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Abstract
Behavioral studies of visual recognition memory indicate that old/new decisions reflect both the
similarity of the probe to the studied items (probe–item similarity) and the similarities among the
studied items themselves (list homogeneity). Recording intracranial electroencephalography from
1,155 electrodes across 15 patients, we examined the oscillatory correlates of probe–item similarity
and homogeneity effects in short-term recognition memory for synthetic faces. Frontal areas show
increases in low-frequency oscillations with both probe–item and item–item similarity, whereas
temporal lobe areas show distinct oscillatory correlates for probe–item similarity and homogeneity
in the gamma band. We discuss these frontal low-frequency effects and the dissociation in the
temporal lobe in terms of recent computational models of visual recognition memory.
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1 Introduction
Similarity is an important factor in human forgetting, as interference between items increases
when those items are similar within a psychological representational space (Robinson, 1927).
Although parametric investigations of similarity effects in recognition have been widely used
in the cognitive literature, the neural correlates of similarity remain largely unexplored. Here
we examine the neural correlates of two distinct types of similarity effects in recognition
memory. The first of these is participants’ increased tendency to endorse a test probe when it
is similar to one or more list items (e.g., Hintzman, 1988; Lamberts et al., 2003; Nosofsky,
1991; Shiffrin and Steyvers, 1997). The second is participants’ decreased tendency to endorse
a test probe when the list items are very similar to one another (Kahana and Sekuler, 2002;
Nosofsky and Kantner, 2006; Visscher et al., 2007).
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In visual item recognition tasks, participants view a short sequence of study items, followed
by a probe item. Their task is to indicate whether the probe matches one of the study items. An
influential class of cognitive models describing this visual recognition memory process
(“summed similarity models”) assumes that participants base their recognition decision on the
sum of the similarities between the probe and study items’ memorial representations
(Hintzman, 1988; Kahana and Sekuler, 2002; Lamberts et al., 2003; Nosofsky, 1991; Nosofsky
and Kantner, 2006; Shiffrin and Steyvers, 1997). Similarities can be computed when the
multidimensional representations of the stimuli are known (as derived, for example, from a
multidimensional scaling procedure). Kahana and Sekuler (2002) in their Noisy Exemplar
Model (NEMo), extended this basic framework by incorporating item–item similarity (the
mean of all pairwise similarities between study items) in the basic model (Kahana and Sekuler,
2002; Sekuler and Kahana, 2008). They found that when the list is homogeneous (i.e., the list
items are highly similar to each other), the probability of responding yes decreases. Visscher
et al. (2007) showed that this was still the case when probe–item similarity was held constant.
We will therefore refer to the mean item–item similarity as a “homogeneity correction,” which
will tend to push the decision in the opposite direction of probe–item similarity (Viswanathan
et al., submitted). Including this extra term significantly improved the model’s fit to the data.

In this paper, we have two main objectives. First, we want to examine whether oscillatory
correlates of probe–item similarity and the homogeneity correction can be found in intracranial
electroencephalography (EEG) recordings. Second, we aim to exploit the neural data in a novel
way, namely in order to select among alternative models of the recognition process. In
particular, we compare the neural correlates of probe–item similarity and the homogeneity
correction to see whether the latter is a useful addition of NEMo to summed similarity models.

There are various possible outcomes of such an analysis. We predict that probe–item similarity
and the homogeneity correction are associated with different neural correlates, since behavioral
evidence suggests that they involve distinct computations (Visscher et al., in press). It could,
however, also be the case that probe–item similarity and the homogeneity correction are
associated with the same neural signatures, which could point to generic mechanisms that sum
similarity across items. Thirdly, if probe–item similarity and the homogeneity correction have
similar neural signatures but are opposite in sign, that would indicate neural processes that are
involved in computing the sum of probe–item similarity and the homogeneity correction that
forms the basis for the recognition decision (to which probe–item and item–item similarity
make opposite contributions). Finally, if the homogeneity correction were to show little or no
correlation with neural activity, this would make it a less plausible addition to the summed
similarity model. If we do not find any neural correlates of NEMo, this would indicate that
oscillatory activity is not the prime locus for visual recognition memory.

