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Summary
Central to crystallographic structure solution is obtaining accurate phases in order to build a molecular
model, ultimately followed by refinement of that model to optimize its fit to the experimental
diffraction data and prior chemical knowledge. Recent advances in phasing and model refinement
and validation algorithms make it possible to arrive at better electron density maps and more accurate
models.

Introduction
X-ray crystallography is one of the most content-rich methods available for providing high
resolution information about biological macromolecules. The goal of the crystallographic
experiment is to obtain a three-dimensional map of the electron density in the macromolecular
crystal. Given sufficient resolution this map can be interpreted to build an atomic model of the
macromolecule (Figure 1 summarizes the process of crystallographic structure solution). To
calculate the distribution of electron density in the crystal requires a Fourier synthesis using
complex numbers derived from the diffraction experiment. Each complex number is composed
of a diffraction amplitude and an associated phase (i.e. the magnitude and direction of a vector
in a complex plane). However, experimentally it is only possible to measure the amplitude; the
phase information is lost. Therefore, one of the central problems in the crystallographic
experiment is the indirect derivation of phase information. Multiple methods have been
developed to obtain phase information. In the article we review recent advances in the
computational aspects of phase determination.

After a map has been obtained and an atomic model built it is necessary to optimize the model
with respect to the experimental diffraction data and prior chemical knowledge, achieved by
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multiple cycles of refinement and model rebuilding. Efficient and accurate optimization of the
atomic model is desirable in order to rapidly generate the best models for biological
interpretation. We review the recent advances in the computational methods used to optimize
atomic models with respect to X-ray diffraction data.

Experimental phase determination
Experimental, and associated computational, methods have been developed to obtain phase
information for structures with no prior structural information. These isomorphous replacement
and anomalous scattering methods rely on information that can be derived from small
differences between diffraction datasets. The first step in both methods is the location of the
heavy atoms or anomalous scatterers, generally termed the substructure, in the crystallographic
asymmetric unit.

Substructure location
The location of heavy atoms in isomorphous replacement or the location of anomalous
scatterers was traditionally performed by manual inspection of Patterson maps. However, in
recent years labeling techniques such as seleno-methionyl incorporation have become widely
used. This leads to an increase in the number of atoms to be located, rendering manual
interpretation of Patterson maps extremely difficult. As a result automated heavy atom location
methods have proliferated, including automated Patterson methods [1]. The most successful
substructure location methods today are dual-space recycling algorithms [2,3,4,5]. These
algorithms are characterized by the use of Fourier transforms to switch between crystal (direct)
space and diffraction (reciprocal) space, with a variety of modification procedures working in
both spaces. The dual-space recycling procedures are designed to converge to a self-consistent
state. The likelihood that this is a correct solution depends on the quality of the experimental
data and the size of the problem. Some algorithms combine Patterson and dual-space recycling
methods [2,3]. In the recent work of Dumas and van der Lee [5], the charge flipping method
of Oszlányi & Süto [6**] is used instead of the more traditional squaring method [7] underlying
the direct methods steps in the other dual-space recycling programs. The new charge-flipping
approach is promising and appears to be competitive.

Phasing
After successful substructure location complex structure factors for the substructure can be
calculated. This information can be used to bootstrap the calculation of phase information for
the whole contents of the asymmetric unit in a process termed phasing. In macromolecular
crystallography a thorough statistical treatment of errors is crucial. The magnitudes of structure
factors are measured relatively accurately but the phases are not measured directly at all. This
leads to combinations of experimental and model errors that are not simple Gaussian
distributions. In the phasing step, maximum-likelihood based methods (MLPHARE [8], CNS
[9], SHARP [10]), have for some time been the most effective techniques for modeling the
crystallographic experiment.

The development of tractable likelihood targets for experimental phasing generally requires
some assumptions to be made about the independence of sources of error [11]. However, the
case of single-wavelength anomalous diffraction (SAD) can be handled without such
assumptions [12]. SAD phasing has recently undergone a renaissance, due to a combination
of more sensitive detectors measuring data more precisely, the absence of non-isomorphism,
and SAD’s reduced problems with radiation damage compared to MAD phasing [13].
However, in cases of weak anomalous signal or a single scattering site in polar space groups
it may still be advantageous to perform a MAD experiment, to maximize the amount of
information obtained and resolve phase ambiguities. Clearly, the likelihood of success
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decreases as crystal sensitivity to radiation damage increases, which at an extreme can require
the merging of data from multiple, possibly non-isomorphous, crystals.

