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Abstract
Nrf2:INrf2(Keap1) are cellular sensors of chemical and radiation induced oxidative and electrophilic
stress. Nrf2 is a nuclear transcription factor that controls the expression and coordinated induction
of a battery of defensive genes encoding detoxifying enzymes and antioxidant proteins. This is a
mechanism of critical importance for cellular protection and cell survival. Nrf2 is retained in the
cytoplasm by an inhibitor INrf2. INrf2 functions as an adapter for Cul3/Rbx1 mediated degradation
of Nrf2. In response to oxidative/electrophilic stress, Nrf2 is switched on and then off by distinct
early and delayed mechanisms. Oxidative/electrophilic modification of INrf2cysteine151 and/or
PKC phosphorylation of Nrf2serine40 results in the escape or release of Nrf2 from INrf2. Nrf2 is
stabilized and translocates to the nucleus, forms heterodimers with unknown proteins, and binds
antioxidant response element (ARE) that leads to coordinated activation of gene expression. It takes
less than fifteen minutes from the time of exposure to switch on nuclear import of Nrf2. This is
followed by activation of a delayed mechanism that controls switching off of Nrf2 activation of gene
expression. GSK3β phosphorylates Fyn at unknown threonine residue(s) leading to nuclear
localization of Fyn. Fyn phosphorylates Nrf2tyrosine568 resulting in nuclear export of Nrf2, binding
with INrf2 and degradation of Nrf2. The switching on and off of Nrf2 protect cells against free radical
damage, prevents apoptosis and promotes cell survival.

Introduction
Oxidative stress is induced by a vast range of factors including xenobiotics, drugs, heavy metals
and ionizing radiation. Oxidative stress leads to the generation of Reactive Oxygen Species
(ROS) and electrophiles. ROS and electrophiles generated can have a profound impact on
survival, growth development and evolution of all living organisms [1,2] ROS include both
free radicals, such as the superoxide anion and the hydroxyl radical, and oxidants such as
hydrogen peroxide [3]. ROS and electrophiles can cause diseases such as cancer,
cardiovascular complications, acute and chronic inflammation, and neurodegenerative diseases
[1]. Therefore, it is obvious that cells must constantly labor to control levels of ROS, preventing
them from accumulation.

Much of what we know about the mechanisms of protection against oxidative stress has come
from the study of prokaryotic cells [4,5]. Prokaryotic cells utilize transcription factors OxyR
and SoxRS to sense the redox state of the cell, and during oxidative stress these factors induce
the expression of nearly eighty defensive genes [5]. Eukaryotic cells have similar mechanisms
to protect against oxidative stress [Fig. 1; ref. 3,6–9]. Initial effect of oxidative/electrophilic
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stress leads to activation of a battery of defensive gene expression that leads to detoxification
of chemicals and ROS and prevention of free radical generation and cell survival [Fig. 1]. Of
these genes, some are enzymes such as NAD(P)H:quinine oxidoreductase 1 (NQO1),
NRH:quinone oxidoreductase 2 (NQO2), glutathione S-transferase Ya subunit (GST Ya
Subunit), heme oxygenase 1 (HO-1), and γ-glutamylcysteine synthetase (γ-GCS), also known
as glutamate cysteine ligase (GCL). Other genes have end products that regulate a wide variety
of cellular activities including signal transduction, proliferation, and immunologic defense
reactions. There is a wide variety of factors associated with the cellular response to oxidative
stress. For example, NF-E2 related factor 2 (Nrf2), heat shock response activator protein 1,
and NF-kappaB promote cell survival, where as activation of c-jun, N-terminal kinases (JNK),
p38 kinase and TP53 may lead to cell cycle arrest and apoptosis [10]. The Nrf2 pathway is
regarded as the most important in the cell to protect against oxidative stress. [3,6–9]. It is
noteworthy that accumulation of ROS and/or electrophiles leads to oxidative/electrophile
stress, membrane damage, DNA adducts formation and mutagenicity [Fig. 1]. These changes
lead to degeneration of tissues and premature aging, apoptotic cell death, cellular
transformation and cancer.

Antioxidant Response Element and Nrf2
Promoter analysis identified a cis-acting enhancer sequence designated as the antioxidant
response element (ARE) that controls the basal and inducible expression of antioxidant genes
in response to xenobiotics, antioxidants, heavy metals and UV light [11]. The ARE sequence
is responsive to a broad range of structurally diverse chemicals apart from β-nafthoflavone and
phenolic antioxidants [12]. Mutational analysis revealed GTGACA***GC to be the core
sequence of the ARE [11,13–14]. This core sequence is present in all Nrf2 downstream genes
that respond to antioxidants and xenobiotics [3,6–9]. Nrf2 binds to the ARE and regulates
ARE-mediated antioxidant enzyme genes expression and induction in response to a variety of
stimuli including antioxidants, xenobiotics, metals, and UV irradiation [6,15–21].