Which brain regions would be expected to show correlates of the two similarity signals? There
is an extensive literature on the neural correlates of short-term memory for non-verbal stimuli
such as faces, which are the stimuli we used in this experiment. For probe–item similarity only,
we expected the neural correlates to be similar to differences in neural activity for targets and
lures (“old/new effects”) that have been reported in the literature. These old/new effects have
been found in the left parietal lobe in scalp EEG (e.g., Curran, 2000; Düzel et al., 2005) and
functional magnetic resonance imaging (fMRI) studies (e.g., Kahn et al., 2004; Wagner et al.,
2005). Furthermore, targets and lures also show differential fMRI blood oxygenation level-
dependent (BOLD) activity and potentials in intracranial EEG in the dorsolateral pre-frontal
cortex (DLPFC) and the medial temporal lobe (MTL) (Cabeza et al., 2001; Ludowig et al.,
2008, respectively). Given that our focus here is on the integration of two similarity signals
(probe–item similarity and the homogeneity correction), we also expected to see correlates of
both of these signals (probe–item similarity and the homogeneity correction) in the frontopolar
cortex (Brodmann area 10). This is a region that has been associated with the integration of
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information from multiple sub-tasks (e.g., deciding whether multiple items share the same
property) in working memory tasks (Braver and Bonglolatti, 2002; Koechlin et al., 1999;
Koechlin and Hyafil, 2007; Ramnani and Owen, 2004; Reynolds et al., 2006). It also shows
increased activation with supra-span memory loads and during episodic memory retrieval
(Cabeza et al., 1997; Christoff and Gabrieli, 2000).

In addition to judging the plausibility of the model and its neural correlates on their spatial
locations, we will examine their location in frequency space. Based on a scalp EEG study (van
Vugt et al., submitted), we expect probe–item similarity to correlate with left parietal 4–9 Hz
theta oscillations. Oscillations in both the theta (4–9 Hz) and gamma (28–128 Hz) bands have
frequently been associated with memory and attentional processes (e.g., Osipova et al., 2006;
Rizzuto et al., 2006; Sederberg et al., 2007b). If we fail to find oscillatory correlates in BA 10,
parietal areas and the MTL, in frequency bands that include theta and gamma, then oscillatory
activity does not play a large role in visual recognition memory.

To study the oscillatory correlates of probe–item similarity and the homogeneity correction
we tested participants in a visual Sternberg task (Sternberg, 1966). The stimuli consisted of a
set of synthetic male faces (Wilson et al., 2002). The advantages of using this face set are that,
although the face stimuli are well-controlled, they still can be identified with high accuracy
(Wilson et al., 2002), and it is possible to measure their inter-item similarity precisely.
Moreover, the face stimuli are realistic enough to generate strong responses in the fusiform
face area (Loffler et al., 2005), and we have previously shown how their similarity structure
affects recognition memory performance (van Vugt et al., submitted) and the learning of name–
face associations (Pantelis et al., 2008).

Detecting medial temporal lobe activity and separating it from e.g., the medial temporal gyrus
requires excellent spatial resolution, beyond that of scalp EEG. For that reason, we used
intracranial EEG (iEEG) recordings to study the oscillatory correlates of probe–item similarity
and the homogeneity correction. Although we focus our analyses mainly on the above-
mentioned regions of interest, we will also use whole-brain analyses to examine the specificity
of the effects.

2 Experimental Procedures
We recorded iEEG in 1,155 electrodes from 15 neurosurgical patients (ages 15–58, 6 female,
9 male) being treated for pharmacologically intractable epilepsy. These patients were
implanted with arrays of subdural and/or depth electrodes for seizure localization and
functional mapping. The clinical team determined the placement of the electrodes with these
goals in mind. Our research protocol was approved by the appropriate institutional review
boards, and informed consent was obtained from the participants and their guardians. The
recordings took place at Brigham and Women’s Hospital in Boston, the Hospital of the
University of Pennsylvania in Philadelphia, and Universitäts Klinikum Freiburg in Germany.

2.1 Behavioral task
Participants performed a short-term item recognition task (Figure 1). Lists consisted of 1, 2,
and 3 faces for which the similarity space has been well-characterized (Pantelis et al., 2008;
van Vugt et al., submitted; Wilson et al., 2002).

