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Conspectus

Activity and selectivity are typically the first considerations when designing a drug. However,
absorption, distribution, metabolism, excretion, and toxicity (ADMET) are equally important
considerations. Peptides can provide a combination of potent binding and exquisite selectivity,
as evidenced by their pervasive use as enzymes, hormones, and signaling agents within living
systems. In particular, peptidic turn motifs are key elements of molecular recognition. They
may be found at the exposed surfaces of globular proteins, where they are available for binding
interactions with other peptides and small molecules.

However, despite these advantages, peptides often make poor drugs. The amide backbone is
subject to rapid enzymatic proteolysis, resulting in short half-lives. Furthermore, the ability of
the amide backbone to hydrogen-bond with water restricts its ability to cross membranes and,
consequentially, results in poor oral bioavailability. Accordingly, the development of non-
peptidic scaffolds that mimic peptidic turn motifs represents a promising means of converting
peptidic agents into more drugable molecules. In this Account, we describe the design and
synthesis of β-turn mimetics that use a β-D-glucose scaffold—the first use of a sugar scaffold
for this purpose.

Somatostatin (SRIF) is a small-protein (14 amino acid residues) human hormone; a shorter (6
amino acid residues) synthetic peptide, L-363-301, is a fully peptidal agonist. These two cyclic
peptides share the β-turn motif comprising Phe7-Trp8-Lys9-Thr10(D-Trp8 in the case of
L-363,301), of which the Trp and Lys residues in the i+1 and i+2 positions respectively are
critical for binding. In 1988, we initiated a program that tested and validated the then-novel
proposition that the β-D-glucose scaffold can mimic the β-turn in L-363,301. The β-D-glucose
scaffold proved to be an attractive mimic of a β-turn in part because it permits the convenient
attachment of amino acid side chains via facile etherification reactions, rather than carbon–
carbon bond formations; it is also an inexpensive starting material with well-defined
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stereochemistry. From the beginning, biological assays were used alongside physical
measurements to assess the relevance of the design. Our first two synthetic targets, compounds
6 and 7, bound the SRIF receptors on benchmark (AtT-20) cells, albeit weakly, consistent with
the objective of the design. Subsequently, a better ligand (8) and two congeners were found to
be agonists at the SRIF receptors, providing convincing evidence that the peptide backbone is
not required for receptor binding or signal transduction.

The unexpectedly high level of receptor affinity of selected analogs—as well as the fortuitous
discovery that our peptidomimetics were active against several chemically distinct receptors
—led us tohypothesize that these monosaccharides could access multiple potential binding
modes. Our later studies of this sugar scaffold confirmed this property, which we termed
pseudosymmetry, whereby multiple similar but non-identical motifs are displayed within a
single analog. We propose the presence of pseudosymmetry to be an element of privilege and
an advantage for lead discovery.

Introduction
Peptides play a fundamental role in biology. However, their use as therapeutics has been limited
by their poor pharmacokinetic properties.1 Peptides are subject to proteolysis, which results in
short biological half-lives even after parenteral administration. Furthermore, peptides have
poor bioavailability because of their poor cellular transport properties. Rapid proteolysis of
peptides can be overcome in several ways, including the use of amide surrogates, retro
enantiomeric peptides,2 or simplified cyclic peptides. Additionally, D-amino acids may be
incorporated.3 Stein noted that the cellular transport of organic compounds correlated inversely
with their ability to hydrogen bond with water, and concluded that solvation impedes transport
because the desolvation process during the extraction of a molecule into a lipid bilayer from
an aqueous phase requires energy.1c Similarly, Diamond and Wright found that 1,2-
cyclohexanediol crosses cell membranes more readily than 1,3-diols, a result attributed to the
fact that the former can form an intramolecular hydrogen bond, thus reducing solvation and,
in turn, decreasing the energy required for desolvation.1d More recently, we reported that β-
strands in which the peptide backbone is replaced by a pyrrolinone scaffold show enhanced
transport kinetics, presumably because of the reduced energetic cost of desolvation.4,5

The poor metabolic stability and transport properties associated with the backbone of potential
peptidal therapeutic agents led us to investigate the development of peptidomimetics.6 The
design of peptidomimetics was anticipated by Farmer, who proposed, but did not explore, the
then novel idea of replacing a peptide scaffold with a cyclohexane ring and attaching relevant
amino acid side chains to this construct.7 Subsequently, Bélanger and Dufresne implemented
this proposal, describing non-peptidic mimic 1 (Figure 1) of the enkephalins (see 4 and 5,
Figure 2) that incorporated the bicyclo [2.2.2]-octane scaffold.8 Later, Olson and collaborators
reported peptidomimetic 2 (Figure 1), which was designed to mimic the tripeptide thyroid
releasing hormone (TRH).9 Although 2 did not bind the endocrine receptor for which it was
designed, it showed oral activity in animal models of cognitive dysfunction.

