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Abstract
Generalized Born (GB) models are widely used to study the electrostatic energetics of solute
molecules including proteins. Previous work demonstrates that GB models may produce satisfactory
solvation energies if accurate effective Born radii are computed for all atoms. Our previous study
showed that a GB model which reproduces the solvation energy may not necessarily be suitable for
ligand binding calculations. In this work, we studied binding energetics using the exact GB model,
in which Born radii are computed from the Poisson-Boltzmann (PB) equation. Our results showed
that accurate Born radii lead to very good agreement between GB and PB in electrostatic calculations
for ligand binding. However, recently developed GB models with high Born radii accuracy, when
used in large database screening, may suffer from time constraints which make accurate, large-scale
Born radii calculations impractical. We therefore present a multiscale GB approach in which atoms
are divided into two groups. For atoms in the first group, those few atoms which are most likely to
be critical to binding electrostatics, the Born radii are computed accurately at the sacrifice of speed.
We propose two alternative approaches for atoms in the second group. The Born radii of these atoms
may simply be computed by a fast GB method. Alternatively, the Born radii of these atoms may be
computed accurately in the free state, then a variational form of a fast GB method may be used to
compute the change in Born radii experienced by these atoms during binding. This strategy provides
an accuracy advantage while still being fast enough for use in the virtual screening of large databases.
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1 Introduction
The process of structure-based drug design would benefit greatly from the ability to compute
protein-ligand binding affinity accurately, but today’s computing power places sharp
restrictions on what can be done [1–3]. This compromise between accuracy and efficiency is
particularly evident in large database screening, in which the time available to consider any
one compound is brief. One substantial bottleneck is accounting for the electrostatic effects of
water. Water molecules can be modeled explicitly, but this is very computationally intensive
due to the many degrees of freedom available to the molecules enveloping the protein and
ligand. A less time-consuming approach is to treat water as a continuum dielectric medium,
referred to as implicit solvent models. There are two widely-used types of implicit solvent
models [5]. In the first type, the Poisson-Boltzmann (PB) equation is solved numerically by
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finite-difference, finite-element, or boundary-element methods [6–9]. The computational cost
of this physics-based approach still limits its practicality for large database screening. The
second type is the generalized Born (GB) model [10]. It is essentially an approximation of the
PB method and can typically be performed faster (see [11,12] for review). In developing GB
models, electrostatic properties calculated with the PB method are often used to calibrate the
empirical parameters introduced in GB models and also to test GB model accuracy. It was
found that with very accurate Born radii, GB models can closely reproduce the PB solvation
energies of macromolecules [13].

In recent years, a variety of models have been developed to calculate the effective Born radii.
The early models assumed the Coulomb field approximation [10,14–20], in which the electric
displacement (Di) induced by an atomic point charge is crudely estimated by a Coulomb field
( ). This is not true in general for heterogeneous dielectric media, such as a protein
surrounded by water [11]. Additional approximations have been introduced to improve the
computational efficiency with minor sacrifices in accuracy. One example is the method
proposed by Hawkins, Cramer, and Truhlar (which we denote the HCT GB model) [14]. All
these models yield some level of accuracy in Born radii calculations. Recently, empirical
corrections to the Coulomb field approximation were proposed [21–23], and very recently, an
integral expression referred to as GB-R6 was developed for Born radii calculations [24–26].
Analysis showed that GB-R6 methods give very accurate electrostatic solvation free energies
[27]. In summary, there are numerous models for Born radii calculations, with a wide range
of accuracy and efficiency. Given that certain atoms are likely to be more influential than others
in determining the electrostatic solvation energy, we propose a multiscale method in which the
Born radii of certain atoms are calculated using accurate GB models, while other atoms are
accounted for using more rapid approximations, in order to produce a better compromise
between accuracy and efficiency. In this work, to treat certain atoms accurately we used the
exact GB model, in which Born radii are derived from the PB equation (PGB model), despite
that it is unreasonably computationally demanding in practice. We use the PGB model to
represent the most accurate GB models.