The faces were designed to vary along the four principal components of a 37-dimensional face
space (Wilson et al., 2002). This face space had been created by taking 37 measurements on a
set of (normalized) photographs of Caucasian males, and then reconstructing the faces from
the principal components that could be extracted from the matrix of these measurements. A
stimulus set of 16 faces was created from all permutations of steps of one standard deviation
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away from the mean face (of the 37-dimensional face space) in the directions of each of the
first four principal components (one standard deviation is approximately the threshold for 75%
correct discrimination between two faces that are flashed for 110 ms; see Appendix). To
determine the psychological representation of our stimuli, we performed a separate
multidimensional scaling (MDS) study, which is described more extensively in Pantelis et al.
(2008). Briefly, 23 participants saw all combinations of 3 faces twice, and were requested to
identify the “odd-one-out”. From these ratings, a similarity matrix was constructed by
increasing the similarity value for each of the two non-chosen faces (see Kahana and Bennett,
1994, for details). This similarity matrix was transformed into similarity coordinates for every
face using individual differences multidimensional scaling (INDSCAL/ALSCAL; Takane et
al., 1977). A four-dimensional solution was chosen, which was a good fit according to an
inspection of the scree plot, and also corresponded to the number of dimensions on the basis
of which the faces had been generated. The MDS-derived coordinates were then used in the
model fitting process.

During the recognition memory trials, the stimuli were constrained such that none could be
repeated on two successive lists, with the exception of the lure probes that could have been a
study item 1, 2, or 3 lists ago (a “recent negatives” manipulation (Monsell, 1978)). Each trial
started with presentation of a fixation cross (1000–1075 ms, jittered). Each list item was then
shown for 700–775 ms, with a 275–350 ms inter-stimulus interval. The participant was asked
to indicate whether the probe item that appeared after a delay of 3000–3300 ms was or was not
a member of the just-presented list (i.e., target or lure), and was given immediate feedback on
their accuracy. The participant could then initiate the next trial with a button press. Temporal
jitter was employed to avoid spurious correlations between ongoing oscillations and the
structure of the task. The experiment was programmed in the freely available Python-based
experiment programming library PyEPL (http://pyepl.sourceforge.net; described in in Geller
et al., 2007).

We ensured equal probabilities of target and lure items, of the three list lengths, of the three
levels of proactive interference (the list lags of the lure probes), and of the three possible item
lags of target probes. We created blocks of trials such that each block comprised 15 lists in
which there are an equal number of target and lure trials, and each item served as a lure only
once. We randomized the order of blocks across participants but kept the list order within
blocks fixed, which ensured that every participant saw lists with the same levels of proactive
interference. Every session was preceded by two 16-trial training blocks, plus 40 additional
one-item lists to familiarize the participant with the face stimuli. Participants were given
feedback on their average accuracy and RT at the end of each block. Incorrect trials and trials
with RTs shorter than 200 ms or longer than 3500 ms were removed from the analysis.

2.2 iEEG recordings
The iEEG signal was recorded from either subdural grids or depth electrodes, using either a
NeuroFile or Nicolet digital recording system (depending on the site). Depending on the
amplifier, the signals were sampled at 250, 256, 400, 512, or 1024 Hz, and band-pass filtered
between 0.3 and 70 Hz or 0.1 and 100 Hz. Data were subsequently notch-filtered with a
Butterworth filter with zero phase distortion between 48 and 52 Hz or 58 and 62 Hz to eliminate
the relevant line noise. Intervals of interest in the EEG signal were scanned for artifacts by
means of a kurtosis threshold; events were discarded if its kurtosis exceeded a threshold of 5
(Delorme and Makeig, 2004).

To synchronize the electrophysiological recordings with behavioral events, the experimental
computer sent pulses through the parallel or USB port via an optical isolator into an unused
recording channel or digital input on the amplifier. The time stamps associated with these pulses
aligned the experimental computer’s clock with the iEEG clock to a precision well under the
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sampling interval of the iEEG recording (< 4 ms). For all participants, the locations of the
electrodes were determined by means of co-registered post-operative CTs and pre-operative
MRIs, or from post-operative MRIs, by an indirect stereotactic technique, and converted into
Talairach coordinates.

2.3 Data analysis
After resampling the data to 256 Hz, we used the Morlet wavelet transform with a wave number
of 6 to compute spectral power as a function of time for the EEG signals of interest (Tallon-
Baudry et al., 1997; van Vugt et al., 2007). For each trial, the time window of interest extended
from 1000 ms before probe onset, until 2000 ms after the probe. The first and last second of
this interval only served as a buffer to avoid edge artifacts and were subsequently discarded.
For every frequency, we z-transformed the data to the mean and standard deviation of the power
during the 1000-ms fixation interval. This normalizes any drift that may be in the data and
ameliorates the low-frequency bias (Freeman, 2006). We assumed that the effects of interest
took place at a 100-ms timescale, and therefore calculated the average oscillatory power within
each 100-ms time interval.