Replacing the amide backbone with a nonpeptidal scaffold devoid of the capacity to hydrogen
bond with the receptor can succeed only if the hydrogen bonds between the amide backbone
of the peptide ligand and that of the receptor are not required for binding or signal transduction.
10 The enkephalins (4 and 5) are the endogenous peptide ligands for the morphine receptor.
11 The activity of the non-peptidic natural product morphine (3, Figure 2) provides compelling
evidence that an amide backbone is not always required for binding of peptidal receptor ligands,
or, indeed, for signal transduction by peptide hormones or neurotransmitters.7
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In contrast, ligands and inhibitors of proteolytic enzymes often take advantage of critical
backbone hydrogen bonds. The importance of these interactions has been well established by
X-ray crystallography,12 emphasizing the functional role of the amide backbone in enzymatic
catalysis. For example, backbone hydrogen bonds contribute to the optimal strict alignment of
proteolytic enzymes with their substrates and facilitate the efficient catalysis of the resulting
reactions. This does not preclude a role for induced fit, and, indeed, Kern et al. demonstrated
in NMR studies that rapid motion of one residue of cyclophilin A is required during catalysis.
12 In contrast with proteolytic enzymes, guanine nucleotide-binding protein coupled receptors
(GPCRs) interact with ligands through helical bundles in which hydrogen bonding
opportunities with ligands are largely unavailable.13

Our peptidomimetic program, initiated in 1988, employed monosaccharide scaffolds for the
attachment of amino acid-mimicking side chains via ether linkages.14 Supported by extensive
biological studies, our research has provided strong support for Farmer’s speculations.7

Somatostatin (SRIF)
Somatostatin (somatotropin release inhibiting factor, SRIF, see Figure 3) is a peptide hormone
that was isolated, characterized and synthesized by Guillemin, Rivier, Vale and coworkers at
the Salk Institute.15 SRIF is a cyclic tetradecapeptide which inhibits the release of several
physiologically important substances, including growth hormone, glucagon, insulin, and
gastric acid. SRIF is produced and released throughout the central nervous system and in major
peripheral organs, such as the stomach and pancreas.16 Within the nervous system, SRIF acts
as a neuromodulator, with physiological effects on neuroendocrine, motor, and cognitive
functions. At the periphery, SRIF is a modulator of endocrine and exocrine functions and also
regulates the differentiation and proliferation of normal and tumor cells.17

Somatostatin is present in two forms, SRIF-14 and SRIF-28, which contain 14 and 28
(SRIF-28) amino acids, respectively.18 Both are formed by selective cleavage of
prosomatostatin, a common precursor, and bind to SRIF receptors that are coupled to
heterotrimeric guanine nucleotide-binding proteins. The SRIF receptors thus belong to the
GPCR family.13 Five human SRIF receptor subtypes (hSSTR1–5) have been cloned and
expressed, and the localization of specific receptor subtypes within the body has facilitated the
elucidation of their individual functions.18,19 It is worth noting that the lack of specificity of
SRIF for the receptor subtypes does not result in undesirable physiological side effects since
SRIF is released in close proximity to the intended receptors and rapidly metabolized.

Since peptides normally exist in solution as an equilibrium mixture of conformers, knowing
the bioactive conformation is invaluable when seeking to simplify the hormone or design a
peptidomimetic. Building on SARs established at the Salk Institute,20 Merck scientists
proposed a bioactive conformation of SRIF which has served as the basis for subsequent
research related to this hormone.21 The fact that D-Trp8-SRIF is ten-fold more potent suggested
that Trp8 might occupy the i+1 position of a β-turn.20 This hypothesis was based on theoretical
calculations by Ramachandran establishing that a D-amino acid in the i+1 position of a β-turn
stabilizes the motif,22 and subsequently validated by Veber and collaborators.21 This
information, together with extensive SARs elucidated at both the Salk Institute23 and Merck,
24 revealed that the residues required for binding and signal transduction are contained in the
tetrapeptide sequence Phe7-Trp8-Lys9-Thr10 that defines the β-turn motif. Arison,
Hirschmann, Veber, and their collaborators recognized that the bioactive conformation,
especially in the D-Trp8 series (possessing a type II′ β-turn), places the indole side chain of
Trp8 in close proximity to the side chain of Lys9.21,25 Extensive NMR studies in combination
with the SAR data led the Merck team to propose that the bioactive conformation of SRIF
resembles more closely the solution conformation of the D-Trp diastereomer.25
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Constrained SRIF Analogs
The importance of SRIF in physiology has suggested a potential therapeutic role for a longer
acting analog or peptidomimetic of this hormone.26 Having established the bioactive
conformation of SRIF, the Merck team set out to develop a lower molecular weight peptide in
hopes of improving both stability toward proteases and oral bioavailability.1b Veber and
associates designed and synthesized cyclic hexapeptides, known at the time to be metabolically
stable, that incorporated the critical β-turn.21 Due to limits in molecular modeling capabilities,
the choice of the dipeptide Phe-Pro linkage in L-363,301 (Figure 3) was the result of a
systematic variation of the dipeptide linker unit. Importantly, the side chains of the critical
Phe7-D-Trp8-Lys9-Thr10 β-turn of L-363,301 displayed the same orientation as in D-Trp8-
SRIF. Later, the more potent cyclic hexapeptide MK-678 (Figure 4) was prepared.27 The
Phea residue in both analogs was found to be important and thought to mimic the hydrophobic
region defined by amino acids Asn5 and Thr12 of SRIF. Clinical evaluation of MK-678
confirmed the hoped-for longer duration of action (>4 hours) when administered orally.1a

