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Abstract
Stratification by age at onset has been useful for genetic studies across all of medicine. For the past
20 years, the National Institute of Mental Health has been systematically recruiting patients with
onset of schizophrenia before age 13 years. Examination of familial transmission of known candidate
risk genes was carried out, and a 10% rate of cytogenetic abnormalities was found. Most recently,
high-density, array-based scans for submicroscopic rare copy number variations (CNVs) have
suggested that this kind of genetic variation occurs more frequently than expected by chance in
childhood-onset schizophrenia (COS) and at a higher rate than observed in adult-onset disorder.
Several CNVs and cytogenetic abnormalities associated with COS are also seen in autism and mental
retardation. Populations with COS may have more salient genetic influence than adult-onset cases.
The relationship of rare CNVs to prepsychotic development is being studied further.

Introduction
Schizophrenia is a severe, debilitating brain disorder characterized by hallucinations,
delusions, flat and/or inappropriate affect, and cognitive impairment. Worldwide prevalence
shows a lifetime risk of approximately 1%. Age at onset typically peaks in late adolescence
through early adulthood, with slightly earlier age at onset seen in males. Although
schizophrenia is not a childhood disorder per se, onset does occur rarely between 6 and 12
years of age. Clinically, childhood-onset schizophrenia (COS) has a severe, progressive,
nonepisodic course with poorer premorbid functioning and higher incidence of prepsychotic
developmental abnormalities than the more typical adult-onset form of the disorder (AOS).
We have established the phenotypic and neurobiologic continuity between COS and AOS
[1–3]. Given the rarity of COS patients and therefore the lack of good population estimates,
the true familial risk is not known.

The strategy of identifying a subset of rare, extreme early-onset cases of common, complex
disorders is not new to the field of medical genetics. Studies of breast cancer [4], type 2 diabetes
[5], and Alzheimer's disease [6] provide clear examples in which ascertainment of early-onset
cases has facilitated identification of causal genetic variants. Given the success of stratification
by age at onset, the study of this rare form of schizophrenia was planned with the hypothesis
that such a sample would be unusually informative for genetic studies. Over the past 20 years,
our research team in the child psychiatry branch of the National Institute of Mental Health has
screened more than 3000 charts, conducted in-person screenings of more than 300 children
and adolescents, and to date has enrolled 105 patients meeting the criteria of onset of
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schizophrenia by age 12 years, but only after 1 to 3 weeks of careful inpatient, medication-free
observation. Furthermore, follow-up approximately every 2 years has ensured the continuity
and reliability of the diagnosis.

Traditional linkage and association studies in schizophrenia—and most other psychiatric
disorders, for that matter—have been unsuccessful in attempting to identify unequivocal risk
variants. In spite of this, although the National Institute of Mental Health COS sample size is
small (and therefore relatively underpowered for detection of genetic associations), we were
able to replicate associations with several schizophrenia susceptibility genes implicated in adult
patient cohorts, including DAOA (previously G72) [7], NRG1 [8], DTNBP1 [9], and GAD1
[10]. These associations provided the first evidence that genetic associations in this population
may represent more highly penetrant effects of genes in COS as compared with AOS.

Cytogenetic Abnormalities and Copy Number Variations
The emerging technology of high-density microarrays has provided us with insight into
ascertainment of submicroscopic genomic changes that were previously unknown. Now that
we have the tools in place, these recent advances have led to an abundance of studies of healthy
and diseased populations, leading to the discovery that variation in which some large stretches
of DNA are present in fewer or more than the expected two copies (one inherited from each
parent) is common in all human populations. Copy number variations (CNVs) thus can
represent “normal” genetic variation or can contribute to risk for disease. The deluge of
information on the topic that has been published over the past 3 years is overwhelming. One
thing that is clear is that we are just scratching the surface of things yet to come. This source
of variation clearly contributes a great deal to any number of diseases, as well as to what makes
us uniquely human, as demonstrated through evolutionary and comparative genomic studies
[11••].

The observation that 10% of our COS sample showed cytogenetic abnormalities (Table 1)
motivated the study of additional undiscovered submicroscopic structural alterations.
Ascertainment of CNVs was accomplished by running three complementary array platforms:
Affymetrix 500K SNP (Santa Clara, CA), Agilent 185/244K array comparative genomic
hybridization (CGH) (Santa Clara, CA), and a custom bacterial artificial chromosome array
developed to target known regions containing segmental duplications.