Nrf2 is ubiquitously expressed in a wide range of tissue and cell types [22–24] and belongs to
a subset of basic leucine zipper genes (bZIP) sharing a conserved structural domain designated
as a cap’n’collar domain which is highly conserved in Drosphila transcription factor CNC (Fig.
2; ref. 25]. The basic region, just upstream of the leucine zipper region, is responsible for DNA
binding [3] and the acidic region is required for transcriptional activation. ARE-mediated
transcriptional activation requires heterodimerization of Nrf2 with other bZIP proteins
including Jun (c-Jun, Jun-D, and Jun-B) and small Maf (MafG, MafK, MafF) proteins [18–
20,26–27].

Initial evidence demonstrating the role of Nrf2 in antioxidant-induction of detoxifying enzymes
came from studies on the role of Nrf2 in ARE-mediated regulation of NQO1 gene expression
[17]. Nrf2 was subsequently shown to be involved in the transcriptional activation of other
ARE-responsive genes such as GST Ya, γ-GCS, HO-1, antioxidants, proteasomes, and drug
transporters [3,6–9,28–33]. Overexpression of Nrf2 cDNA was shown to upregulate the
expression and induction of the NQO1 gene in response to antioxidants and xenobiotics [17].
In addition, Nrf2-null mice exhibited a marked decrease in the expression and induction of
NQO1, indicating that Nrf2 plays an essential role in the in vivo regulation of NQO1 in response
to oxidative stress [26]. The importance of this transcription factor in upregulating ARE-
mediated gene expression has been demonstrated by several in vivo and in vitro studies
[reviewed in ref. 3]. The results indicate that Nrf2 is an important activator of phase II
antioxidant genes [3,8].
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Negative Regulation of Nrf2 mediated by INrf2
A cytosolic inhibitor (INrf2), also known as Keap1 (Kelch-like ECH-associating protein 1),
of Nrf2 was identified and reported [Fig. 2; ref. 34–35]. INrf2, existing as a dimer [36], retains
Nrf2 in the cytoplasm. Analysis of the INrf2 amino acid sequence and domain structure-
function analyses have revealed that INrf2 has a BTB(broad complex, tramtrack, bric-a-brac)/
POZ (poxvirus, zinc finger) domain and a Kelch domain [34–35] also known as the DGR
domain (Double glycine repeat) [37]. Keap1 has three additional domains/regions: the N-
terminal region (NTR), the invervening region (IVR), and the C-terminal region (CTR) [8].
The BTB/POZ domain has been shown to be a protein-protein interaction domain. In the
Drosophila Kelch protein, and in IPP, the Kelch domain binds to actin [38–39] allowing the
scaffolding of INrf2 to the actin cytoskeleton which plays an important role in Nrf2 retention
in the cytosol [40]. The main function of INrf2 is to serve as an adapter for the Cullin3/Ring
Box 1 (Cul3/Rbx1) E3 ubiquitin ligase complex [41–43]. Cul3 serves as a scaffold protein that
forms the E3 ligase complex with Rbx1 and recruits a cognate E2 enzyme [8]. INrf2 via its N-
terminal BTB/POZ domain binds to Cul3 [44] and via its C-terminal Kelch domain binds to
the substrate Nrf2 leading to the ubiquitination and degradation of Nrf2 through the 26S
proteasome [45–49]. Under normal cellular conditions, the cytosolic INrf2/Cul3-Rbx1
complex is constantly degrading Nrf2. When a cell is exposed to oxidative stress Nrf2
dissociates from the INrf2 complex, stabilizes and translocates into the nucleus leading to
activation of ARE-mediated gene expression [3,6–9]. An alternative theory is that Nrf2 in
response to oxidative stress escapes INrf2 degradation, stabilizes and translocates in the
nucleus [49–50]. We suggested the theory of escape of Nrf2 from INrf2 [49] and similar
suggestion was also made in another report [50]. However, the follow up studies in our
laboratory could not support the escape theory. Escape theory is a possibility but has to be
proven by experiments before it can be adapted. Therefore, we will use the release of Nrf2
from INrf2 in the rest of this review.

