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ABSTRACT The fluorescent-protein based fluorescence resonance energy transfer (FRET) approach is a powerful method for
quantifying protein-protein interactions in living cells, especially when combined with fluorescence lifetime imaging microscopy
(FLIM). To compare the performance of different FRET couples for FRET-FLIM experiments, we first tested enhanced green fluo-
rescent protein (EGFP) linked to different red acceptors (mRFP1-EGFP, mStrawberry-EGFP, HaloTag (TMR)-EGFP, and
mCherry-EGFP). We obtained a fraction of donor engaged in FRET (fD) that was far from the ideal case of one, using different
mathematical models assuming a double species model (i.e., discrete double exponential fixing the donor lifetime and double
exponential stretched for the FRET lifetime). We show that the relatively low fD percentages obtained with these models may
be due to spectroscopic heterogeneity of the acceptor population, which is partially caused by different maturation rates for
the donor and the acceptor. In an attempt to improve the amount of donor protein engaged in FRET, we tested mTFP1 as a donor
coupled to mOrange and EYFP, respectively. mTFP1 turned out to be at least as good as EGFP for donor FRET-FLIM exper-
iments because 1), its lifetime remained constant during light-induced fluorescent changes; 2), its fluorescence decay profile was
best fitted with a single exponential model; and 3), no photoconversion was detected. The fD value when combined with EYFP as
an acceptor was the highest of all tandems tested (0.7). Moreover, in the context of fast acquisitions, we obtained a minimal fD
(mfD) for mTFP1-EYFP that was almost two times greater than that for mCherry-EGFP (0.65 vs. 0.35). Finally, we compared
EGFP and mTFP1 in a biological situation in which the fusion proteins were highly immobile, and EGFP and mTFP1 were linked
to the histone H4 (EGFP-H4 and mTFP1-H4) in fast FLIM acquisitions. In this particular case, the fluorescence intensity was
more stable for EGFP-H4 than for mTFP1-H4. Nevertheless, we show that mTFP1/EYFP stands alone as the best FRET-
FLIM couple in terms of fD analysis.
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INTRODUCTION

Quantitative microscopy techniques are performed in live

cells to elucidate the spatial and temporal dynamics of

protein interactions. Imaging of fluorescence resonance

energy transfer (FRET) (1) using fluorescent proteins (FPs)

(2) in living cells helps to detect and quantify protein-protein

interactions to reveal the spatiotemporal dynamics of dif-

ferent biological systems (3). A suitable technique for detect-

ing FRET is fluorescence lifetime imaging microscopy

(FLIM). By using FLIM to quantify FRET, one can deter-

mine the fraction of donor in the interaction (fD) (4–7).

This parameter is related to the relative concentration of in-

teracting protein and is particularly interesting in relation to

biology. In the last few years, FLIM has emerged as a power-

ful tool to detect and quantify the dynamics of protein inter-

actions. Different approaches have been developed that

reduce acquisition times (8,9), provide a map of the molec-

ular environment of a fluorophore in a rapid manner, and

allow the related interaction to be followed as a function of

time.

The sensitivity of a FRET experiment depends on the FP

couple used. Frequently, comparisons between different
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FRET couples are performed using tandems with a mean

determination of the FRET efficiency, E (10,11). However,

when considering intermolecular interactions, the main

parameter to compare for every FRET pair is the fD value,

which is only accessible with the use of FLIM. Additionally,

in FRET-FLIM experiments, it is important to use a donor

with the right photophysical properties, i.e., high photo-

stability, absence of photoconversion, and single exponential

behavior of its fluorescence decay profile. Enhanced green

fluorescent protein (EGFP) is known to fulfill these require-

ments (12) and is frequently combined with red acceptors for

FLIM experiments (9,13–17). However, red acceptors (e.g.,

mRFP1 (18) and mCherry (19)) exhibit relatively low fD
values that can lead to misinterpretation of quantitative

data (14,20). This implies that when intermolecular interac-

tions in a particular biological system are being considered,

a mathematical fD correction should be done (9,14).

In an attempt to determine the best FRET couple for quan-

titative FRET-FLIM, we analyzed a set of different FRET

standards formed by two FPs (donor and acceptor) linked

by a polypeptide chain. We used FLIM to find the best

couple of fluorophores for quantitative experiments based

on fD calculation. mTFP1-EYFP and mTFP1-mOrange

were previously proposed as attractive FRET couples by

Ai and co-workers (21). They also reported that the
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mTFP1 fluorescence decay was best described with a single

exponential model; however, they did not perform a quantita-

tive FRET-FLIM analysis in live cells in that study. We first

tested mTFP1’s photophysical properties to consider it as

a donor for FLIM. Tandems formed by EGFP linked to

different red acceptors, and mTFP1 linked to mOrange and

EYFP were tested using a time-correlated single photon

counting (TCSPC) device (6,12). We show that mTFP1 is

a good donor FLIM fluorophore and together with EYFP

forms the best FRET couple in terms of fD. We then tested

the use of tandem mTFP1-EYFP in the context of fast acqui-

sition times using a time-gated charge-coupled device (CCD)

camera. We also verified the validity of mfD in comparison

with other approaches such as double stretched exponential

or double discrete exponential fitting. Finally, to gain insight

into a biological context in which the fused protein is highly

immobile (chromatin), we compared EGFP and mTFP1

behaviors when fused to histone H4 in live HEK293 cells.