The overarching theme that resulted from our study and others like it is that many rare CNVs
observed among patients but not in healthy controls are likely involved in disease etiology.
The resolution of current molecular platforms allows for detection of CNVs down to 100 kb
in size, which is about 30 times the resolution of standard cytogenetic techniques. Given the
high rate of large chromosomal anomalies in this cohort, we hypothesized that we would have
a similarly high rate of smaller chromosomal abnormalities. Although discovery of novel de
novo events was the initial aim of the study given that the overwhelming majority of our cases
appear to be sporadic as opposed to familial, we found that nearly all the CNVs that we observed
were inherited. The only exception to this was a 2.5-megabyte deletion on chromosome
2q31.2-31.3, which was not observed in either parent; however, the same deletion was observed
in the healthy sibling of the proband, indicating a unique situation likely involving germline
mosaicism in one of the parents. Other events were either inherited or of unknown origin
(because both parents were unavailable for study). With a few exceptions (four 22q11 deletions,
three sex chromosome anomalies, two 16p11.2 duplications, and two duplications in
MYT1L), each novel CNV was found in an individual patient. Nonetheless, after excluding
patients with previously known de novo chromosomal abnormalities, there was an overall
excess of novel CNVs that overlapped or disrupted known genes in patients when compared
with the nontransmitted parental “control” chromosomes (28% vs 13%; odds ratio, 2.6; P =
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0.03) [12••]. This observation confirmed the findings of an independent research group from
Seattle that reported that the overabundance of rare CNVs impacting known genes was even
more pronounced among younger-onset cases.

The observation that little to no overlap between CNVs is found in our samples as compared
with those found in other samples of schizophrenia patients does not immediately discount the
potential role of such variants in the etiology of schizophrenia. We acknowledge that some of
these CNVs likely will be benign, which is why further follow-up through resequencing and
association of common variants in large cohorts is warranted. Even for the disease-related
CNVs, given the extreme genetic complexity and heterogeneity of the disorder, none are likely
to be fully penetrant. Nonetheless, as converging evidence from multiple sources mounts, we
can begin to put the pieces of the puzzle together.

Highlights of Genomic Abnormalities in COS
22q11.21 deletions and sex chromosome anomalies

We previously observed four patients who harbored the well-documented hemizygous 3-
megabit 22q11.21 deletion, which is the most common spontaneous deletion in live births (~
1 in 4000) and is associated with a highly variable phenotype affecting several tissues and
organs, many of which are derived from neural crest cells [13]. The rate seen in the COS cohort
is significantly higher than that seen in the general population or in unselected AOS populations
[14,15••,16••]. The deleted region contains approximately 40 known genes. Attempts to find
associations between any particular gene in this region and schizophrenia were not fruitful
[17–19]. Contiguous gene effects are plausible [20,21]. Many variable pheno-types have been
associated with this deletion, including autism, mental retardation, cardiac anomalies, and
facial dysmorphologies [22•].

We have identified three additional patients who have unusual sex chromosome anomalies,
which is a significantly increased rate compared with the general population or samples of
AOS [23–25]. Although we hypothesized that these rare, atypical sex chromosome anomalies
may merely be indicators of more general “genomic instability,” screening for additional
submicroscopic structural variants in these patients did not reveal any additional chromosomal
events common to these individuals that could be implicated in the etiology of schizophrenia.
However, the one patient who was missing 35 megabits of one Xq arm had a 17-megabit
duplication of chromosome 16 that apparently attached to the missing X as a possible case of
“chromosomal rescue” [26]. The involvement of these X chromosome anomalies in the risk
for schizophrenia remains uncertain.

16p11.2 duplications
A CNV of particular interest was observed in two COS probands who harbor an identical 50
0-kb duplication at 16p11.2, a region recently implicated in autism, with deletions and
duplications estimated to account for approximately 1% of cases [27,28]. This region is flanked
by segmental duplications (stretches of DNA with near-identical sequence) that are more prone
to misalignment and rearrangement during meiosis [29]. Again, the rate of 2% seen in the COS
cohort is significantly greater than that seen in large, recently published case-control studies
of schizophrenia [15••,16••]. This region contains approximately 24 known genes; thus, sorting
out which genes are the most likely culprits in causing illness will be challenging. The first
COS proband with the 16p11.2 duplication had a history of pervasive developmental disorder
not otherwise specified prior to onset of schizophrenia at age 8 years and inherited the
duplication from a father with schizotypal personality disorder. The second proband inherited
the duplication from a healthy father but had second-degree paternal relatives who had a history
of psychosis, although we did not have their DNA for testing. Similar to the first proband with
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this duplication, this patient had poor social and motor development from a very young age,
before the onset of schizophrenia at age 10 years.