Initial substructures supplied to phasing programs are generally incomplete, so effective
substructure completion is an essential element of an optimal phasing strategy. Log-likelihood-
gradient maps are highly sensitive in detecting new sites or signs of anisotropy, whether for
general experimental phasing methods [10] or specifically for the SAD target in Phaser [14].

In addition to the intrinsic complication of modelling errors in crystallography due to not
measuring phases directly, there are significant complications due to the physics of the
diffraction process and to damage of the sample during the experiment. Recently statistical
methods have been developed that account for these effects and in some cases even make
virtues of them. The correlations of errors in the modelling of the anomalously-scattering atoms
at various wavelengths in a MAD experiment and of non-isomorphism errors in various heavy-
atom derivatives are included in experimental phasing with SOLVE [1]. The radiation-induced
damage at heavy-atom sites in MAD and SAD experiments is used as a source of phase
information in the RIP (radiation-damage-induced phasing) method [15]. The interactions
between the polarization of synchrotron X-ray beams and the anisotropy of anomalous
diffraction have long been recognized but only recently has a systematic and practical treatment
been developed that allows a full use of this source of phase information [16*].

Molecular Replacement: phase determination using known structures
The method of molecular replacement is commonly used to solve structures for which a
homologous structure is already known. As the database of known structures increases, the
number of new folds drops and the proportion of structures that can be solved by molecular
replacement increases. About two-thirds of structures deposited in the PDB are currently solved
by molecular replacement, and the proportion could probably be higher [17*].

The introduction of likelihood targets [18,19,20] has increased the sensitivity of molecular
replacement searches, thus allowing structures to be solved with more distant homologues.
These targets, implemented in Phaser [14], allow the information from partial solutions to be
exploited, which improves success in solving structures of complexes or crystals containing
multiple copies.

Automation is also playing a major role. Even within a single program such as Phaser, the
ability to test multiple choices of model for multiple choices of possible space group, following
a tree of potential solutions, allows problems to be solved when they would exhaust the patience
of a user. Molecular replacement pipelines can extend this power even further, by testing
alternative strategies for model preparation (CaspR [21], MrBUMP [22*]) or building up
models using automated databases of domains (BALBES [17*]). In some cases, the target
structure differs from the molecular replacement model by deformations that can be modeled
by a normal modes calculation (elNemo [23]).

As the level of sequence identity drops below about 30%, the success rate of molecular
replacement drops precipitously. It might be expected that homology modelling could improve
distant templates for molecular replacement, but until recently this was not the case. The best
strategy was to use sensitive profile-profile alignment techniques to determine which parts of
the template would not be preserved, and then to trim off loops and side chains [24]. However,
modelling techniques have now matured to the point where value can be added to the template,
and it is possible to improve homology models or NMR structures for use in molecular
replacement [25**]. At least in favorable circumstances, similar modelling techniques can
generate ab initio models that are sufficiently accurate to succeed in molecular replacement
calculations [25**,26].
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Phase Improvement
Once experimental or molecular replacement phase information is available, electron density
maps can be calculated. Often these initial maps are very noisy, but powerful density
modification techniques can be used to greatly improve their quality [27,28,29]. The essence
of density modification procedures is that electron density maps have recognizable features
such as a flat solvent region, and that enhancing these features generally improves the accuracy
of the crystallographic phases. Key to this process is the fact that improving one region in a
map (flattening the solvent) improves the phases, which then improves other parts of the map
as well (the image of the macromolecule). Recently density modification procedures have been
greatly improved through statistical treatments that reduce bias towards the starting map by
solvent flipping [30] or maximum-likelihood techniques [31,32,33].