MATERIALS AND METHODS

Plasmid constructs and cell culture

The plasmids coding the mCherry-EGFP and EGFP-EGFP tandems have

been described elsewhere (12). The mTFP1-mOrange tandem was a

generous gift from Dr. O. Albagli (IGR, Villejuif, France). The constructions

coding for the two tandems between EGFP and tdimer2 (12) or mRFP1 (18),

named TdRed-EGFP and mRFP1-EGFP, respectively, were generous gifts

from Dr. S. Ahmed (Center for Molecular Medicine, Biopolis, Singapore).

The cloning of mStrawberry-EGFP, mTFP1-EYFP, HaloTag-EGFP,

EGFP-H4, and mTFP1-H4 is described in detail in the Supporting Material.

The cloning strategy enabled us to maintain the same peptide linker

(SGLRSRGDPPVAT) between the FRET partners for the mCherry-EGFP,

mStrawberry-EGFP, mTFP1-EYFP, and HaloTag-EGFP tandems.

He-La and HEK293 cells were cultured in Dulbecco’s modified Eagle’s

medium (DMEM) containing 10% fetal bovine serum (PAA Laboratories,

Pasching, Austria). The cultures were incubated at 37�C in a humidified

atmosphere of 5% CO2. He-La cells were seeded on 32 mm round glass

coverslips at a density of 2 � 105 cells. When the cells reached ~50–70%

of confluence, they were transfected with a total amount of 1 mg of expres-

sion vectors using Nanofectin I (PAA Laboratories). Finally, 24 h after trans-

fection, the coverslips were mounted in an open observation chamber with

special DMEM-F12 to prevent fluorescence from the medium (DMEM-

F12 without Phenol red, vitamin B12, or riboflavin, and supplemented

with 20 mM Hepes and L-Glutamine from PAA Laboratories).

Wide-field fluorescence microscopy

An inverted microscope (Leica DMIRE2; Manheim, Germany) equipped

with piezo scanning technology and optics using as excitation source

(EL6000, Manheim, Germany) and an oil immersion objective with a numer-

ical aperture (NA) 1.4 was used to test mTFP1 and EGFP photostability. A

high-resolution camera (CoolSnap HQ; Photometrics, Tucson, AZ) was

used to acquire image stacks in which the time delay between each acquisi-

tion was set to 10 s. All instrumentation was controlled using Metamorph 6

(Universal Imaging, West Chester, PA).

Time-domain picosecond FLIM and data analysis

Space-resolved fluorescence lifetimes were obtained by simultaneously

acquiring time and space information with the use of a time- and space-

correlated single-photon counting (TSCSPC) detector (quadrant anode
detector; EuroPhoton, Berlin, Germany), as described previously (9,22).

The mode-locked titanium sapphire laser (Millennia 5W/Tsunami 3960-

M3BB-UPG kit; Spectra-Physics, Les Ulis, France) was tuned to 960 nm

and 880 nm to obtain wavelengths of 480 nm and 440 nm, respectively, after

frequency doubling for EGFP and mTFP1 excitation, and 535AF45 and

480/30 emission filters were used.

The acquired fluorescence decays were deconvoluted with the instrument

response function and fitted by a Marquardt nonlinear least-square algorithm

using Globals Unlimited software (Laboratory for Fluorescence Dynamics,

University of California, Irvine, CA). To perform the fits, three different

approaches were considered: 1), a two-species model in which two popula-

tions are taken into consideration (an interacting fraction corresponding to

a population that relaxes through FRET, and a noninteracting fraction in

which the donor lifetime remains undisturbed); 2), a stretched exponential

approach (23,24) (considering that instead of a discrete FRET lifetime,

a distribution of lifetimes could arise from the different orientations between

the donor and acceptors); 3), a discrete double exponential for the tandem,

which leaves both lifetimes free. All of these models are described in detail

in the Supporting Material.

Multifocal multiphoton FLIM and data analysis

The two-photon picosecond FLIM system (TriM-FLIM) is equipped with

a multifocal multiphoton excitation (TriMscope; LaVisionBiotec, Bielefeld,

Germany) and a fast-gated CCD camera (Picostar; LaVisionBiotec) as

described elsewhere (9,25). Two-photon multifocal excitation was per-

formed with the TriMScope connected to an inverted microscope (IX 71;

Olympus, Tokyo, Japan). In this method, a mode-locked Ti:Sa laser (Spectra

Physics, Les Ulis, France) at 770, 800, 830, and 940 nm for the excitation of

mTFP1 and EGFP, respectively, is split into 4 and 16 beams for the EGFP and

mTFP1, respectively, by means of a 50/50 beam splitter and mirrors. The set

of beams passes through a 2000 Hz scanner before illuminating the back

aperture of a �60 NA 1.2 infrared water immersion objective (Olympus).

A line of foci is then created at the focal plane. A filter wheel of spectral filters

(535AF45 for EGFP and 480AF30 for mTFP1) is used to select the fluores-

cence imaged onto a fast-gated light intensifier connected to a CCD camera

(Picostar). The gate of the intensifier (adjusted at 2 ns) is triggered by an elec-

tronic signal coming from the laser, and a programmable delay box is used to

acquire a stack of five time-correlated images. All instrumentation is

controlled by ImSpector software developed by LaVisionBiotec.