Numerous reports have suggested that any mechanism that modifies INrf2 and/or Nrf2
disrupting the Nrf2:INrf2 interaction will result in the upregulation of ARE-mediated gene
expression. A model Nrf2:INrf2 signaling from antioxidant and xenobiotic to activation of
ARE-mediated defensive gene expression is shown in Fig. 3. Since the metabolism of
antioxidants and xenobiotics results in the generation of ROS and electrophiles [51], it is
thought that these molecules might act as second messengers, activating ARE-mediated gene
expression. Several protein kinases including PKC, ERK, MAPK, p38, and PERK [49,52–
56] are known to modify Nrf2 and activate its release from INrf2. Among these mechanisms,
oxidative/electrophilic stress mediated phosphorylation of Nrf2 at serine40 by PKC is
necessary for Nrf2 release from INrf2, but is not required for Nrf2 accumulation in the nucleus
[49,52–53]. In addition to post-translational modification in Nrf2, several crucial residues in
INrf2 have also been proposed to be important for activation of Nrf2. Studies based on the
electrophile mediated modification, location and mutational analyses revealed that three
cysteine residues, Cys151, Cys273 and Cys288 are crucial for INrf2 activity [50]. INrf2 itself
undergoes ubiquitination by the Cul3 complex, via a proteasomal independent pathway, which
was markedly increased in response to phase II inducers such as antioxidants [57]. It has been
suggested that normally INrf2 targets Nrf2 for ubiquitin mediated degradation but electrophiles
may trigger a switch of Cul3 dependent ubiquitination from Nrf2 to INrf2 resulting in ARE
gene induction. The redox modulation of cysteines in INrf2 might be a mechanism redundant
to the phosphorylation of Nrf2 by PKC, or that the two mechanisms work in concert. In addition
to cysteine151 modification, phosphorylation of Nrf2 has also been shown to play a role in
INrf2 retention and release of Nrf2. Serine104 of INrf2 is required for dimerization of INrf2,
and mutations of serine104 led to the disruption of the INrf2 dimer leading to the release of
Nrf2 [36]. Recently, Eggler at al. demonstrated that modifying specific cysteines of the
electrophile-sensing human INrf2 protein is insufficient to disrupt binding to the Nrf2 domain
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Neh2 (58). Upon introduction of electrophiles, modification of INrf2C151 leads to a change
in the conformation of the BTB domain by means of perturbing the homodimerization site,
disrupting Neh2 ubiquitination, and causing ubiquitination of INrf2. Modification of INrf2
cysteines by electrophiles does not lead to disruption of the INrf2–Nrf2 complex. Rather, the
switch of ubiquitination from Nrf2 to INrf2 leads to Nrf2 nuclear accumulation.

More recently, our laboratory demonstrated that phosphorylation and de-phosphorylation of
tyrosine141 in INrf2 regulates its stability and degradation, respectively [59]. The de-
phosphorylation of tyrosine141 caused destabilization and degradation of INrf2 leading to the
release of Nrf2. Furthermore, we showed that prothymosin-α mediates nuclear import of the
INrf2/Cul3-Rbx1 complex [60]. The INrf2/Cul3-Rbx1 complex inside the nucleus exchanges
prothymosin-α with Nrf2 resulting in degradation of Nrf2. These results led to the conclusion
that prothymosin-α mediated nuclear import of INrf2/Cul3-Rbx1 complex leads to
ubiquitination and degradation of nuclear Nrf2 presumably to regulate nuclear level of Nrf2
and rapidly switch off the activation of Nrf2 downstream gene expression. An auto-regulatory
loop also exists within the Nrf2 pathway [61]. An ARE was identified in the INrf2 promoter
that facilitates Nrf2 binding causing induction of the INrf2 gene. Nrf2 regulates INrf2 by
controlling its transcription, and INrf2 controls Nrf2 by serving as an adaptor for degradation.

Other Regulatory Mediators of Nrf2
Bach1 (BTB and CNC homology 1, basic leucine zipper transcription factor 1) is a transcription
repressor [62] that is ubiquitously expressed in tissues [63–64] and distantly related to Nrf2
[8]. In the absence of cellular stress, Bach1 heterodimers with small Maf proteins [65] that
bind to the (ARE) [66] repressing gene expression. In the presence of oxidative stress, Bach1
releases from the ARE and is replaced by Nrf2. Bach1 competes with Nrf2 for binding to the
ARE leading to suppression of Nrf2 downstream genes [66].