For the analysis of the retrieval interval we utilized a multiple regression approach to predict
the influence of multiple interference variables simultaneously (Jacobs et al., 2006; van Vugt
et al., submitted). This model was applied separately to every electrode, time interval, and
frequency, after which the maximum regression coefficient was taken within each frequency
band. We then asked whether the regression coefficients of the electrodes within any particular
Brodmann area (defined by the Talairach Daemon, Lancaster et al. (2000)) significantly
differed from zero. This hypothesis was tested with a Wilcoxon signed rank test. Final
significance was determined using a p-value threshold set by a False Discovery Rate (FDR)
procedure (Benjamini and Hochberg, 1995). A FDR of 0.01, which is the threshold we used,
means that on average 1% of the significant electrodes across all frequency bands and time
intervals could be false positives. Note that this differs from conventional p-value testing,
where a p-value of 0.05 indicates that on average 5% of cases that in fact do not reject the null
hypothesis will be called significant. In our study, a FDR of 0.01 corresponded to a p-value
threshold of 1.4*10–4. Only Brodmann areas with a minimum of 10 electrodes and 4
contributing participants were included in the analyses.

To examine whether the regression coefficients differed between regions and similarity type
(probe–item similarity, item–item similarity/homogeneity correction), we applied a multi-way
ANOVA on the regression coefficients with the factors frequency band, time interval (early
(0–500 ms) vs late (500–1000 ms)), Brodmann area, and similarity effect (probe–item or item–
item). The number of time bins was reduced to 2, because an inspection of the time course of
the results revealed that the effect is on the order of 500 ms. This reduction in time bins us to
simplify the analysis. For the region of interest analysis, we then separately plotted the time
courses for each of the regions of interest (i.e., frontal and memory regions). To visualize the
whole-brain analyses, we overlaid the Brodmann areas defined by the Talairach Daemon on
the standard MNI brain by using information in the WFU PickAtlas toolbox (Maldjian et al.,
2003).

3 Results
The Noisy Exemplar Model (Kahana and Sekuler, 2002) assumes that participants base their
recognition decision largely on the summed pairwise similarity between an item’s memorial
representation and the representation of the test probe. Formally, this probe–item similarity is
given by:
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(1)

Here L refers to the length of the study list, αi is a forgetting parameter as described below, τ
determines the form of the exponential generalization gradient (Shepard, 1987), si is the vector
representing the coordinates of the memorial representation of stimulus i, and p is the
representation of the probe item. The summed similarity of a target probe to the members of
the study list typically exceeds the summed similarity of lure probes to the members of the
study list. NEMo extends the basic summed similarity framework for item recognition
(Hintzman, 1988; Nosofsky, 1991) by showing that the degree of summed similarity required
to respond yes varies with list homogeneity (i.e., the mean similarity among list items). With
greater list homogeneity, participants will respond yes at lower levels of summed similarity
(Kahana et al., 2007; Nosofsky and Kantner, 2006; Visscher et al., 2007). Formally,
homogeneity is defined as the average similarity among the L studied items:

(2)

In this equation, β determines the influence of list homogeneity. According to NEMo, the
probability of responding yes is given by:

(3)

Here cL is a separate decision criterion for every list length. Each item’s memorial
representation, si, is defined by summing the coordinates obtained from an MDS study (Pantelis
et al., 2008; van Vugt et al., submitted) with a noise vector whose components are zero-mean
Gaussians whose standard deviation (σ) depends on the stimulus dimensions comprising that
item. In using this noise term, we can adopt a fully deterministic decision rule (Ashby and
Maddox, 1998). Variability in participant’s responses from one occurrence to another are
modeled by the sampling of each item from the distribution of its noisy representation si. To
simulate forgetting, NEMo assumes that the most recent stimulus contributes the most to the
summed similarity, and that earlier items contribute less and less. This is simulated by the
parameter α, which increases with lag (i = 1 indicating the most recently studied item). Finally,
NEMo allows for the possibility that participants differentially weight the contributions of
different stimulus dimensions. These weights, which are not shown in Equation (1), also insure
that the measured distances are not sensitive to absolute variations in the scale of the
dimensions.