The mathematical approach used to recover the minimal fraction of inter-

acting donor (mfD) from the diminution of the donor mean lifetime alone and

in the presence of the acceptor is described elsewhere (9) and details are

provided in the Supporting Material.

RESULTS AND DISCUSSION

mTFP1 shows adequate fluorescence properties
for quantitative FRET-FLIM

The use of mTFP1 as a donor for FRET experiments was

previously suggested by Ai et al. (21). However, we were

interested in testing whether mTFP1 can be compared with

EGFP in the context of quantitative FRET-FLIM assays.

EGFP is known to be a good donor because it has photo-

stability, its fluorescence decay can be best fitted with a single

exponential, and photobleaching has no effect on its lifetime

(12). Consequently, we verify that mTFP1 can be used as

donor for quantitative FRET-FLIM.

Live He-La cells expressing mTFP1 and EGFP were

constantly exposed to mercury lamp wide-field illumination

using 440 5 10 nm and 475 5 20 nm band-pass filters
Biophysical Journal 97(8) 2368–2376
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(1.65 mW and 1.93 mW at the exit of the objective), respec-

tively, and images were acquired every 10 s until at least

50% of the initial intensity disappeared. Different cells

were selected to have similar initial intensity values, and

two representative intensity time profiles are shown in

Fig. 1. The intensity profile of both proteins presents a similar

timescale. We calculated the mean half-time of photobleach-

ing (t1/2, time in which a diminution of 50% intensity is

observed) and obtained a t1/2(mTFP1)¼ 136 s 5 5 s (n ¼ 6)

and t1/2(EGFP)¼ 213 s 5 18 s (n¼ 6). Our results are in agree-

ment with those of Ai et al. (19). The photostability of mTFP1

can be satisfactorily compared with that of EGFP.

As previously observed in vitro, mTFP1 fluorescence

decay is well fitted with the use of a single exponential model

(19). Using time-domain picosecond FLIM, we found iden-

tical results when mTFP1 was expressed in live He-La cells

with a lifetime of 2.83 5 0.02 ns (n¼ 10) in contrast to other

cyan FPs (ECFP and mCerulean) were multiexponential

decays are described (15,22,26,27). Amcyan (BD Biosci-

ences, Franklin Lakes, New Jersey) decay can be success-

fully fitted with a single exponential model (data not shown),

but the formation of tetramers and aggregates in the context

of living cells makes this protein unattractive for fluores-

cence microscopy. Again, the fluorescence lifetime behavior

of mTFP1 was comparable to that of EGFP.

In a previous work we showed that the lifetime of EGFP is

insensitive to photobleaching (12). To test whether the

mTFP1 lifetime is also insensitive to photobleaching, we

exposed cells expressing mTFP1 to mercury lamp wide-field

illumination (3.5 W/cm2 at 440 nm), and mTFP1 fluores-

cence decays were successively measured after 0, 90, 180,

270, 360, and 450 s of exposure time. Fluorescence decay

acquisitions were performed using time-domain FLIM at

very low excitation levels (30 mW/cm2 or less at the focal

plane) to avoid photodamage. The corresponding mTFP1

fluorescence decays for each illumination exposure time

are shown in Fig. 2 A. Since the decays were measured

during the same acquisition time, the decay amplitudes

are proportional to steady-state intensity measurements,

showing a decrease after the illumination time. As shown

by the similar slope of all the decays, the lifetime remained

more or less constant. For all curves, the decays are well

fitted by the single lifetime model. Results are presented in

Fig. 2 B, which shows a slight lifetime decrease from 2.77

to 2.62 ns. This decrease is equivalent to what was observed

for EGFP and can be considered minor in comparison with

FIGURE 1 Photostability comparison between EGFP and mTFP1. EGFP

(white circles) and mTFP1 (black squares) intensity profile measured in two

monotransfected cells as a function of illumination time under the micro-

scope are presented. The time delay between each acquisition was set to

10 s. The system was equipped with 440 nm 5 10 and 475 nm 5 20

band-pass filters, and we calculated an average power of 1.65 mW and

1.93 mW at the exit of the objective for mTFP1 and EGFP, respectively.

We obtained similar half-life times of photobleaching for both proteins (in

this case, we recovered t1/2(mTFP1) ¼ 132 s and t1/2(EGFP) ¼ 205 s).

FIGURE 2 Fluorescence lifetime stability of mTFP1 in the presence of

photobleaching. (A) Five mTFP1 fluorescent decay profiles acquired after

different exposure times using the TSCSPC method. All fluorescent decays

(blue curves) correspond to the same He-La cell exposed to Hg lamp illumi-

nation (3.5 W/cm2 at 440 nm) successively acquired after 0, 90, 180, 270,

360, and 450 s of exposure time. All curves present a similar slope regardless

of the exposure time to the Hg lamp. The fits were obtained by using

a discrete single exponential model (black lines corresponding to 2.77,

2.75, 2.72 and 2.62 ns), and the residues are also presented in the upper

panel. (B) Calculated mTFP1 lifetimes for each fluorescent decay depicted

in Fig. 2 A using a single exponential fit as a function of percent of photo-

bleaching are presented.