The paper is organized as follows. The method section will first briefly review the GB and PB
methods and explain how the PB equation is used to derive exact Born radii, then will introduce
a variational form of the HCT GB model for substantially more efficient Born radii calculations.
Several criteria will be presented for validation of GB models using PB results as a reference.
The results section will describe our multiscale GB approach and validate various multiscale
models using the proposed criteria. Finally, the paper will conclude with a brief discussion of
the proposed models.

2 Methods
2.1 Brief review of the generalized Born model

GB models approximate the electrostatic component of the solvation energy (referred to as the
polarization energy and denoted Gpol) as follows [10]:

(1)

where the solvation energy is defined as the energy cost to transfer a solute molecule from a
low dielectric medium to a high dielectric medium. For Eq. 1, the low dielectric medium is a
homogeneous environment and has the same dielectric constant as that of the solute molecule,
denoted εp. The high dielectric medium is water, taken to have dielectric constant εw = 80. qi

Liu et al. Page 2

J Phys Chem B. Author manuscript; available in PMC 2010 September 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and qj are the charges of atoms i and j in the molecule, and rij is the distance between them.
N is the total number of solute atoms.

The first term on the right-hand side of Eq. 1 is the self-energy term in the polarization energy;
its accuracy depends on the accuracy of the effective Born radii. The effective Born radius of
atom i, αi, is a variable in GB models representing how deeply the atom is buried in the
molecule. The second term on the right hand side of Eq. 1 is the cross-energy term.

The fGB(rij) function is introduced to capture the distance-dependence of the damping effect
of water on the electrostatic interaction between atoms i and j. The most commonly-used form
of fGB(rij) was proposed by Still and colleagues [10]:

(2)

When two atoms are far apart, fGB(rij) approaches rij and the electrostatic interaction between
the two becomes Coulombic. When i = j (and therefore rij = 0), fGB(rij) becomes αi, the effective
Born radius of the atom, and the interaction energy becomes self-energy. When the distance
is in between, the fGB(rij) form is purely empirical.

2.2 Accurate Born radii derived from the Poisson-Boltzmann Method
The PB method is an implicit solvation approach in which water is treated as a continuum
dielectric medium and the PB equation is solved. If the ionic effect can be ignored, the PB
equation is reduced to the following Poisson equation:

(3)

where φ is the electric potential in a continuum of varying dielectric constant ε(r), and ρ(r) is
the charge density.

For certain geometries, the Poisson equation can be solved analytically, but for the more general
case of an arbitrarily-shaped solute surrounded by water, it can only be solved numerically.
Once the electrostatic potential is calculated, the total electrostatic energy of the system is given
by

(4)

For a set of point charges, the integration becomes a summation

(5)

Then, the electrostatic energy of solvation (Gpol(PB)) for transferring the solute from a
homogeneous environment (εo = εp) to an aqueous environment (εo = εw) is given by the
difference in Gelec:
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(6)

To derive the exact Born radius of atom i in a solute molecule, consider a molecule that has
the same geometry as the solute but with no point charges except a +1 charge at atom i [13].
The electrostatic solvation energy of the model molecule (Gpol,i) is then related to the Born
radius (αi) as follows [28,29]:

(7)

Therefore, αi(PB) can be calculated by

(8)

Here, the notation αi(PB) is used in order to distinguish it from the αi calculated from
approximate approaches such as GB. αi(PB) is accurate and therefore also referred to as the
perfect Born radius [13].

In the present work, DelPhi program [6] was used for the PB calculations. The VDW radii and
charge assignments were the same as in the GB calculations. The dielectric constants for solute
and environment were set to 4 and 80, respectively. The grid spacing was set to 0.33 Å. The
grid number was set so that the system occupies 90% of the grid volume. The default values
were used for all other control parameters in the program.

2.3 The HCT GB method for fast Born radii calculations
With the Coulomb field approximation, the Born radius of atom i (αi) can be calculated as

(9)

where ai is the radius of atom i and the integral is over the high dielectric media outside atom
i. The integral is often replaced with the pairwise summation in fast GB methods, simplifying
Eq. 9 to

(10)

where the summation is over each atom j that is not atom i. ℋ is the analytical function derived
by Hawkins, Cramer, and Truhlar [14], expressed as
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(11)

where

(12)

and

(13)

To compensate for the problem that the contribution of atom j is over-counted if it intersects
a third atom, the HCT GB model [14] introduced a scaling factor, Sj, to aj in the ℋ function:

(14)

The atom type-dependent scaling factors {Sj} were parameterized to fit with PB calculations.