MYT1L—The other novel recurrent CNV that we observed in our cohort was a duplication
that disrupts the gene MYT1L on chromosome 2p25.3. Unlike the 22q11 deletions or the
16p11.2 duplications, this region is not flanked by segmental duplications, which may explain
why these CNVs do not have the same breakpoints. Vrijenhoek et al. [30] recently found two
additional schizophrenia patients with duplications that disrupted or spanned the MYT1L gene.
Although not much work has been done on this specific gene, it is a member of the myelin
transcription factor 1 family, which regulates proliferation and differentiation of
oligodendrocytes by regulating transcription activity in the central nervous system [31,32].
Furthermore, a patient with severe mental retardation and facial dysmorphologies was found
to have a de novo deletion that spanned the MYT1L gene on chromosome 20 [33].

NRXN1—We observed a novel, hemizygous 115-kb deletion in a single proband that affects
exons 22 to 23 in the α- and exons 4 to 5 of the β- transcript of NRXN1, a locus previously
implicated in schizophrenia, autism, and mental retardation. The observed deletion is in a
different region of the gene than had been previously reported in the literature in schizophrenia,
autism, or mental retardation. Neurexins are polymorphic cell surface proteins that are
expressed in neurons. Marshall et al. [34] identified a 79-kb (intronic α transcript) inherited
deletion in autism spectrum disorder (ASD). Szatmari et al. [35] identified two female siblings
with ASD who had apparently identical 300-kb CNV losses of chromosome 2p16 not detected
in either parent. Feng et al. [36] identified two putative missense structural variants in four
Caucasian patients with autism (all of whom were also mentally retarded) and not in 535 healthy
Caucasian controls. Kim et al. [37] identified two unrelated patients with ASD who had
chromosomal disruptions either within or near NRXN1. They also sequenced 57 individuals
with ASD and found seven novel variants within coding sequence: two were missense changes;
the other five did not change amino acids. One of the missense variants was seen in two
independent ASD families. Zahir et al. [38] described a child with developmental delay,
unusual autistic-like behaviors, multiple vertebral anomalies, and an unusual facial appearance
who was found to have a de novo 321-kb deletion involving the most 5′ portion of the
NRXN1 gene. Kirov et al. [39] reported the observation of an inherited 250-kb deletion in
affected siblings with schizophrenia. The deletion was transmitted by an asymptomatic mother.
Furthermore, a recent report by Rujescu et al. [40•] revealed that only deletions that impact
exons in NRXN1 are associated with schizophrenia.

Taken together, these studies provide strong evidence for the involvement of NRXN1 in early
neurodevelopmental difficulties, and whether particular genetic “lesions” confer specific risks
for specific disorders or more generalized risk remains to be determined.

SRGAP3—Another CNV that is of particular interest because it appears to track disease
within one of our multiple affected families (from a bipolar father to the COS proband and one
affected sibling) is a 120-kb duplication overlapping two exons in the SRGAP3 gene on
chromosome 3p25.3. This gene is predominantly and highly expressed in the adult and fetal
brain, with low expression detectable in kidney tissue and very low expression in other tissues.
In the adult brain, the SRGAP3 gene is expressed in all tested regions, including the cerebellum,
cortex, occipital pole, frontal and temporal lobe, amygdala, hippocampus, substantia nigra, and
thalamus. SRGAP3 plays a critical role in neural development and axonal guidance and was
reportedly disrupted by a translocation in a patient with severe mental retardation [41].
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CNVs and premorbid development
Beyond the anecdotal cases of various rare CNVs that likely play a role in the development of
schizophrenia in these patients, we found that overall, the strongest clinical association for
those who harbor a karyotypic and/or submicroscopic rare CNV was with a nonspecific
developmental delay (social, language, or motor) [42]. Cases with a “clean” premorbid
developmental history were least likely to harbor a novel CNV impacting a known gene,
whereas those with a history of pervasive developmental disorder were in between (Fig. 1).