Biophysical Journal 97(8) 2368–2376
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other proteins, such as CFP, that present photoconversion

and thus a complex fluorescence decay profile (12). Here,

we show that photobleaching has no significant effect on

the mTFP1 lifetime. Taken together, these results show

that mTFP1 as donor is a good candidate for FRET-FLIM

experiments.

Characterization of the fraction of donor
in interaction for different FP tandems

FP tandems are usually used as FRET standards (10–12).

Theoretically, all donors should interact with their corre-

sponding acceptors. The measured FRET efficiency would

then vary only as a result of different Förster distances, R0

values, and/or orientations between electronic transition

moments of donor and acceptor. However, by using the

FRET-FLIM technique, which allows simultaneous calcula-

tion of the fraction of donor in interaction, fD, and transfer

efficiency, E, previous studies have shown that the fraction

of donor FP in these tandems is far from being one

(9,14,20). Hence, a characterization of the best FRET couple

should be based on a careful fD determination.

To determine fD for a set of different tandem constructs,

we performed FRET experiments using time-domain pico-

second FLIM. All tandems were constructed using the

same peptide linker between donor and acceptor FPs.

EGFP and mTFP1 were chosen as donors. As acceptors

we used mCherry, mStrawberry, mRFP1, TdRed, and Halo-

Tag (TMR) for EGFP, and mOrange and EYFP for mTFP1.

As a result of FRET, all tandems show faster donor fluores-

cence decays than the corresponding donor alone. The fluo-

rescence decay of tandems did not exhibit monoexponential

decay, which means that the donors did not transfer their

energy to the acceptors in identical ways. First, we analyzed

the donor fluorescence decay profile using a discrete double

exponential model (see Eq. S1 in the Supporting Material).

In the double exponential model, the long lifetime was

fixed to the lifetime of the donor alone, tD (tD ¼ 2.49 5

0.02 ns (n ¼ 10) for EGFP, and 2.83 5 0.02 ns (n ¼ 10)

for mTFP1), and the short lifetime corresponds to the

FRET lifetime, tF. The transfer efficiency (E) was calculated

from previous knowledge of tF and tD (Eq. S4 in the Sup-

porting Material). The fD and E values for all tandems

analyzed are presented in Table 1. Of interest, as expected

by the weak variation of different R0 values obtained using

different FPs and the same peptide linker, all tandems

analyzed exhibited similar E values (Table 1). In contrast,

fD values differed from tandem to tandem. Tandems formed

by EGFP linked to monomeric red acceptors (e.g., mCherry-

EGFP tandem; Fig. 3 A) showed fD values no higher than

0.45 (Table 1). We also tested a tandem formed by Halo-

Tag-EGFP, using trimethyl rhodamine (TMR) as a ligand,

in an attempt to increase fD, since TMR is an organic fluoro-

phore and HaloTag protein maturation differs from that of

FPs. We could only obtain fD values of 0.27 with short ligand

incubation times (15 min) and 0.45 with longer times (24 h).

It was previously shown that multimeric red acceptors

increase FRET efficiency (28). Here, we were able to

increase fD up to 0.77 when we used a tandem formed by

EGFP linked to two red acceptors (TdRed-EGFP). This

TABLE 1 Fraction of interacting donor (fD) and FRET

efficiency (E) for tandems using a discrete double exponential

model with fixed donor

Tandem fD E

TdRed-EGFP 0.77 5 0.14 0.64 5 0.01

mRFP1-EGFP 0.26 5 0.08 0.56 5 0.02

HaloTag(TMR)-EGFP 0.23 5 0.09 0.56 5 0.04

HaloTag(TMR)-EGFP* 0.39 5 0.06 0.51 5 0.05

mStrawberry-EGFP 0.37 5 0.07 0.58 5 0.02

mCherry-EGFP 0.45 5 0.02 0.58 5 0.03

mTFP1-mOrange 0.37 5 0.01 0.68 5 0.02

mTFP1-EYFP 0.71 5 0.01 0.61 5 0.08

Standard deviation was calculated for a population of five different cells for

each tandem. HaloTag(TMR)-EGFP experiments were obtained with ligand

(TMR) incubation of 15 min, whereas for HaloTag(TMR)-EGFP* the incu-

bation time was 24 h.

FIGURE 3 Donor fluorescence decay and fit using

a discrete double exponential with fixed donor for dif-

ferent tandems. (A) Fluorescence decay of mCherry-

EGFP tandem is better described with a double exponential

model. Fluorescence decay profile for EGFP alone (green)

using TSCSPC extracted from the whole cell is fitted with

a single exponential (black line). Fluorescence decay

profile for mCherry-EGFP (red) is fitted with a single

and a double discrete double exponential (black lines).

The residues of the fit are presented in the upper panel.

(B) Comparison of the effect of EYFP and mOrange on

the donor fluorescence decay for mTFP1 tandems. Fluores-

cence decay profiles for mTFP1 (blue), mTFP1-mOrange

(orange) and mTFP1-EYFP (yellow) using TSCSPC

extracted from the whole cell are fitted using a single expo-

nential model (for mTFP1 alone) and a double exponential

model (for tandems). The residues are shown in the upper

panel.

Biophysical Journal 97(8) 2368–2376
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increase is related to the higher probability of transferring

either the first or second acceptor into the same tandem.