Eq. 14 is atom-based and additive. The contribution of each atom to αi can be calculated
individually. When the ligand and the receptor form a complex, Eq. 14 can be generalized and
the Born radius of atom i after binding is given by

(15)

where the last term is the contribution from each atom k of the binding partner (e.g., k refers
to ligand atoms if i is a protein atom and vice versa).

2.4 A variational form of the HCT GB method is useful in accurate Born radii calculations
Although computationally efficient, the HCT GB method does not provide satisfactory
accuracy for Born radii calculations [29,30]. We therefore propose a variational form of the
HCT method, denoted as the ΔHCT method, which provides an acceptable approximation of
the change in inverse Born radii experienced by atoms during binding, as long as the change
is small. In our ΔHCT method, the effect of the binding partner as a pure dielectric medium
appears as the change in 1/α, which is

(16)
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Consequently, the effective Born radius of an atom in the bound state can be obtained by
subtracting the contribution due to the binding process from its value in the free state:

(17)

For situations in which the Born radii of atoms in the free state are already known, this method
is more efficient. Unlike the original HCT method, the ΔHCT method only sums the
contributions from atoms of binding partners. Additionally, if accurate free-state Born radii
are available, the ΔHCT method can be much more accurate than the HCT method (see the
Results section).

2.5 Validating GB models
To evaluate our GB calculations, we considered their ability to accurately reproduce several
electrostatic quantities, using PB as a reference. The first of these was the electrostatic solvation
energy of a single solute molecule, namely, the energy cost for moving the protein (Gpol, R) or
the ligand (Gpol, L) from a homogeneous environment (εo = εp) to an aqueous environment
(εo = εw). Previous studies have shown that Gpol, L calculated with most GB models agrees
well with the corresponding PB value (e.g., [29]). Therefore, we focused on Gpol, R in the
present work.

Though the majority of work in developing Born radii models uses accurate solvation energy
as the sole criterion for validation, the sufficiency of this criterion for GB models has been
questioned [17,31,32]. Our previous systematic study showed that a model that successfully
reproduces the solvation energy is not necessarily suitable for ligand binding calculations
[29]. We therefore used additional quantities for evaluation. The second quantity used for
evaluation was the electrostatic component of the binding energy, GPOL. GPOL was calculated
from the following formula [29,33]:

(18)

where Gpol, LR is the electrostatic solvation energy of the ligand-receptor complex (LR).
GCoulomb is the Coulomb interaction between the ligand and the receptor in the homogeneous
environment (εo = εp). Detailed explanations are given in [29].

Lastly, we considered the ability of our GB calculations to reproduce the components of
GPOL. GPOL can be decomposed by rewriting Eq. 18 as [19,29]

(19)

where GR desolv and GL desolv are the partial desolvation energies of the receptor and the ligand,
respectively. Gscreened es is the screened electrostatic interaction energy between the receptor
and the ligand. Our previous study [29] suggested that GR desolv is the most challenging variable
to match between GB and PB. Once GR desolv and GPOL of the GB calculations agreed with
the corresponding PB results, the rest of the components in GPOL generally agreed well. We
therefore focused only on GR desolv among these three components.

In summary, we evaluated the accuracy of our GB calculations by comparing their values for
Gpol, R, GPOL and GR desolv with PB-derived values. Details of how to calculate these three
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variables using both methods are described in [29]. The differences between our GB models’
predicted values and PB values were averaged over the testing set using the root mean square
deviation (rmsd):

(20)

where yi and xi are the values of Gpol,R, GPOL or GR desolv calculated with the GB and PB
approaches for the i-th protein-ligand complex, respectively. N is the total number of complexes
in the testing set, which was 32.

