incubated in kSOM for 24 h [39], the eggs were

transplanted at the two-cell stage to pseudopregnant females.

Statistical analysis
Differences between the experimental and control conditions

were compared using one-way analysis of variance with Fisher’s

protected least significant difference test. Significant differences

(P,0.01) are discussed here.

Supporting Information

Figure S1 Electron microscopic observation of the morphology

of wild-type epididymal sperm. Bar = 1 mm.

Found at: doi:10.1371/journal.pgen.1000712.s001 (1.36 MB TIF)

Table S1 Body weight, organs’ weights, and serum testosterone

levels of the male mice.

Found at: doi:10.1371/journal.pgen.1000712.s002 (0.03 MB

DOC)
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Table S2 Polyamine contents in testis and epididymis.

Found at: doi:10.1371/journal.pgen.1000712.s003 (0.04 MB

DOC)

Video S1 Motility of the OAZ-t +/2 sperm in TYH medium.

Sperm were collected from the cauda epididymides, placed in

chamber slides, and observed in real time by light microscopy after

5 h. The OAZ-t +/2 sperm exhibited normal motility.

Found at: doi:10.1371/journal.pgen.1000712.s004 (0.17 MB

MOV)

Video S2 Motility of the OAZ-t null sperm in TYH medium.

The OAZ-t null sperm were separated easily into heads and

flagella, and the headless sperm swam mightily.

Found at: doi:10.1371/journal.pgen.1000712.s005 (0.23 MB

MOV)
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