Structure Refinement
With an electron density map of sufficient resolution and quality it is possible to build an atomic
model. Traditionally this has been a time consuming subjective manual process prone to human
error [34]. More recently, automated methods have been developed that work at higher and
lower resolution limits [35*,36*]. These methods iterate automated model building, model
refinement, and, in the case of the Phenix [37] Autobuild procedure, density modification
[36*]. This method has been extended to calculate minimally biased electron density maps by
iterative build omit maps [38**]. In general an atomic model obtained by automatic or manual
methods contains some errors and must be optimized to best fit the experimental data and prior
chemical information. In addition, the initial model is often incomplete and refinement is
carried out to generate improved phases that can then be used to compute a more accurate
electron density map.

Over the last ten years there have been great improvements in the targets for refinement of
incomplete, error-containing models by making use of the more general maximum likelihood
formulation [39,40]. The resulting maximum likelihood refinement targets have been
successfully combined with the powerful optimization method of simulated annealing to
provide a very robust and efficient refinement scheme [41]. For many structures, some initial
experimental phase information is available from either isomorphous heavy atom replacement
or anomalous diffraction methods. These phases represent additional observations that can be
incorporated in the refinement target. Tests have shown that the addition of experimental phase
information greatly improves the results of refinement [42]. Recently there have been efforts
to use phasing targets in structure refinement, thus more correctly accounting for the anomalous
scattering and the relationship between structure factors [43]. Results indicate that improved
models and electron density maps are produced.

Of central importance in model refinement is the parameterization of the atomic model. The
two main features of the model that are optimized are the coordinates (position of the atoms)
and atomic displacement parameters (movements of the atoms from their average position). In
both cases restraints may be used to provide additional information, or constraints applied to
reduce the number of parameters being refined. The application of constraints to anisotropic
displacement parameters, using the Translation-Libration-Screw (TLS) formalism [44], is now
widely used to refine the displacements of large rigid bodies. This method typically improves
the fit between the model and experimental data, as judged by the free R-factor, although
significant improvements in the electron density maps are typically less common. Very recently
an alternative approach to modeling concerted atomic displacements has been introduced:
refinement of normal modes against the experimental diffraction data [45**]. Although only
applied to a few structures to date the method has demonstrated improvements in models and
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in some challenging cases sufficient changes in the electron density maps to permit correction
of model errors [46*].

The refinement of molecular models is particularly challenging when the upper limit of
diffraction is low, 4Å or worse. At this resolution atomic features are typically not visible,
although secondary structure elements are usually recognizable. However, by application of
the collection of tools currently available, researchers have been able to push the limits of
meaningful refinement to 4.7Å resolution [47,48**]. To achieve this, it was essential to include
experimental phase information in the refinement target, apply B-factor sharpening to the data,
apply non-crystallographic symmetry restraints, and optimize the bulk solvent scattering model
[49]. As more and more crystallographic experiments are focused on large molecular
complexes, increasing the likelihood of poor diffraction, tools for low resolution refinement
and validation are becoming more important.

Macromolecular crystals can also be studied using neutron diffraction. The neutrons interact
with the nucleus of the atoms rather than the electrons. This allows neutron diffraction
experiments to provide information about the position of hydrogen atoms, something usually
not possible with X-ray diffraction methods unless ultra high resolution diffraction is obtained.
Recent work has demonstrated that the joint (simultaneous) refinement of a single model
against X-ray and neutron data leads to an improved model, as judged by both X-ray and
neutron R-factors [50**]. In addition the electron density maps are improved for both types of
data. The method has been successfully applied to the high resolution structure of aldose
reductase leading to a quantum model of catalysis that depends on accurate modeling of the
hydrogen atoms in the structure [51*].

Structure Validation
Since the inception of Rfree for model-to-data fit [52] and ProCheck for model quality
assessment [53] in the early 1990’s, structure validation has been considered a necessary final
step before deposition, occasionally prompting correction of an individual problem but chiefly
serving a gatekeeping function to ensure professional standards for publication of crystal
structures. For true cross-validation, the criteria should be independent of the refinement target
function, as engineered into the definition of Rfree and nearly always true for the Ramachandran
measure important in ProCheck. However, local measures are typically more important to end
users than global ones, since no level of global quality can protect against a large local error
at the specific region of interest. Local measures can also enable the crystallographer to make
specific local corrections to the model.

