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Abstract
Previous studies have shown that treatment of mammalian cells with phospholipase A2 (PLA2)
antagonists cause the normally interconnected Golgi ribbon to break up into large fragments of
stacked Golgi cisternae (“mini-stacks”) that remain located in the juxtanuclear region. Using the
reversible PLA2 antagonist, ONO-RS-082 (ONO) and live-cell, time-lapse microscopy to image the
Golgi reassembly process, we found that Golgi mini-stacks underwent a burst of membrane tubule
formation following washout of ONO: before washout only 4.3 ± 3.8 tubules/cell/10 min were
formed, whereas after washout 29.9 ± 11.9 tubules/cell/10 min formed. These membranes tubules
formed bridges between physically separate mini-stacks, thus mediating their coalescence into intact
Golgi ribbons. Formation of inter-stack tubules and an intact Golgi ribbon was also facilitated by
microtubules because treatment with nocodazole significantly inhibited both processes. This
microtubule-dependent process was also dependent on dynein because the dynein inhibitor
nordihydroguaiaretic acid (NDGA) inhibited reassembly. These studies show that a late stage of
Golgi assembly occurs via membrane tubules, whose formation is dependent on PLA2 activity and
microtubules. Considering these results together, we concluded that the maintenance and assembly
of normal Golgi architecture is dependent on the PLA2-mediated, dynamic formation of inter-Golgi
membrane tubules.
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INTRODUCTION
The Golgi complex in many mammalian cell types forms a large interconnected ribbon, usually
situated in a juxtanuclear region. The mammalian Golgi complex also reversibly disassembles
during mitosis [1;2], which can be mimicked to some extent by a variety of compounds
including brefeldin A (BFA) [3], nocodazole [4], and PLA2 antagonists [5;6]. In all of these
cases, reassembly involves a late step during which physically disconnected Golgi mini-stacks
coalesce into an intact ribbon. Reassembly from mitotic breakdown appears to involve thin
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membrane tubules of uniform diameter (60-80 nm) and varying lengths that help to bridge
physically separate mini-stacks [7]. Similarly, static fluorescence images suggest that during
recovery from reversible PLA2 antagonists, such as ONO-RS-082 (ONO), membrane tubules
sprout from Golgi mini-stacks and appear to be responsible for bringing mini-stacks together
into an intact ribbon [6]. These results strongly suggested that maintenance and reassembly of
an intact Golgi complex requires PLA2-mediated formation of membrane tubules[8]. Precisely
how dynamic these membrane tubules are during reassembly is unclear.

The architecture of the mammalian Golgi complex is influenced by interactions with
microtubules and their associated motor proteins. The juxanuclear positioning of the Golgi
complex near the microtubule-organizing center (MTOC) is dependent on constant centripedal
movement of Golgi membranes by the minus-end directed motor dynein [9;10]. In addition,
the formation of membrane tubules from the Golgi complex is facilitated by microtubules and
associated motor proteins. For example, BFA-stimulated membrane tubules are greatly
facilitated by microtubules and kinesin [11;12;13]. It is unknown if microtubules play a role
in the late membrane tubule-dependent coalescence of Golgi mini-stacks into intact ribbons.
The extent to which membrane tubules formed during reassembly of the Golgi complex utilize
microtubules is unknown.

Here we show by live cell imaging that following washout of ONO, Golgi mini-stacks undergo
a notable burst of membrane tubule formation, which is greatly facilitated by microtubules and
dynein activity.

MATERIALS AND METHODS
HeLa cells stably expressing GFP fused to galactosyltransferase (GalT-GFP) were used for all
experiments and were the kind gift of Brian Storrie. Cells were grown in minimal essential
media (MEM) containing 10% Nu-Serum (BD Biosciences) in an atmosphere of 95% air, 5%
CO2. ONO-RS-082 (ONO) and nordihydroguaiaretic acid (NDGA) were obtained from
Biomol, Plymouth, PA). ONO and NDGA were prepared as 10 mM stock solutions in DMSO
and stored at −20·C. They were freshly prepared in MEM to 10 μM before use. Nocodazole
was used at 6 μg/ml in MEM. For all experiments, cells were washed 3 times in MEM without
serum and incubated with freshly prepared 10 μM ONO-RS-082 in MEM for varying periods
of time at 37°C. Cells were then allowed to recover as indicated and viewed immediately. For
the nocodazole experiments, a frozen stock was prepared and freshly diluted to 6 μg/ml before
each experiment. All imaging was done on a Perkin-Elmer Ultraview (Waltham, MA) or
Intelligent Imaging Innovations (Denver, Colorado) spinning disk confocal microscope. Golgi
membrane tubules were quantified by frame-by-frame analyses through 10 min movies.
Quantifying the fragmentation of intact Golgi ribbons into separate mini-stacks and expression
as a Fragmentation Index was performed as described [14].