2.6 Preparation of the test set
The test set consisted of the 32 protein-ligand complexes from our previous work [29], listed
in Table 1. The coordinates of the complexes were obtained from the Protein Data Bank [34].
Water molecules were removed. The AMBER all-atom force field parameters were used in the
present study [35]. The protein atoms were assigned with AMBER all-atom charges and the
ligand atoms were assigned with Gasteiger charges, both using SYBYL software (Tripos, Inc.).
The complexes being selected cover a wide variety of protein families and ligand types.
Moreover, the electrostatic component of the binding energies (GPOL) calculated with the PB
method spans a wide range, from −10 kcal/mol to +35 kcal/mol.

3 Results
3.1 Perfect GB method offers accurate binding electrostatics

As shown previously by Onufriev et al., the perfect GB model (see Methods) gives solvation
energies of macromolecules [13] which agree very well with values computed directly from
the PB equation. It was unknown whether accurate Born radii would also allow the GB model
to closely reproduce PB-derived ligand binding energies, which is a more stringent case. To
address this, we computed perfect Born radii (see Eq. 8) for all the atoms in our 32 test
complexes and calculated the electrostatic binding energies (GPOL), the receptor partial
desolvation energies (GR desolv), and the receptor full solvation energies (Gpol,R). The 32
complexes used are listed in Table 1.

Figure 1 compares GPOL, GR desolv, and Gpol,R calculated with this perfect-radii GB model
versus the values calculated with the PB method. GPOL rmsd was 2.84 kcal/mol (panel a).
GR desolv rmsd was 1.57 kcal/mol (panel b). The Gpol;R values also agreed very well with the
PB method (rmsd = 16.07 kcal/mol, panel c), which is consistent with the findings of Onufriev
et al. [13]. We therefore conclude that, if the Born radii are calculated very accurately, the GB
approach is adequate for studying the electrostatics of ligand binding.

3.2 The multiscale GB method improves efficiency
It is currently impractical to compute highly accurate Born radii for all of the atoms when doing
large virtual database screening. Therefore, we sought to improve the tradeoff between
accuracy and efficiency in the GB approximation by selecting only those atoms near the ligand
for accurate radii calculation. Those atoms near the ligand we refer to as primary atoms; the
distant atoms we call secondary atoms. In order to demonstrate this multiscale strategy, we
computed the radii of primary atoms in both free and bound states perfectly (PGB method, Eq.
8) to avoid being restricted to a specific high-accuracy GB model and thus losing generality.
In practice, one would not use the PGB method in database screening as it is more
computationally expensive than the PB method and offers no accuracy advantage over it. For

Liu et al. Page 7

J Phys Chem B. Author manuscript; available in PMC 2010 September 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



secondary atoms, we used the very rapid HCT method [14]. For this PGB/HCT model (see
Table 2), a cutoff radius of 5 Å provides satisfactory results with a GPOL rmsd value of 3.09
kcal/mol and GR desolv rmsd 4.02 kcal/mol. For this cutoff, the radii of only a small fraction of
the atoms were derived from PB, 6.8% on average. For the sake of comparison, we also tested
the GB model using HCT Born radii for all atoms. GR desolv rmsd was 5.32 kcal/mol and
GR desolv rmsd was 7.72 kcal/mol (Table 2, last row). Accurately computing the Born radii of
only a small percent of the atoms allows the GB model to produce acceptable binding energies
and GR desolv values.