One question that has arisen more often than not is how specific the association is with a
particular psychiatric diagnosis and a particular genetic defect. The recent paper by Mefford
and colleagues [43••] provides a great example for assessing this very issue. What is clear is
that these genomic syndromes have a wide range of phenotypes associated with them, from
autism to schizophrenia to epilepsy to cardiac problems and so forth. Thus, the challenge will
lie with the genetic counselors who are faced with the task of informing parents of the
implications of having a child with such genomic abnormalities.

Conclusions
The question of whether COS arises from genetic effects that are more penetrant than in AOS
remains difficult to answer with certainty, but mounting evidence appears to support this
hypothesis. The overabundance of specific genetic abnormalities compared with either AOS
cases (Table 2) or the general population is compelling.

Although this is a relatively new area of study, exploration of CNVs already has revealed clear
risk factors for schizophrenia, which, though rare, carry sizeable relative risks. If we allow
ourselves to assume that all the novel CNVs that impact genes discovered in the COS cohort
to date are pathogenic, then we can explain the etiology of almost 40% of our patients. This is
a huge leap from where we stood just 1 or 2 years ago. As whole genome sequencing becomes
a feasible reality, many more insights will be gained on the genomic architecture of affected
individuals. Still, a great deal of work needs to be done to determine the rates of these variations
in unselected populations, as well as in birth cohorts so that we can estimate the penetrance
and specificity of each lesion. Nonetheless, in-depth resequencing of novel candidate genes
and regions identified through CNV studies to identify other rare sequence variants that may
be related to disease is ongoing. Ultimately, identification of syndromic causes of
schizophrenia and related disorders will allow for better prenatal screening, as well as early
intervention and treatment strategies.
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Figure 1.
Percentage of patients with childhood-onset schizophrenia (COS) with rare copy number
variations and/or chromosomal anomalies by prepsychotic developmental pattern. Patients
with COS had varied developmental histories, and we assigned them to one of three basic
categories: pervasive developmental disorder (PDD, 23 met criteria for PDD not otherwise
specified, one for autism and one for Asperger's syndrome); developmental problems, for
anyone who had documented difficulties in the areas of speech and language, motor delays, or
social/peer relationship problems; and clean, for those who did not have any developmental
delays or problems before onset of schizophrenia.
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Table 1
Chromosomal abnormalities in 96 patients with childhood-onset schizophrenia

Chromosomal abnormality Inherited or de novo Discovery method

3-MB deletion 22q11 – FISH

3-MB deletion 22q11 De novo FISH

3-MB deletion 22q11 De novo FISH

3-MB deletion 22q11 De novo FISH

46,X,del(X)(q24-qter) De novo High-resolution karyotype

78% XO; 22% idicXq De novo High-resolution karyotype

Trisomy X – High-resolution karyotype

1;7 balanced translocation Inherited High-resolution karyotype

5q32-qter uniparental isodisomy De novo Affymetrix 500K SNP*

FISH—fluorescent in situ hybridization; MB—megabyte; SNP—single nucleotide polymorphism.

*
Santa Clara, CA.
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Table 2
Rates of specific genetic abnormalities in adult-onset schizophrenia compared with childhood-onset schizophrenia

AOS, n COS, n Odds ratio (95%
CI)

Fisher's exact test

Genetic abnormality

    22q11 deletion 21/7229 (0.3%) [15••,16••] 4/96 (4.2%) [14] 15.0 (5.3–42.6) P < 0.001

    45,X atypical/mosaic 11/6483 (0.17%) [25] 2/40 (5.0%) [23] 31.0 (7.5–126.7) P = 0.003

    47,XXX 22/8837 (0.25%) [24] 1/40 (2.5%) [23] 10.3 (1.7–61.7) P = 0.099

Recurrent CNVs

    16p11.2 duplication 5/7229 (0.07%) [15••,16••] 2/96 (2.1%) 30.7 (6.8–139.4) P = 0.003

    MYT1L duplication 2/806 (0.25%) [30] 2/96 (2.1%) 8.6 (1.49–49.1) P = 0.06

    NRXN1 deletion 1/2977 (0.03%) [40•] 1/96 (1.0%) 31.3 (3.3–302.3) P = 0.06

AOS—adult-onset schizophrenia; CNV—copy number variation; COS—childhood-onset schizophrenia.
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