In the intervening years, further measures of model-to-data agreement have been developed,
for example in WhatCheck [54], SFCheck [55], and the Electron-Density Server [56].
Stereochemical validation such as rotamer [57] and Ramachandran [58] criteria have benefitted
from great increases in high-resolution data, B-factor filtering at the residue level, and
evaluation as multi-dimensional distributions. All-atom contacts [59] contributed a new major
source of independent information by adding, optimizing, and analyzing the other half of the
atoms – the hydrogens – and analyzing their steric clashes as well as their H-bonding.

Recently, validation criteria have been developed for carbohydrates [60] and for RNA
backbone [61**], as well as a promising new evaluation of under-packing in proteins [62*].
The MolProbity validation web site [63**] combines all-atom contacts (especially the
“clashscore”) with geometric and dihedral-angle criteria for proteins, nucleic acids, and
ligands, to produce numerical and graphical local evaluations as well as global scores. The
local results can guide manual [64,65] or automated [66**] rebuilding to correct systematic
errors such as backward-fit sidechains trapped in the wrong local minimum, thereby improving
refinement behavior, electron density quality, and chemical reasonableness, and also lowering
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R and Rfree by small amounts. Such procedures have become standard in many structural
genomics and industrial labs that do high-throughput crystallography, and are being built into
software such as ARP/wARP [35*], Coot [65], Buster [67], and PHENIX [36*,37]. In general,
there are now many fewer “false alarms”, and outliers flagged by validation are nearly always
worth examining.

The most significant overall development currently happening in the area of validation is the
application of these local criteria much earlier in the structure solution process, their integration
into a cycle of repeated refinement, correction, and re-refinement, and the gradual automation
of more aspects of that cycle. A useful level of independence for cross-validation can still be
preserved, for stereochemistry by the wealth of interdependent criteria that must be satisfied
simultaneously with data match, and for all-atom steric clashes by avoiding refinement of
explicit hydrogen contacts. The benefits are a significant increase in the accuracy of structures
treated in this new manner.

Impact of New Methods
The advances in data collection hardware, development of anomalous diffraction-based
phasing methods, and new structure solution, refinement and validation algorithms have made
it easier to arrive at high quality macromolecular structures. Routine structures can often be
solved rapidly using a variety of automated tools. Many challenging structures can now be
solved that otherwise would be intractable using the tools available 15 years ago. While the
availability of better validation tools makes the existence of local conformational, steric, and
geometric errors less likely, the global fit of models to the experimental data has not improved
substantially, as judged by a criterion such as the R-free value. A brief inspection of the Protein
Data Bank reveals that structures solved at a typical resolution of 2.2Å still routinely have final
R and R-free values in the range of 20% to 30%, which is much larger than the data
measurement errors. Inasmuch as a cross-validated measure such as R-free reflects the degree
to which the atomic model adequately models the true contents of the crystal, we can suppose
that our current atomic models are still in some way deficient. The most likely culprit is motion
and multiple conformations, at all size scales. This highlights the need for yet more
sophisticated model parameterizations. There have been recent advances in the modeling of
domain motion using TLS [44] and normal mode methods [45**], both of which have been
observed to decrease R and R-free values. However, obvious areas for further improvement
are in the modeling of alternate conformations, domain motion/disorder, local macromolecular
disorder, ordered solvent disorder, and the current relatively crude bulk solvent models in use.
Unfortunately, as the resolution of the experimental data worsens these features become less
and less easy to detect and model but are still present in the crystal, probably to an even greater
degree. In addition, our current harmonic parameterizations are in many cases approximate;
progress will require the use of anharmonic models to better capture the underlying molecular
reality. One of the main challenges of developing better models will be arriving at efficient
parameterizations that provide improved physical meaning while only requiring a small
number of refinable parameters.

Conclusions
The last ten years has seen a dramatic improvement in the computational tools available for
the determination of macromolecular crystal structures. The routine inclusion of likelihood-
based algorithms in experimental phasing, molecular replacement, and structure refinement
serve to generate better electron density maps and atomic models. These in turn serve to
improve the efficiency and success rate of automated model building methods. Structure
validation methods are starting to be applied throughout the crystallographic process, further
improving the quality of models. Many challenges still remain. In particular, the generation of
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accurate structures when only low resolution data are available, and improved
parameterizations of macromolecular models and their motions to best fit the experimental
data at all resolutions.
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Figure 1.
Overview of the crystallographic structure solution process for macromolecules.
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