However, the steric hindrance of a twofold larger FP is

less convenient for biological applications, and the strategy

of increasing the number of acceptors to increase the fD
does not seem to be a good choice. Fluorescence decay

profiles obtained from tandems using mTFP1-mOrange

and mTFP1-EYFP in comparison with mTFP1 alone are

shown in Fig. 3 B. Even though the fluorescence decay of

mTFP1-mOrange is faster than that of mTFP1 alone, one

can see a remarkable difference for mTFP1-EYFP. In fact,

similar fD values were found for mTFP1-mOrange in com-

parison with monomeric red acceptor-EGFP tandems, and

although E values were the highest (E ¼ 0.68), this had no

effect on fD. Only mTFP1-EYFP showed a big increase in

fD (0.70) and is by far the best tandem in terms of fD (if

we exclude multimeric acceptors). It is possible that the

use of Venus and mCitrine combined with mTFP1 could

improve our results, since these variants present a lower

pKa and hence are more pH-resistant than EYFP (29).

fD determination depends on the spectroscopic
heterogeneity of the acceptor population

The relatively low fD values found for all tandems, particu-

larly for red acceptors, could be a result of 1), photo-induced

processes; 2), a possible proteolysis phenomenon; 3), the

maturation time (30) and/or overexpression of the FP

(11,31) leading to misfolded proteins; and 4), an intrinsic

spectroscopic heterogeneity of the acceptor population. In

the first case, previous studies have revealed the existence

of photo-induced dark states in different FPs (14,32,33). In

our case, this situation is unlikely because of the small ratio

of the donor’s cross section to the acceptor’s cross section of

the excitation spectra, the small extinction coefficient of the

different acceptors used, and the low light excitation used to

avoid cytotoxicity. In addition, the same fD ratio was found

for different power excitations, as well as in one photon

and two photon excitations. Another reason for the low fD
values could be proteolysis of the linker. We conducted

several experiments using Western blot analysis (data not

shown) and found no evidence of cleavage. Moreover,

it was previously shown by others (20) that dual-color

photon-counting histogram analysis of a tandem EGFP-red

acceptor tandem (EGFP-mRFP) gave a fraction of interact-

ing donor of ~0.40. They also found that all red acceptors

were associated with EGFP, excluding the possibility of

proteolysis. The fact that fD was increased by a factor of 2

when fD was quantified for the tandem EGFP-TdRed (using

two red acceptors) also points to the absence of cleavage. As

for the third case, in which different maturation rates for

donor and acceptor were considered, we found that different

maturation rates had a minor effect on fD quantification by

stopping protein production using cycloheximide (Fig. S1).

The maturation process involves folding of the protein, cycli-

Biophysical Journal 97(8) 2368–2376
zation of a tripeptide motif, and oxidation of the cyclized

motif (34). These chemical processes are strongly dependent

on the FP family, and EGFP-like proteins may have faster

and more effective maturation rates than other red FPs.

This explains why the mTFP1-EYFP couple is by far the

most effective one in terms of fD. Since EYFP belongs to

the EGFP family, we believe it may have a faster and

more efficient maturation rate than FPs belonging to the

mFruit family (35). Therefore, the heterogeneity of the

acceptor population is smaller in the mTFP1-EYFP tandem.

Finally, it is likely that an intrinsic spectroscopic heteroge-

neity exists, since the maturation time by itself cannot

explain this phenomenon. We hypothesize that our model

contains two homogeneous populations of donors: one that

is engaged in FRET and one that is not. It is worth noting

that this model does not consider a hypothetical distribution

of FRET efficiencies. In the case of having a distribution of

FRET efficiencies, which would be the common situation

when considering an intrinsic spectroscopic heterogeneity

of the acceptor, the model cannot take into account this

distribution, and the result, as mentioned above, will be

two subpopulations: 1) one corresponding to the fraction

of donor engaged in FRET, which would be the distribution

with high E; and 2) a population in which FRET does not

occur and therefore remains undisturbed, which would corre-

spond to the population with a very low E.

Comparative analysis using discrete
and stretched exponential models

The above-described discrete double exponential approach,

in which the donor lifetime is fixed to a previously known

or calculated value, implies that there is only one possible

FRET lifetime and hence one population of interacting

proteins. If instead of having a fixed donor value, both life-

times are left free to vary, it is considered a model in which

the two exponentials account for different FRET lifetimes

corresponding to different interacting populations (Eq. S3 in

the Supporting Material). We compared the different fitting

models from a representative decay of mCherry-EGFP and

mTFP1-EYFP (Table 2). For mCherry-EGFP, we found

a long lifetime of 2.44 ns instead of the fixed value of 2.50

ns and a short lifetime of 1.03 ns instead of 1.10 ns. The

normalized preexponential factors remained very similar.