It was unknown whether or not the small Born radii changes experienced by secondary atoms
affect the results enough to warrant computing the Born radii of bound state secondary atoms
after having already computed the Born radii of free state secondary atoms. To investigate this,
we used perfect Born radii for primary atoms as above, but we used the free state perfect Born
radii in both the free and bound-state secondary atoms (denoted PGB/staticPGB in Table 2),
essentially disregarding any change in the Born radii of secondary atoms. While not as accurate
as the perfect GB model, this model was close with a GPOL rmsd of 3.11 kcal/mol versus PB-
derived values, and a GR desolv rmsd of 1.97 kcal/mol versus PB-derived values. Accordingly,
we modified the above PGB/HCT model so that the bound state secondary atoms reused their
free state Born radii, instead of updating them. This PGB/staticHCT model (see Table 2) gave
results which are nearly identical to PGB/HCT results in accuracy. The upper panels of Figure
2 plots the deviation between the results given by this model and PB-derived values in terms
of rmsd for various choices of cutoff radius. Panel a gives the GPOL rmsd values and panel b
gives the GR desolv rmsd values. It is notable that a short cutoff of 3 Å yielded a GPOL rmsd of
9.77 kcal/mol and a GR desolv rmsd of 7.57 kcal/mol, which were much worse than the rmsd
values yielded from applying the crude HCT GB model to every atom (last row of Table 2).
Despite that the Born radii were calculated more accurately for primary atoms than secondary
atoms, the poor accuracy in binding energetic calculations suggests the importance of the cutoff
distance in primary atom selection. An unpublished plot of PGB/HCT rmsd values for various
cutoff distances is nearly identical to Figure 2. Again, the 5 Å cutoff offers an effective
compromise with a GR desolv rmsd of 2.88 kcal/mol and GR desolv rmsd was 3.98 kcal/mol,
insignificantly different from the PGB/HCT rmsd values.

In summary, accurately computing the Born radii of only a small proportion of the atoms in
our test complexes gave adequate accuracy. The rapid HCT method was adequate for secondary
atoms, and the Born radii change of secondary atoms could be ignored without introducing
substantial inaccuracies. Consequently, when speed is desired, we suggest the following
strategy: a high accuracy GB model (such as GBR6 [25,27] or GBMV [21,22]) is used for
primary atoms in both the free and bound states, and a rapid method such as HCT is used for
secondary atoms in the free state (ignoring the Born radii change of bound state secondary
atoms).

3.3 The ΔHCT method is useful in the multiscale GB method
Some applications may require higher accuracy than was achieved using HCT for secondary
atoms as above, so we also tested the multiscale GB method using a more accurate approach
for secondary atoms. As before, the Born radii of primary atoms were computed using perfect
GB, in order to generally represent high accuracy GB models. However this time, the Born
radii of secondary atoms in the free state were computed using perfect GB, while those of
bound state secondary atoms were computed using ΔHCT. Our ΔHCT is a modification of the
original HCT formalism [14] which computes the change in effective Born radius in order to
overlay these changes on the accurate Born radii computed for atoms in the free state (see
Section 2.4). In screening a large database of ligands against one protein, the accurate Born
radii computed for secondary atoms in the free state would be a one-time calculation to be
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reused in each docking, making this approach computationally practical. See PGB/PGB/ΔHCT
in Table 2 for the accuracy of this method with a cutoff of 5 Å.

The lower panels of Figure 2 plot the inaccuracy of the PGB/PGB/ΔHCT approach for various
choices of cutoff distance in terms of rmsd versus PB-derived values. Panel c gives the
GPOL rmsd values and the panel d gives the GR desolv rmsd values. In this case, a cutoff distance
of 4.5 Å from the ligand for primary atoms offers a nice tradeoff between number of primary
atoms and accuracy. For this cutoff, 5.7% of the atoms in a complex are primary, on average.
The GPOL rmsd is 2.81 kcal/mol versus PB-derived values, comparable to the PGB/staticHCT
model, while the GR desolv rmsd is 1.96 kcal/mol versus PB-derived values, a great
improvement over the PGB/staticHCT model. As mentioned previously, GR desolv tends to be
the most difficult component to match between GB and PB models, and accurate GPOL and
GR desolv values tend to generalize to the accuracy of GB model as a whole [29]. One might
expect, given that PGB/HCT and PGB/staticHCT were nearly identical in accuracy, that the
change in the Born radius of secondary atoms can simply be disregarded. However, for every
choice of cutoff distance tested, using ΔHCT to estimate this change offered at least a slight
GPOL and GR desolv accuracy advantage over disregarding the change. Moreover, since the
ΔHCT method is much faster than highly accurate GB models, PGB/PGB/ΔHCT is
advantageous over PGB/staticPGB.