The model parameters were estimated by using a genetic algorithm (Mitchell, 1996) to
minimize the root-mean-square deviation (RMSD) between the observed and predicted binned
accuracy for each participant. Simulated participants respond yes when S + H > cL. The genetic
algorithm was run for 20 generations of 2000 individuals each. The obtained estimates of the
best-fitting parameters (Table 1) are similar to those reported in previous applications of NEMo
(Kahana and Sekuler, 2002; Kahana et al., 2007; Nosofsky and Kantner, 2006; van Vugt et al.,
submitted; Visscher et al., 2007; Yotsumoto et al., 2007). In particular, the parameter β is
significantly smaller than zero [t(14) = −11.7, p < 0.001]. This indicates that list homogeneity
contributes significantly to the old/new decision.
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Oscillatory correlates of probe–item and item–item similarity
Our main research question was whether probe–item similarity and the homogeneity correction
have distinct neural correlates and whether these neural correlates support NEMO. To
investigate the oscillatory correlates of these two variables simultaneously, we used a
regression model, which we have introduced in previous scalp EEG studies (Jacobs et al.,
2006; van Vugt et al., submitted). We regressed oscillatory power on three factors: summed
probe–item similarity (S), mean inter-item similarity (homogeneity, H), and lag (lag):

(4)

(5)

In these regression models, the Lag variable measures how recently a probe item has been last
studied, either on the current list (for targets) or on a previously studied list (for lures). This
variable was included to statistically remove recency and proactive interference effects (e.g.,
McElree and Dosher, 1989; Monsell, 1978). Since recency and proactive-interference were
not a focus of the present study, we will not discuss oscillatory correlates of the lag variable
here.

We computed these regressions separately for each electrode, frequency-band, and each of ten
successive 100-ms time intervals following probe onset. To avoid confounding the oscillatory
correlates of probe–item similarity with well known old–new effects (Düzel et al., 2003), we
fit separate regression models to data for targets and lures. The regression coefficients were
combined in Brodmann areas as described in the Experimental Procedures (see also Sederberg
et al. (2007a)). The results are presented in tabular format, in which a positive or negative sign
indicates a significantly positive or negative correlation between oscillatory activity and S or
H in at least one of the 10 time bins. The number of participants contributing electrodes to each
region are shown in the last two columns of each table. Note that this table shows 18 significant
results, of which 0.18 on average (i.e., 1%) are spurious according to the FDR procedure.

We will discuss each of the regions of interest in turn: first the frontopolar cortex, which,
because of its role in information integration (e.g., Ramnani and Owen, 2004), should show
correlates of both S and H. After that, we will discuss the DLPFC, the left parietal lobe, and
lastly temporal regions. The results are presented in Table 2.

In Brodmann area (BA) 10 (the frontopolar cortex), 2–4 Hz delta oscillations increase with
both S and H for targets. For lures, 9–14 Hz alpha oscillatory power decreases and increases
with S and H, respectively. Additionally, 90–128 Hz gamma oscillatory power is positively
and negatively correlated with S for lures and targets, respectively. Note that this effect could
reflect task difficulty because higher probe–item similarity (S) is more difficult for lures and
easier for targets.

In addition to the low-frequency integration signals in the frontopolar cortex, we found similar
effects in the DLPFC. In right BA 46 (part of the DLPFC), 2–4 Hz delta oscillatory power
increases both with S and H. Another region in the DLPFC, BA 9 (DLPFC) shows a decrease
in 28–48 Hz gamma power with S, which might again reflect difficulty.

Furthermore, we expected to see correlates of S in the left parietal lobe, a region that has
frequently been found to show old/new effects. These are notably absent. This might in large
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part be related to the fact that there are relatively few electrodes in the left hemisphere (see
Table 2).

The last regions of interest are those in the temporal lobe. These memory-related areas show
different effects for S and H. In the left medial temporal gyrus (MTG; BA 21), a brain region
that was previously shown to exhibit subsequent memory effects in the gamma band (Sederberg
et al., 2007b), 24–48 Hz gamma oscillatory power decreases with S. In the right superior
temporal gyrus (STG; BA 22) on the other hand, 14–28 Hz beta and 90–128 Hz gamma power
increase with S. These regions on the temporal gyrus do not show a significant correlation with
H. This is in contrast with deeper temporal regions, where alpha power in the right entorhinal
cortex and left hippocampus increase with H and there is no significant effect of S.