RESULTS AND DISCUSSION
ONO-Induced Golgi Fragmentation and Recovery by Membrane Tubule Formation

As previously shown [5;6], treatment with the reversible PLA2 antagonist ONO for 45 min
caused the intact Golgi ribbon to break up into fragments of disconnected mini-stacks (Fig.
1A, B). Time-lapse movies from live cell imaging reveal that the intact ribbon slowly comes
apart into separated fragments; however, the mini-stacks mostly retain their juxtanuclear
positions (Supplemental video 1). To image the recovery process, cells were treated with 10
μM ONO for 45 min, and then washed free of the drug (or kept in its presence) for various
periods of time. Full recovery of an intact Golgi ribbon was seen by 45 min of washout (Fig.
1C). As observed by live cell imaging, at all time points during washout, multiple tubules were
seen sprouting from Golgi mini-stacks, sometimes joining adjacent ones, and other times
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traveling unconnected from one stack to another (Fig. 2; Supplemental movie 2). These tubules
were seen to extend up to 1-2 μm in length. In contrast, when cells were maintained in the
presence of ONO, very few tubules were seen (Fig. 3A-C; Supplemental movie 3). From the
time-lapse movies we determined the number of membrane tubules that formed from the Golgi
mini-stacks/unit time and found that washout of ONO resulted in a substantial burst of tubule
formation (Table I). Additional experiments have revealed the presence of more tubules (by
binning the images and adjusting the exposure levels) than was initially found, leading us to
conclude that the actual number of tubules formed during recovery is likely to be higher (data
not shown).

These studies are consistent with previous work, which suggested that following washout of
ONO, Golgi mini-stacks coalesce into an intact ribbon via membrane tubules [6]. However,
our live cell imaging studies underscore the remarkable capacity of Golgi membranes to form
tubules. The burst of membrane tubule formation following washout of ONO is consistent with
previous ideas that the assembly and maintenance of an intact Golgi ribbon requires the
dynamic formation of membrane tubules, which continuously probe the cytoplasm to “search
and capture” for other Golgi membranes [6;8]. Fusion of membrane tubules with their targets
would facilitate the reassembly process. Currently, we do not know if the tubules are restricted
to homotypic fusion with targets, i.e., medial Golgi tubules only with medial Golgi targets, or
heterotypic fusion with other cisternae. Likewise, it is unclear if Golgi membrane fusion during
recovery from mitosis is restricted to homotypic fusion, or if more relaxed interactions are
permitted [15].

Microtubules are Required for Golgi Reassembly During Washout from ONO
In several cases the formation of Golgi membrane tubules is greatly facilitated by microtubules
and microtubule motor proteins [4]. In addition, other studies have suggested that reassembly
of disrupted Golgi ribbons is dependent on microtubules [16;17]. Therefore, we asked if Golgi
reassembly and membrane tubule formation following washout from ONO is affected by the
microtubule depolymerizing drug nocodazole. Cells were first treated with ONO to fragment
the Golgi, and then washed free of the drug in the presence or absence of nocodazole. In the
presence of nocodazole, reassembly of an intact ribbon was significantly retarded (Fig. 3D, E),
similar to just maintaining cells in ONO. Live cell imaging was done to determine if membrane
tubules were similarly inhibited. Indeed, nocodazole treatment significantly reduced the
number of tubules seen to form during washout from ONO (Table 1; Supplemental Movie 4).

The microtubule-facilitated movement of Golgi membrane tubules during reassembly strongly
suggests the additional role of a microtubule motor. Given that interphase Golgi ribbons are
positioned near the MTOC by the activity of cytoplasmic dynein [9;10], we asked if dynein
might be involved in membrane tubule-mediated reassembly.

NDGA, a Dynein Inhibitor, Slows Reassembly Following ONO Washout
Previous studies have shown that NDGA inhibits anterograde trafficking from the ER thus
causing relocation of the Golgi complex and trans Golgi network (TGN) to the ER [18].
Originally, these affects were attributed to NDGA's activity as a lipoxygenase inhibitor.
However, more recent studies have shown that NDGA has pleiotropic effects on cells because
it causes abnormal, microtubule-dependent accumulation of dynein-dynactin complexes and
Golgi membranes at the MTOC [19]. We hypothesize that NDGA could influence reassembly
in opposite ways. Since it causes abnormal accumulation of dynein-dynactin complexes and
Golgi membranes at the MTOC, NDGA could accelerate recovery during ONO washout.
Conversely, NDGA could inhibit reassembly because dynein-dynactin complexes get stuck at
the MTOC and are then unavailable for normal function. Therefore, we asked if Golgi
reassembly during recovery from ONO treatment was sensitive to NDGA. Cells were treated
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with ONO to fragment the Golgi and then allowed to recover in the presence or absence of
NDGA (Fig. 4). In solvent controls, the Golgi reassembled with normal kinetics (Fig. 4C). In
contrast, in the presence of NDGA recovery was almost completely inhibited, as the Golgi
remained in fragmented mini-stacks (Fig. 4B, D). This inhibition by NDGA was reversible
following washout of the drug (data not shown).