For mTFP1-EYFP, we found a long lifetime of 2.51 ns instead

of the fixed value of 2.80 ns and a short lifetime of 0.91 ns

instead of 1.14 ns. Here, the normalized preexponential

factors are slightly different, with the long lifetime contribu-

tion being 0.39 instead of 0.27. In this model, for the two

tandems, the fluorescence transfer rates from the donor to

the two possible acceptor states would result in two FRET

lifetimes: one very close to what was previously considered

the donor lifetime (t1), and a shorter one (t2) that gives rise

to two FRET efficiencies (E1 and E2), in accordance with

the work of Wu et al. (36) for mCherry-EGFP. We note,
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TABLE 2 Comparison of different fitting models for FRET determination using tandems

Bi-exp. tD fixed Bi-exp. Bi-exp. tF stretched mfD approach

Tandem A1 tD A2 tF A1 t1 A2 t2 A1 tD A2 tF b hti tD mfD

mCherry-EGFP 0.49 2.50F 0.51 1.10 0.52 2.44 0.48 1.03 0.45 2.49 0.55 1.01 0.90 2.20 2.45 0.33

mTFP1-EYFP 0.27 2.80F 0.73 1.14 0.39 2.51 0.61 0.91 0.07 2.83 0.93 1.02 0.74 2.05 2.77 0.65

Fit values obtained by applying different double exponential models and mfD for two single cells expressing the tandems mCherry-EGFP and mTFP1-EYFP,

respectively. The first model is used with a discrete fixed donor lifetime. The second model is used with free discrete lifetimes. The third model is used with

a discrete fixed lifetime for the donor and a stretched approach for the FRET lifetime. The fourth model is mfD calculated from the mean lifetime (see Materials

and Methods).
however, that the difference between fixing the donor lifetime

or leaving it free is not statistically significant (for example,

the difference in c2 for both models using the mCherry-

EGFP tandem was only ~2%).

The analysis of the fluorescence decay profile utilizing

discrete exponential components can be enlarged by consid-

ering different orientations for donor and acceptor, and thus

a continuous distribution of possible tF values (Eq. S2 in the

Supporting Material). The stretched exponential model takes

into consideration a range of possible fluorophore environ-

ments that result in different intensity decays (37), or even

different protein conformations that can produce a range of

different lifetimes (24,38). We used a two-species model in

which the donor lifetime was considered discrete (when

using the stretched exponential, we found that b ¼ 1, not

fixed), whereas the FRET lifetime was ‘‘stretched’’ (13,37)

corresponding to the distribution of the possible orientations

for the FRET phenomenon. Fitting of the representative

decays of mCherry-EGFP and mTFP1-EYFP was carried

out using the stretched model (Table 2). For mCherry-

EGFP, we found a long lifetime of 2.49 ns instead of the

fixed value of 2.50 ns and a short lifetime of 1.01 ns instead

of 1.10 ns. The normalized preexponential factors increased

from 0.51 to 0.55. For mTFP1-EYFP, we found a long life-

time of 2.83 ns instead of the fixed value of 2.80 ns and a

short lifetime of 1.02 ns instead of 1.14 ns. Here, the normal-

ized preexponential factors increased dramatically, with a

short lifetime contribution up to 0.93. A confidence-plot

analysis of these two tandems shows that only mTFP1-

EYFP presents a minimal c2 as a function of b (the stretched

exponent), which is not the case for mCherry-EGFP

(Fig. S2). This suggests that the stretched analysis is an alter-

native only for mTFP1-EYFP. In this case, high fD values

(close to one) are found using the stretched exponential

approach, which raises questions regarding the occurrence

and extent of a spectroscopic heterogeneity of the acceptor

population and/or a certain distribution of the orientation

between donors and acceptors.

Quantitative FRET by fast FLIM acquisition
is improved by using mTFP1 as a donor

Fast acquisitions can be performed using the TriM-FLIM

system. In a previous work (9), we were able to obtain quan-

titative information from the decrease in the donor mean life-
time by collecting only a few photons in very fast acquisition

times. For comparison, fast acquisitions were performed in

He-La cells expressing 1), mTFP1 alone or mTFP1-EYFP

in tandem; or 2), EGFP alone or mCherry-EGFP in tandem.

When multifocal multiphoton microscopy (TriMScope) is

used, the choice of the parameters (e.g., the degree of paral-

lelization and number of foci) depends on the saturation,

photodamage, and available laser power (39). With EGFP

used as a donor, the TriMScope was optimized using four

beams at 940 nm (with a laser pulse of ~100 fs and pulse

frequency of 80 MHz). The average power at the exit of

the objective was 150 mW. With these values, no photodam-

age or significant photobleaching was observed and a good

signal/noise ratio was obtained, allowing acquisition of the

five sequentially gated images in 15 s. Similarly, when

mTFP1 was used as a donor, no photodamage or significant

photobleaching was obtained with 16 beams at 830 nm

(average power at the exit of the objective: 240 mW), and

a signal/noise ratio comparable to that obtained with EGFP

was measured. mTFP1 FLIM images were also measured

in 15 s, and the results indicate that this donor can be used

with the same reliability as EGFP in terms of fast acquisition.