Nuclear import of Nrf2, from time of exposure to stabilization, takes roughly two hours [67].
This is followed by activation of a delayed mechanism involving Glycogen synthase kinase 3
beta (GSK3β) that controls switching off of Nrf2 activation of gene expression (Fig. 3).
GSK3β is a multifunctional serine/threonine kinase, which plays a major role in various
signaling pathways [68]. GSK3β phosphorylates Fyn, a tyrosine kinase, at unknown threonine
residue(s) leading to nuclear localization of Fyn [69]. Fyn phosphorylates Nrf2 tyrosine 568
resulting in nuclear export of Nrf2, binding with INrf2 and degradation of Nrf2 [70].

The negative regulation of Nrf2 by Bach1 and GSK3β/Fyn are important in repressing Nrf2
downstream genes that were induced in response to oxidative/electrophilic stress. The tight
control of Nrf2 is vital for the cells against free radical damage, prevention of apoptosis and
cell survival [3,6–9,70].

Nrf2 in Cytoprotection, Cancer and Drug Resistance
Nrf2 is a major protective mechanism against xenobiotics capable of damaging DNA and
initiating carcinogenesis [71]. Inducers of Nrf2 function as blocking agents that prevents
carcinogens from reaching target sites, inhibits parent molecules undergoing metabolic
activation, or subsequently preventing carcinogenic species from interacting with crucial
cellular macromolecules, such as DNA, RNA, and proteins [72]. A plausible mechanism by
which blocking agents impart their chemopreventive activity is the induction of detoxification
and antioxidant enzymes [73]. Oltipraz, 3H-1,2,-dithiole-3-thione (D3T), Sulforaphane, and
Curcumin can be considered potential chemopreventive agents because these compounds have
all been shown to induce Nrf2 [74–81].
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Studies have shown a role of Nrf2 in protection against cadmium and manganese toxicity
[82]. Nrf2 also plays an important role in reduction of methyl mercury toxicity [83].
Methylmercury activates Nrf2 and the activation of Nrf2 is essential for reduction of
methylmercury by facilitating its excretion into extracellular space. In vitro and in vivo studies
have shown a role of Nrf2 in neuroprotection and protection against Parkinson’s disease [84–
86]. Disruption of Nrf2 impairs the resolution of hyperoxia-induced acute lung injury and
inflammation in mice [87]. Nrf2-knockout mice were more prone to tumor growth when
exposed to carcinogens such as benzo[a]pyrene, diesel exhaust, and N-nitrosobutyl (4-
hydroxybutyl) amine [88–90]. INrf2/Nrf2 signaling is also shown to regulate oxidative stress
tolerance and lifespan in Drosophila [91].

A role of Nrf2 in drug resistance is suggested based on its property to induce detoxifying and
antioxidant enzymes (92–97). The loss of INrf2 (Keap1) function is shown to lead to nuclear
accumulation of Nrf2, activation of metabolizing enzymes and drug resistance (95). Studies
have reported mutations resulting in dysfunctional INrf2 in lung, breast and bladder cancers
(96–100). A recent study reported that somatic mutations also occur in the coding region of
Nrf2, especially in cancer patients with a history of smoking or suffering from squamous cell
carcinoma (101). These mutations abrogate its interaction with INrf2 and nuclear accumulation
of Nrf2. This gives advantage to cancer cell survival and undue protection from anti-cancer
treatments. However, the understanding of the mechanism of Nrf2 induced drug resistance
remains in its infancy. In addition, the studies on Nrf2 regulated downstream pathways that
contribute to drug resistance remain limited.

Future Perspectives
Nrf2 creates a new paradigm in cytoprotection, cancer prevention and drug resistance.
Considerable progress has been made to better understand all mechanisms involved within the
intracellular pathways regulating Nrf2 and its downstream genes. Preliminary studies
demonstrate that deactivation of Nrf2 is as important as activation of Nrf2. Further studies are
needed to better understand the negative regulation of Nrf2. Also better understanding of the
negative regulation of Nrf2 could help design a new class of effective chemopreventive
compounds not only targeting Nrf2 activation, but also targeting the negative regulators of
Nrf2.

Acknowledgments
This work was supported by NIGMS grant RO1 GM047466 and NIEHS grant RO1 ES012265.

Abbreviations
Nrf2  
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Fig. 1.
Chemical and radiation exposure and coordinated induction of defensive genes.
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Fig. 2. Schematic Presentation of Various Domains of Nrf (Nrf1, Nrf2, Nrf3) and INrf2
Nrf, NF-E2 Related Factor; INrf2, Inhibitor of Nrf2; NTR, N-Terminal Region; BTB, Broad
complex, Tramtrack, Bric-a-brac; IVR, Intervening/linker Region; DGR, Kelch domain/
diglycine repeats; CTR, C-Terminal Region.
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Fig. 3.
Nrf2 signaling in ARE-mediated coordinated activation of defensive genes.
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