However, the oral bioavailability of MK-678 is only 1–3%. In contrast, Sandoz discovered and
successfully developed the SRIF octapeptide analog octreotide (Figure 4) for cancer
chemotherapy and the treatment of acromegaly.28 Octreotide has to be administered
parenterally, but provides adequate plasma half-lives.

The observation that even small, metabolically stable peptides such as MK-678 lack adequate
oral bioavailability suggested to Hirschmann in the 1980s that the amide backbone may be at
least partially responsible for the poor transport properties. Therefore, the search for
metabolically stable SRIF receptor ligands with good oral bioavailability continued. The
discovery by Freidinger, Veber, and coworkers that a modified retro-enantio cyclic analog of
MK-678 (9, Figure 5) possessed biological activity29 strengthened the proposition that the
amide backbone of the cyclic hexapeptides and SRIF is not necessary for binding or signal
transduction. Taken together, these facts suggested to us that the side chains of the β-turn of
L-363,301, if attached to an appropriate non-peptidic scaffold, might bind the SRIF receptors.
This proposition resulted in the initiation of a research project for the development of
peptidomimetics of SRIF at the University of Pennsylvania.

The main objective of the SRIF peptidomimetic program was the discovery of molecules with
improved pharmacokinetic properties.14a Using the NMR-based solution conformation of
cyclic hexapeptide L-363,301 as a guide, we eventually turned to the use of β-D-glucose as a
scaffold. The resulting glucoside 6 (Figure 3) appeared to overlay well with L-363,301, with
the side chains of 6 at C2, C1 and C6 mimicking the Phe7, D-Trp8 and Lys9 residues of
L-363,301 at the i, i+1 and i+2 positions of the β-turn, respectively. Thr10, the fourth amino
acid of this β-turn, was not believed to be required for binding and, therefore, was not
incorporated into the design of 6. The choice of the sugar scaffold offered several advantages
over hydrocarbon scaffolds as suggested by Farmer,7 such as a well-defined conformation,
stereochemical purity of diverse starting materials, and relatively well-precedented
etherification reactions as compared with carbon–carbon bond forming reactions.

Gratifyingly, biological evaluation of glucoside 6 against the SRIF receptors on membranes
from both the cerebral cortex and the pituitary, as well as receptors on the surface of AtT-20
cells, demonstrated that 6 indeed binds the SRIF receptors. 3-Deoxy analog 7 (Figure 3) also
possessed comparable affinity. Importantly, a functional assay performed at the Salk Institute
revealed that 6 acted as an SRIF partial agonist.14b The success in the design of the
peptidomimetic provided crucial experimental evidence that β-D-glucose does indeed
represent a β-turn mimetic. The result confirmed our design premises, notably that only three
of the four β-turn side chains of SRIF are necessary for binding, and hydrogen bonding with
the backbone of the receptor is not mandatory for activity. An overlay of glucoside 6 with SRIF
is shown in Figure 6.30
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The expected β-turn mimicry of the design was validated by correlating the effects of side
chain modifications on the potency of the glucoside 7 with the changes to binding affinities
induced by the corresponding changes to L-363,301 (see Figure 7). As with the cyclic
hexapeptides, the relative importance of the Lys9 mimicking side chain for binding is readily
apparent. An additional pleasing result was the affinity enhancement induced both by the
replacement of Phe 7 in L-363,301 with His7 (i.e. 10, Figure 8) and the analogous replacement
of the C2 benzyl group of 7 by a methylimidazole side chain (i.e. 8).14c Taken together, the
SARs of the cyclic hexapeptide and the corresponding pyranoside comprise a proof of concept
for a designed mimetic whereby the side chains of Phe7-D-Trp8-Lys9 correspond to those
attached to the sugar at C2, C1 and C6, respectively. Furthermore, there is substantial evidence
suggesting that the benzyl group at C4 mimics Phea.