Under the same conditions, we calculated the mean life-

time as a function of time for each experiment; a representa-

tive result is shown in Fig. 4. The time curves present the

average mean lifetime obtained from identically sized

regions of interest in each corresponding cell. The average

mean lifetime diminution for mTFP1 alone compared to

mTFP1-EYFP goes from 2.77 5 0.03 ns (n¼ 5; each exper-

iment is a time lapse of 20 acquisitions) for mTFP1 alone to

2.05 5 0.05 ns (n ¼ 5), whereas for EGFP alone compared

to mCherry-EGFP, it goes from 2.45 5 0.05 ns to 2.20 5

0.04 ns (n ¼ 5). The average mean lifetime diminution for

the mTFP1-EYFP tandem corresponds to a minimal mean

fraction of donor in interaction (mfD) of 0.65 5 0.05 (n ¼
5), in accordance with an fD value of 0.71 5 0.01 (n ¼ 5;

Table 1). This mean mfD value is two times larger than the

mean mfD for the mCherry-EGFP tandem (0.33 5 0.06,

n ¼ 5), as expected. Together, these results show that

mTFP1 combined with EYFP is more suitable in terms of

fD than the commonly used EGFP and red FP acceptor for

quantitative FRET by fast FLIM acquisition.

To test the performance of mTFP1 in comparison with

EGFP using fast FLIM with fusion proteins, we attached

mTFP1 and EGFP to the histone H4. Using these constructs
Biophysical Journal 97(8) 2368–2376
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(EGFP-H4 and mTFP1-H4), separately expressed in live

HEK293 cells, we performed very fast acquisitions (3 s for

each stack of five time-gated images), and we observed

that in the case of mTFP1-H4 there was some bleaching

(Fig. 5 A). Fig. 5 A shows the intensity values for the first

time-gated image of two representative and independent

time-lapse experiments for EGFP-H4 and mTFP1-H4,

respectively. Both intensity profiles began with similar inten-

sity values (900 gray levels) and one can see that there is an

intensity diminution as a function of time associated with the

mTFP1-H4 experiment (intensity decreases from 900 gray

levels to 780). In the case of EGFP-H4, no intensity diminu-

tion was observed. The experimental conditions for these

experiments were the same as for the experiments with

EGFP alone and mTFP1 alone. In the case of chromatin

constituent protein (H4), an immobile protein, the diffusion

is restricted and mTFP1 appears to have less-robust photo-

stability than EGFP. We also calculated the mean lifetimes

for each of the 100 acquisitions obtained in the previous

time-lapse experiments (Fig. 5 B). A small decrease in the

mean lifetime was seen for the mTFP1-H4 construct (from

2.63 to 2.53 ns), which may have been caused by the change

in the signal/noise ratio produced by the small diminution in

the intensity values as a function of time. This is because

when the last time-gated images are too noisy and their inten-

sity is close to zero, the calculated mean lifetime diminishes

(according to the mathematical definition (9)).

We have seen that fD determination is highly dependent on

the model chosen. Therefore, the minimal fraction of donor in

interaction (mfD) (9) is a reliable parameter for quantifying

protein-protein interaction in living cells. This is especially

relevant for studying spatiotemporal biological processes,

since the mfD variation is directly related to the absolute vari-

FIGURE 4 Stability of the mean lifetime during time-lapse measurement

of the mCherry/EGFP and mTFP1/EYFP couple. Representative fast acqui-

sitions of 15 s using the TriM-FLIM system are presented for the two

couples. Identical regions of interest were chosen to calculate the average

mean lifetime for each image of a time lapse of 20 acquisitions. The average

mean lifetime for EGFP alone and mCherry-EGFP tandem was 2.45 and

2.23 ns, respectively (this decrease is stressed by the small arrow on the

left-hand side of the graph). The average mean lifetime for the mTFP1alone

and mTFP1-EYFP tandem was 2.71 and 2.08 ns, respectively (this decrease

is stressed by the big arrow on the right-hand side of the graph).

Biophysical Journal 97(8) 2368–2376
ation in protein-protein interaction. Of interest, when the

stretch model was used, fD was always minimal for b¼ 1, cor-

responding to a discrete exponential (data not shown). Since

mfD is defined assuming a discrete double exponential model,

this supports the use of a minimal fraction of donor in interac-

tion. This is especially important in the context of fast acqui-

sitions in which only a limited number of photons are collected

(e.g., 100 per pixel) and therefore analyses based on fit are no

longer possible. In this respect, we truly believe that mfD
stands alone as a robust parameter for quantitative analysis.

CONCLUSIONS

We have shown that in quantitative FRET-FLIM experi-

ments, the fraction of interacting donor is far from being

one, even for ideal cases (e.g., intramolecular interactions

FIGURE 5 Photostability comparison between EGFP-H4 and mTFP1-

H4. Upper panel: Intensity profile of EGFP-H4 and mTFP1-H4 determined

in monotransfected cells using the TriM-FLIM. A 300 s time-lapse intensity

profile (five time-gated images taken in 3 s) shows the photostability for

mTFP1-H4 and EGFP-H4. Intensity values for mTFP1-H4 decrease as

a function of time from 900 to 780 gray levels while EGFP-H4 remains

constant. Lower panel: Mean lifetime values as a function of time for

EGFP-H4 and mTFP1-H4. A small decrease in the mean lifetime is observed

for mTFP1-H4 (from 2.63 to 2.53 ns) due to the diminution in the signal/

noise ratio.
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with FRET standards). We have also proposed what to our

knowledge is a new fluorophore couple (mTFP1-EYFP)

for quantitative experiments and compared it with the

most commonly used couple, EGFP-mCherry. We found

that for highly dynamic systems, mTFP1-EYFP is the best

couple—at least for highly mobile proteins, since no

photo-induced changes are observed even during fast acqui-

sitions and the mTFP1-EYFP couple gives higher fD values.