4 Discussion
GB models face a compromise between accuracy and efficiency. An important part of this
compromise is in their method of approximating the effective Born radius of an atom. GB
models using perfect Born radii give values for the electrostatic binding energy and its
components which show minimal difference from those given by the Poisson-Boltzmann
method, suggesting the performance of accurate GB models such as GBR6 [25,27] and GBMV
[21,22] would be close to the performance of the PB method on ligand binding. Calculating
perfect Born radii is highly computationally demanding (much slower than the PB method
itself) and we therefore do not recommend it be used for primary atoms in practice. Instead,
we suggest GBR6 or GBMV for primary atoms, since they have been shown to have very good
accuracy.

Although we used HCT to calculate the Born radii of secondary atoms in this work, we expect
any fast GB method to be suitable. For example, the GB method proposed by Onufriev et al.
[36] is also a good choice since it is considerably more accurate than HCT while almost as fast.
We also propose an alternative approach for dealing with secondary atoms. In this alternative,
a high-accuracy GB model (such as GBR6 or GBMV) is used to compute the effective Born
radii of secondary atoms, while in each bound state for the same protein, these radii are reused
with an additional adjustment by ΔHCT (see Methods) to estimate the change in their effective
Born radii during binding. In screening a large database of ligands against one protein, this
approach is computationally practical since the free state Born radii may be computed only
once and reused. Additionally, this second approach was found to be accurate, an advantage
which is especially manifest in evaluating the difficult GR desolv component.

It would be ideal to also compare the results of the perfect-radii GB model or the multiscale
GB approaches with experimental measurements. Unfortunately the measured binding
affinities lump many complex interactions such as electrostatic interactions, van der Waals
interactions, hydrophobic interactions and conformational entropic effect. Therefore, true
values of GPOL, GR desolv, and Gpol,R are unavailable. However, we may use the error of the
calculated binding energies with MM/PBSA relative to experimental affinities as a crude
gauge. MM/PBSA combines PB with additional calculations of nonpolar contributions. The
rigorous MM/PBSA calculations with careful protonation assignments done by Wittayanarakul
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et al. on HIV-1 pro-tease inhibitors [37] showed an rmsd value of around 6 kcal/mol. Other
MM/PBSA studies [38] had an rmsd of about 10 kcal/mol [37]. Thus, the rmsd error of the
perfect-radii GB model (less than 3 kcal/mol) and errors of the multiscale GB approaches (about
3 kcal/mol) are acceptable.

It would be interesting to compare the computational efficiency with some of the existing
accurate GB methods. The GBMV method in particular stands out as providing high accuracy
at a moderate computational cost. The work of Feig et al. [5] found that single calculations of
electrostatic solvation energies with GBMV require only about five times as much time as the
HCT method. Notice that the computational time for GB methods is primarily spent on Born
radii calculations and energy summations. The energy summation step is identical for different
GB methods, which takes about half of the computational time for Born radii derivation with
the HCT method according to our estimate. Therefore, the time for Born radii calculations with
GBMV is about seven folds of the time for the HCT method. Based on these estimations, using
the multiscale GB approach with GBMV for primary atoms and HCT for secondary atoms is
about four to six times faster on Born radii calculations than using GBMV for all protein atoms
without sacrificing much accuracy. The efficiency improvement would be much more
prominent if GBR6 and other accurate GB models are used. For example, the rigorous
numerical volume integration GB method [17,19] is about 50 times slower than the HCT
method, and requires careful treatment of the low-dielectric crevices between protein atoms
[36]. The efficiency improvement of the multiscale method over high accuracy GB methods
is useful for large database screening. Future work in prioritizing the calculation of accurate
Born radii in the multiscale GB approach may produce additional efficiency improvements.
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Figure 1.
Electrostatic quantities computed via the perfect GB method versus values derived directly
from PB. Panel a compares the electrostatic binding energies given by these two methods;
panel b, the receptor partial desolvation energy; panel c, the protein electrostatic solvation
energy.
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Figure 2.
Accuracy of suggested models versus cutoff distance for primary atoms. Black dots give the
accuracy of the PGB/staticHCT model in reproducing PB-derived GPOL values (panel a) and
GR desolv values (panel b) in terms of rmsd, also accuracy of the PGB/PGB/ΔHCT model in
reproducing PB-derived GPOL values (panel c) and GR desolv values (panel d). The distance
cutoff is the maximum distance an atom may be from the ligand before it is defined as a
secondary atom rather than a primary atom. Red stars give the average percentage of complex
atoms considered primary for each distance cutoff.
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Table 1
Complexes studied in the present work
The testing set used in the present work for validating our GB calculations. The binding energies, GPOL, as computed
using the PB method, are listed for each complex, as well as the resolution of each structure. See the text for detail.