To formally test the interaction between similarity effect and brain region/frequency, we
performed a similarity type (S, H) by region (hippocampus, entorhinal, BA 21, BA 22) by time-
bin (early, 0–500 ms; late, 500–1000 ms) by frequency band ANOVA. This analysis revealed
significant main effects of similarity type [F (1, 7112) = 9.78, p < 0.01], region [F (3, 7112) =
11.67, p < 0.001], and frequency [F (6, 7112) = 21.52, p < 0.001]. Crucially, there is also an
interaction between similarity type and region [F (3, 7112) = 9.68, p < 0.001]. This interaction
indicates that the temporal gyrus areas has larger regression coefficients for S, and the MTL
areas (hippocampus and entorhinal cortex) have larger regression coefficients for H.

We then performed a whole-brain analysis to check the specificity of the effects. The Appendix
shows that in addition to the above-mentioned regions of interest, there are significant similarity
effects in BA 4/6, the (pre-)motor cortex. This Brodmann area shows (for targets) an increase
of 4–9 Hz theta oscillatory power with S, but a decrease with H (Table 2). For lures, 9–14 Hz
alpha power increases with probe–item similarity. This comports well with behavioral findings
of Kahana and Sekuler (2002) and Nosofsky and Kantner (2006), which show that probe–item
similarity and the homogeneity correction are summed with opposite signs, such that they push
the yes/no decision in opposite directions.

4 Discussion
We demonstrated that correlations can be found between oscillatory brain activity and two
theoretical constructs: probe–item similarity and the homogeneity correction. The
homogeneity correction is a relatively recent addition to the summed similarity framework,
and our finding of neural correlates provides further support for its addition. For oscillatory
activity to show clear involvement in visual recognition memory, we required three parts of
the brain–BA 10, left parietal lobe and the MTL–to show significant correlations with the
model. We found neural correlates of NEMo in two of these three areas. In BA 10, oscillatory
gamma power decreased with S for targets and increased with S for lures. In the temporal lobe,
we found in fact a dissociation between S and H, where S was related to gamma oscillatory
power in the temporal gyrus, and H to alpha oscillatory power in the entorhinal cortex and
hippocampus. This suggests that probe–item similarity and the homogeneity correction are
indeed two different neural processes. Not anticipated was an increase of 4–9 Hz theta
oscillatory power with S and a decrease with H in the motor cortex (BA 4/6), although, as we
will elaborate on, this could be expected based on the perceptual decision making literature.
We will now discuss the caveats of the study, followed by the implications of each of our main
findings in turn.

The relation between probe–item similarity and the homogeneity correction
First, one might worry that S and H are not completely independent, which might lead to
collinearity issues in the regression analysis. Although their correlation is fairly weak (r =
−0.12 on average across participants). This correlation is stronger for targets (r = −0.40) than
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for lures (r = 0.01). One can easily intuit that by realizing that when probe–item similarity is
high, necessarily many of the list items reside close together in similarity space. In addition to
the weak correlation of S and H themselves, their neural correlates also do not show evidence
for a strong correlation, given that the effects in Table 2 sometimes go in the same direction
for S and H, and sometimes in opposite directions. Nevertheless, it is helpful to keep in mind
that there may be some instability in the obtained regression coefficients, due to the small
correlation between S and H. Although there is a potential instability in the individual-subject
regression coefficients, the effect on the overall results is small because we use an across-
subjects analysis where individual-subject noise will cancel out.

Similarity between neural correlates for targets and lures
On the basis of NEMo and other summed-similarity models, we expected to find similar neural
correlates of S for targets and lures. A potential explanation for the differences between target
and lure effects reported in Table 2 is that the neural populations that correlate with components
of summed similarity do not show enough variance in their similarity-related responses for
both targets and lures to be detected, since summed similarity is known to vary less for the
target population than for the lure population (Sekuler and Kahana, 2008). Another possibility
is that S has different effects on targets and lures, contrary to the assumptions of NEMo and
other summed similarity models.