However, when we compared H4-EGP with H4-mTFP1 (a

biological example in which the fusion proteins are more

immobile compared to EGFP and mTFP1 alone), we found

that the fluorescence intensity of EGFP-H4 was more stable

thorough time than that of mTFP1-H4. Together, these

results indicate that mTFP1/EYFP is an attractive couple

for quantitative FRET-FLIM experiments, but attention

should be paid depending on the biological example under

investigation. Finally, we stress the convenience of using

mfD in biological applications because 1), it is more reliable

than other fitting approaches; and 2), the relative mfD change

as a function of time is equivalent to the absolute variation of

protein-protein interaction as a function of time.
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2001. Application of the stretched exponential function to fluorescence
lifetime imaging. Biophys. J. 81:1265–1274.

25. Benninger, R. K. P., O. Hofmann, J. McGinty, J. Requejo-Isidro, I.
Munro, et al. 2005. Time-resolved fluorescence imaging of solving
interactions in microfluidic devices. Opt. Express. 13:6275–6285.
Biophysical Journal 97(8) 2368–2376

http://www.biophysj.org/biophysj/supplemental/S0006-3495(09)01307-1
http://www.biophysj.org/biophysj/supplemental/S0006-3495(09)01307-1


2376 Padilla-Parra et al.
26. Villoing, A., M. Ridhoir, B. Cinquin, M. Erard, L. Alvarez, et al. 2008.
Complex fluorescence of the cyan fluorescent protein: comparisons with
the H148D variant and consequences for quantitative cell imaging.
Biochemistry. 47:12483–12492.

27. Becker, W., A. Bergmann, M. A. Hink, K. König, K. Benndorf, et al.
2004. Fluorescence lifetime imaging by time-correlated single-photon
counting. Microsc. Res. Tech. 63:58–66.

28. Peyker, A., O. Rocks, and P. I. Bastiaens. 2005. Imaging activation of
two Ras isoforms simultaneously in a single cell. ChemBioChem. 6:
78–85.

29. Palmer, A. E., M. Giacomello, T. Kortemme, S. A. Hires, V. Lev-Ram,
et al. 2004. Ca2þ indicators based on computationally redesigned
calmodulin-peptide pairs. Chem. Biol. 13:521–530.

30. Subach, F. V., O. M. Subach, I. S. Gundorov, K. S. Morozova, K. D.
Piatkevich, et al. 2009. Monomeric fluorescent timers that change color
from blue to red report on celluar trafficking. Nat. Chem. Biol. 5:
118–126.

31. Los, G. V., L. P. Encell, M. G. McDougall, D. D. Hartzell, N. Karassina,
et al. 2008. HaloTag: a novel labeling protein technology for cell
imaging and protein analysis. ACS Chem. Biol. 3:373–382.

32. Hendrix, J., C. Flors, P. Dedecker, J. Hofkens, and Y. Engelborghs.
2008. Dark states in monomeric red fluorescent proteins studied by fluo-
Biophysical Journal 97(8) 2368–2376
rescence correlation and single molecule spectroscopy. Biophys. J.
94:4103–4113.

33. Eggeling, C., J. Widengren, L. Brand, J. Schaffer, S. Felekyan, et al.

2006. Analysis of photobleaching in single-molecule multicolor excita-

tion and Förster resonance energy transfer measurements. J. Phys.
Chem. A. 110:2979–2995.

34. Qiang Dong, G., and D. R. McMillen. 2008. Effects of protein matura-

tion on the noise in gene expression. Phys. Rev. E. 77:021908.

35. Shu, X., N. C. Shaner, C. A. Yarbrough, R. Y. Tsien, and S. J. Reming-

ton. 2006. Novel chromophores and buried charges control color in

mFruits. Biochemistry. 45:9639–9647.

36. Wu, B., Y. Chen, and J. D. Müller. 2009. Fluorescence fluctuation spec-

troscopy of mCherry in living cells. Biophys. J. 96:2391–2404.

37. Maliwal, B. P., J. Kusba, and J. R. Lakowicz. 1995. Fluorescence

energy transfer in one dimension: frequency-domain fluorescence study

of DNA-fluorophore complexes. Biopolymers. 35:245–255.

38. Alcala, J. R. 1994. The effect of harmonic conformational trajectories

on protein fluorescence and lifetime distributions. J. Chem. Phys.
101:4578–4584.

39. Bewersdorf, J., R. Pick, and S. W. Hell. 1998. Multifocal multiphoton

microscopy. Opt. Lett. 23:655–657.


	Quantitative Comparison of Different Fluorescent Protein Couples for Fast FRET-FLIM Acquisition
	Introduction
	Materials and Methods
	Plasmid constructs and cell culture
	Wide-field fluorescence microscopy
	Time-domain picosecond FLIM and data analysis
	Multifocal multiphoton FLIM and data analysis

	Results and Discussion
	mTFP1 shows adequate fluorescence properties for quantitative FRET-FLIM
	Characterization of the fraction of donor innbspinteraction for different FP tandems
	fD determination depends on the spectroscopic heterogeneity of the acceptor population
	Comparative analysis using discrete andnbspstretched exponential models
	Quantitative FRET by fast FLIM acquisition isnbspimproved by using mTFP1 as a donor

	Conclusions
	Supporting Material
	Supporting Material
	References