Complex GPOL by PB in kcal/mol Resolution in Å Protein/Ligand

3ptb-benz −1.58 1.7 trypsin/benzamidine
4dfr-mtx −4.46 1.7 dihydrofolate reductase/methotrexate
2ifb-PLM 1.70 2.0 fatty acid binding protein/C15COOH
6abp-ara 12.70 1.67 L-arabinose binding protein M108L/L-arabinose
1rnt-2gp 15.88 1.9 ribonuclease T1/2-GMP
1fkf-fk5 3.80 1.7 FK506 binding protein/FK506
1drf-fol 0.80 2.0 dihydrofolate reductase/folate
1hsl-his −0.18 1.89 histidine binding protein/Histidine
1aaq-psi 18.60 2.5 HIV-1 protease/hydroxyethylene isostere
1ppc-nap 1.93 1.8 trypsin/NAPAP
1tng-amc −2.64 1.8 trypsin/aminomethylcyclohexane
1pgp-6pg 17.85 2.5 6-PGDH/6-phosphogluconic acid
1pph-tap 1.27 1.9 trypsin/3-TAPAP
7abp-fca 14.47 1.67 l-arabinose binding protein M108L/D-fucose
2gbp-glc 12.04 2.9 galactose binding protein/galactose
1nsd-dan 20.34 1.80 neuraminidase/DANA
1rbp-rtl 5.33 2.00 retinol-binding protein/retinol
1ajv-nmb 12.65 2.0 HIV-1 protease/AHA006
1a9t-two 34.96 2.0 PNP/9-deazainosine
1dwd-mid 7.36 3.0 thrombin/NAPAP
1ets-pap 11.61 2.3 thrombin/NAPAP
1abe-ara 11.35 1.7 L-arabinose binding protein/L-arabinose
1mdq-mal 19.08 1.9 maltose binding protein A301GS/maltose
1l83-bnz 0.12 1.7 lysozyme/benzene
4ts1-tyr 5.66 2.5 tyrosyl-transfer RNA synthetase/tyrosine
2mcp-PC −0.12 3.1 immunoglobulin/phosphocholine
1ulb-gun 2.75 2.75 PNP/guanine
3fx2-fmn 26.24 1.9 flavodoxin/FMN
8atc-pal 1.36 2.5 aspartate carbamoyltransferase/PALA
1nnb-dan 19.32 2.80 neuraminidase/DANA
2pk4-aca −9.47 2.25 plasminogen kringle 4/aminocaproic acid
7tim-pgh 6.12 1.9 trisephosphate isomerase/phosphoglycolohydroxamate
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Table 2
Summary of selected models
Accuracy of selected GB calculations in reproducing PB derived values for GPOL and GR desolv. The last column lists,
for each calculation, the methods used to determine Born radii for primary and secondary atoms. If the method used
to determine Born radii for secondary atoms in the free state differs from the method used to compute their Born radii
in the bound state, both cases are listed.

Model (cutoff distance) GPOLrmsd in kcal/mol GR desolvrmsd in kcal/mol Born radii method

PGB 2.84 1.57 PB for all atoms
PGB/PGB/ΔHCT (5 Å) 2.96 1.75 PB for primary atoms, PB for secondary atoms in

free state, ΔHCT for bound state secondary atoms
PGB/staticPGB (5 Å) 3.11 1.97 PB for primary atoms, PB for secondary atoms in

free state, secondary atom Born radii change
ignored

PGB/staticHCT (5 Å) 2.88 3.98 PB for primary atoms, HCT for secondary atoms
in free state, secondary atom Born radii change
ignored

PGB/HCT (5 Å) 3.09 4.02 PB for primary atoms, HCT for secondary atoms
HCT 5.32 7.72 HCT for all atoms
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