We conclude from these experiments that reassembly of physically separate mini-stacks into
an intact Golgi ribbon requires PLA2 activity to induce membrane tubule formation and dynein-
dependent microtubule transport to complete the process. These results are also consistent with
the hypothesis that NDGA causes an accumulation of dynein-dynactin complexes that are
rendered unavailable for reassembly.

A role for phospholipid remodeling enzymes in regulating the structure and function of the
Golgi complex is becoming increasingly evident [20]. As we have shown here and elsewhere
[8], cytoplasmic PLA2 enzymes appear to play an important role in Golgi structure and function
by regulating membrane tubule formation. In addition, PLA2 enzymes have been shown to be
important for endosome tubule formation and endocytic trafficking [21;22] They could do so
by generating positive-curve inducing lysophospholipids for membrane bending [23] and by
providing for continual turnover of phospholipids to make phosphatidic acid and
diacylglycerol, which recruit effector proteins to Golgi membranes [24]. In addition, other
studies have shown that consumption of lysophospholipids by integral membrane
lysophospholipid acyltransferases also contribute to control of Golgi tubule formation [25;
26]. More specifically, lysophosphatidic acid acyltransferase 3 (LPAAT 3), which converts
lysophosphatidic acid to phosphatidic acid, negatively regulates the formation of Golgi
membrane tubules [14]. Thus, a continual cycle of PLA2- and LPAAT-mediated remodeling
of Golgi membranes appears to be important for normal structure and function [20].

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The reversible PLA2 antagonist, ONO, causes the Golgi complex to fragment into mini-stacks.
HeLa cells stably transfected with GalT-GFP were used for these and all subsequent figures.
(A) Control cells (B) Cells treated with ONO for 25 min. (C) Cell treated with ONO for 25
min and then washed free of the drug for 45 min. A time-lapse video of ONO-induced Golgi
fragmentation in live cells treated is provided as Supplemental Movie 1.
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Figure 2.
Recovery from ONO induces a burst of Golgi membrane tubule formation. Still images taken
from live cell movies of cells recovering from ONO treatment show a dramatic increase in
membrane tubules forming from Golgi mini-stacks (see Supplemental Movie 2). HeLa cells
stably transfected with GalT-GFP were treated with ONO for 45 min and then washed free of
ONO. The cells were placed back in MEM + serum for 20 min and then imaged. Numerous
tubules were observed (arrows). Insets show enlargement of boxed regions. Time intervals are
shown in the lower left.
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Figure 3.
Golgi membrane tubule formation during reassembly requires both PLA2 activity and
microtubules. (A-C) Cells maintained in the continuous presence of ONO produce few tubules.
Panels A-C were reproduced from Supplemental Movie 3. (D, E) Cells treated with ONO, but
then allowed to recover in the presence of nocodazole. Panels were reproduced from
Supplemental movie 4. In this experiment cells were treated with ONO for 45 min, nocodazole
(6 μg/ml) was added during the last XX min of ONO incubation, and then cells were washed
free of ONO but kept in the continuous presence of nocodazole. (D) Quantitation of Golgi
recovery expressed as a Fragmentation Index (100% = 100% of cells with fragmented Golgi
complexes; 0% = cells with normal Golgis.
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Figure 4.
The dynein modulator NDGA inhibits reassembly of the Golgi complex during washout from
ONO treatment. HeLa cells stably transfected with GalT-GFP were treated with ONO for 45
minutes and then washed free of ONO in the presence or absence of NDGA (10 μM). (A)
Control cells before ONO treatment. (B) Cells were allowed to recover from ONO in the
presence of NDGA for XX min. (C) Recovery from ONO in the absence of ONO for XX min.
(D) Quantitation of Golgi recovery in the presence or absence of NDGA.
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Table 1
Number of Golgi membrane tubules formed

Condition/Treatment Membrane tubules formed/cell/10′

Continuous presence of ONO 4.3 + 3.8
Washout from ONO 29.9 + 11.9
Washout + Nocodazole None detected
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