Alpha oscillations—In the literature on oscillations in the hippocampus and entorhinal
cortex, the most prominent frequency is theta (4–9 Hz) (Buzsáki, 2002). In our study, we
reported changes in the slightly higher-frequency alpha oscillations with summed similarity.
Although previous literature focuses mostly on theta activity, recently oscillations in the alpha
frequency have also been related to spatial learning (DeCoteau et al., 2007) and environment
familiarity (Nerad and Bilkey, 2005) in rats. In addition, it is important to note that in the animal
spatial navigation literature, in many cases theta band activity is defined up to about 13 Hz,
which is what we refer to as alpha activity in the current study. In human spatial learning too,
prominent alpha activity is found in the MTL (Ekstrom et al., 2005). We propose that learning
in humans too might not be restricted to the theta band, although this frequency band has been
emphasized in the previous literature (e.g., Kahana et al., 2001; Sederberg et al., 2003).

Role of frontopolar cortex in visual recognition memory—Earlier, we suggested that
failure to find a correlate of NEMo in the frontopolar cortex would cast doubts on the neural
correlates of the model, because this brain area has been implicated in integrating information
in memory tasks. Integrating information is a crucial component in computing the sum of the
similarities between two items. In our analysis we found that delta and theta oscillations in the
frontopolar cortex (BA 10) increased with both S and H. This finding comports well with
neuroimaging studies that have shown the frontopolar cortex to be important for sub-goal
processing during working memory tasks (Braver and Bonglolatti, 2002), and to working
memory updating (Van der Linden et al., 1999). The sub-goal in this context of the decision-
making process is the summing of the similarities of items. A recent study found activation of
the left frontopolar cortex when determining the similarity between word pairs (Green et al.,
2006). The right-hemisphere lateralization in our study, using non-verbalizable faces, is in
agreement with findings that show right-hemisphere working memory processing for
nonverbal stimuli and left-hemisphere processing for verbal stimuli (e.g., Kelley et al., 1998).

We propose that in the frontopolar cortex, a sum is computed of the similarities between the
probe and list items, and among the list items themselves. In order to add these two factors into
the decision making process, the sign of the inter–item similarity term will need to be inverted,
because this factor pushes the recognition decision in the opposite direction of probe–item
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similarity. We propose that this happens in a different brain area. For this proposal to hold, S
and H should correlate with different sub-populations of cells within the frontopolar cortex.

Another region that shows this low-frequency effect is BA 46 in the DLPFC. Previous studies
have found that BA 46 is very important in perceptual decision-making (Heekeren et al.,
2008), where it has been proposed to aggregate the accumulated sensory information to come
to a perceptual decision. In addition, it shows differential activity for targets and lures (e.g.,
Cabeza et al., 2001). We propose that in this case BA 46 works together with the frontopolar
cortex to sum the similarities of study items to each other and to the probe. It would be
interesting to apply accumulator models of recognition memory (e.g., Lamberts et al., 2003;
Nosofsky and Palmeri, 1997) to these data, and to examine their neural correlates to strengthen
evidence for this proposal.

Dissociation in temporal regions between probe–item and item–item similarity
—S was associated with gamma oscillations in the left medial temporal gyrus (MTG) and right
superior temporal gyrus (STG), whereas H was associated with an increase in alpha oscillations
in the right entorhinal cortex and left hippocampus. This might be analogous to a finding by
Konishi et al. (2006), who found that encoding of isolated items in a word list was associated
with more lateral temporal activation, whereas encoding of words focusing on the relations
between items led to more hippocampal involvement. In our study, the dissociation between
the two similarity effects in brain regions and frequency could reflect the fact that in computing
S one needs to combine currently available information (the probe) with retrieved information
from episodic memory (the more distant list items). Therefore, in the case of H, the focus is
on relations between items in the study list, whereas for S, there is a larger focus on the probe
item. Binding probe and item information requires rehearsal mechanisms and episodic
memory, both of which have been associated with the right STG (Klingberg et al., 1996; Osaka
et al., 2003) and the left MTG (Elliott and Dolan, 1998). Moreover, the right STG has also
been associated with distinguishing probes from similar lures (Kensinger and Schacter,
2007). H, in contrast, almost only uses retrieved list item information, and hence it will recruit
more strongly structures that are involved in episodic memory (Buckmaster et al., 2004).

Another possibility is that H is mainly computed during the list presentation, instead of during
probe presentation. In terms used to describe algorithms in computer science, these could be
called the eager and lazy strategies (e.g., Aha, 1997). It will be important to examine at what
time H is computed, because in the previous literature the eager approach has been implicitly
assumed but never tested. In fact, it could well be that the neural correlates of H reported here
are only the tip of the iceberg, and that much stronger effects are present during list presentation.

Similarity effects in motor regions—The motor regions were not among our a priori
regions of interest. Nevertheless, we found an increase in 4–9 Hz theta oscillatory power with
S in the motor cortices, and a decrease with H. A closer examination of the literature reveals
that this is not implausible. BA 4/6 has often been reported to be activated in visual and spatial
working memory (e.g., Garavan et al., 2000; Postle and Hamidi, 2007; Rypma et al., 1999;
Stern et al., 2000). Moreover, it has recently been suggested that “the human motor system
also has an important role in perceptual decision making” (Heekeren et al., 2008). Our finding
of a positive relation between theta oscillations and S, and a decrease with H is exactly what
one would expect if the motor cortex implements a lowering of the decision threshold (which
is the homogeneity correction) as part of the decision making process (Nosofsky and Kantner,
2006; Viswanathan et al., submitted). If the mean inter–item similarity is high, then a smaller
level of probe–item similarity is required to evoke a yes response than when inter–item
similarity is low (Kahana and Sekuler, 2002; Nosofsky and Kantner, 2006; Visscher et al.,
2007; Viswanathan et al., submitted). The localization of this effect in theta oscillations
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comports well with the finding of Raghavachari et al. (2001) that theta oscillations gate the
Sternberg (1966) task.

In summary, we have shown that neural correlates of NEMo can be found, and these occur
mostly in the expected brain regions and frequency ranges. This indicates that oscillatory
activity plays a large role in visual item recognition. The main correlates of probe–item
similarity (S) and the homogeneity correction (H) were found in the frontal lobe and MTL.
Whereas the frontal areas show generally similar increases in low-frequency activity for S and
H, the correlates for the two similarity signals are distinct in memory-related areas. In these
memory-related regions, S is related to gamma oscillations in the superior and medial temporal
gyrus, and H is related to increases in alpha oscillations in the entorhinal cortex and
hippocampus. S and H are correlated in opposite directions with theta oscillations in the (pre-)
motor cortex, in agreement with their relation in NEMo. Together, these findings provide
further support for the idea of adding H to summed similarity models of recognition memory,
as was proposed by Kahana & Sekuler in their NEMo model.

A Whole-brain analyses
In Figures A.1 and A.2 we report the oscillatory correlates of probe–item similarity and the
homogeneity correction for targets and lures, respectively. Black regions indicate those
Brodmann areas that we excluded from our analyses because they contain data from fewer than
4 participants and 10 electrodes. Blue and red regions show significant decreases and increases
of oscillatory power with the regressor, respectively.
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Fig. 1.
Trial structure of the short term item recognition task. Participants see a sequence of 1–3 faces
followed by a probe. Their task is to indicate whether the probe matches one of the study items.
This figure illustrates a trial with 3 stimuli randomly drawn from a pool of 16 stimuli, as
described in the text.
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Fig. A.1.
Significant increases (red) and decreases (blue) of oscillatory activity with probe-item
similarity and the homogeneity correction for targets. Brodmann areas shown in black do not
meet our criterion for doing a statistical analysis. In each row, the views are from left to right:
left sagittal, inferior, right sagittal.
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Fig. A.2.
Significant increases (red) and decreases (blue) of oscillatory activity with probe–item
similarity and the homogeneity correction for lures. Brodmann areas shown in black do not
meet our criterion for doing a statistical analysis. In each row, the views are from left to right:
left sagittal, inferior, right sagittal. There is additionally a decrease of 9–14 alpha oscillations
with the homogeneity correction in the hippocampus.
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Table 1
Modeling short-term recognition of faces: root-mean-square deviation (RMSD) and mean (standard error of mean)
NEMo parameters obtained using a genetic algorithm, fitted for each participant separately. Note that α1 was fixed to
1.

param faces param faces

β −0.38 (0.13) τ 8.87 (0.89)

α2 0.88 (0.021) c1 0.35 (0.13)
α3 0.79 (0.040) c2 0.32 (0.15)
α4 0.68 (0.027) c3 0.34 (0.13)

. c4 0.15 (0.36)

σ1 0.068 (0.053) w1 0.088 (0.049)
σ2 0.078 (0.051) w2 0.11 (0.058)
σ3 0.080 (0.11) w3 0.29 (0.092)
σ4 0.16 (0.039) w4 0.50 (0.11)

RMSD 0.168 (0.012)
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