Pseudosymmetry: an Element of Privilege
Early on, we made two unexpected observations which we now understand to have a common
chemical origin. First, we discovered that 11 (Figure 9), which lacks a side chain mimicking
Trp8 of SRIF (a residue thought to be an absolute requirement for binding SRIF receptors),
has higher affinity than 7 for SRIF receptors on AtT-20 cells.14b,31 At the time, we explained
this result by proposing an “alternative binding mode” involving a reorientation of 11 to give
11′, which places the C4 benzyl group in a position so as to mimic the spatial relationship
between the Trp 8 and Lys9 side chains of SRIF and D-Trp8-SRIF.

More recently, we have recognized that this alternative binding mode of 11 (i.e. 11′) places the
C4-benzyl group into the Trp binding pocket (see Figure 9), a manifestation of what we have
termed the pseudosymmetry of the glucose scaffold.32 We were able to confirm this
rationalization experimentally by preparing the C3-O-methylimidazole congener (structure not
shown), which we were pleased to find possessed increased affinity for the SRIF receptor.31

Failure of the 4-des-benzyl analog of 11 to bind the SRIF receptor is also consistent with the
alternate binding mode hypothesis.14c,d

Equally unexpected was the discovery that 6 also binds the human neurokinin 1 (hNK1)
receptor of substance P (SP) as an antagonist and with a higher affinity (IC50 150 nM) than for
the SRIF receptors.14a This was surprising since the peptides SRIF and SP are chemically
unrelated and do not bind each other’s receptors. Although hNK1 and hSST1–5 are both
GPCRs, they share little sequence homology in the ligand binding domain.33 Nonetheless,
there are likely to be similarities between GPCRs, as evidenced by the existence of “privileged”
structures and the proposed common small molecule binding domain of GPCRs.34 We have
recently proposed that evolutionarily conserved ligand binding sites provide regions that
accommodate the projections of side chains from the exposed surface of β- and γ-turns and
their components or mimics, and helices may be similarly available for binding interactions.
32 We further suggested that the ability of GPCRs to recognize privileged ligand scaffolds
makes them complementary to privileged platforms. We initially interpreted the ability of 6 to
bind the hNK1 receptor to reflect only such similarities between the SRIF and hNK1 receptors.
Additionally, we now propose that the ability of 6 to bind the SRIF, SP, and β2-adrenergic
receptors14c reflects not only a similarity between the three corresponding GPCRs, but also
the high degree of pseudosymmetry in the sugar scaffold.

The term “privileged structure” was introduced by Evans et al. to describe the fact that the
benzodiazepine scaffold can be made to bind diverse receptors, especially (but by no means
exclusively) GPCRs, by modulating the precise structure of the scaffold and substituents.35

We use the word “polyvalent” (an extension of bivalent/divalent)36 to describe compounds
which bind more than one receptor or enzyme. Other structures such as the steroid scaffold,
cyclic hexapeptides, and diketopiperazines37 have long been recognized as being privileged;
other structures have recently been added to the list.38 The benzopyran core was identified by
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Murcko, who used shape description methods to identify molecular frameworks that are
common among commercially available drugs,39 and Nicolaou and collaborators later
described natural product-like combinatorial libraries incorporating benzopyrans.40 To our
knowledge, there has been no report of a unifying chemical basis common to all of these
scaffolds. We believe, however, that it may be possible to identify structural elements which,
if one or more are present in a scaffold, confer polyvalency.

Believing that the ability of glucosides 6 and 7 to bind both the SRIF and hNK1 receptors
reflects a hitherto unrecognized similarity between these receptors, we sought to convert the
cyclic hexapeptide L-363,301, which binds only SRIF receptors, into a selective ligand for the
hNK1 receptor. This was readily accomplished by replacing Lys 9 with Phe9 (12, Figure 10)
or p-F-Phe9 (13).14d These results, though pleasing, raised new questions. Why does glucoside
6 bind both receptors, whereas an amino acid substitution is required in the i+2 position of
L-363,301 (Lys9 → Phe9) to generate a ligand for the hNK1 receptor? Moreover, why were
we unable to use the discovery that 13 is a more potent peptidal hNK1 receptor antagonist than
12 to design a superior glucoside?

We attribute this difference between the peptides and the glucosides to the fact that the sugar
scaffold, but not constrained cyclic hexapeptides such as L-363,301, presents a multitude of
binding modes (i.e. high pseudosymmetry), as shown in Figure 11.32 It is important to note that
the cyclic hexapeptides L-363,301, 12 and 13 all bind their respective receptors through the
same key interactions, namely those of the i+1 and i+2 residues of their β-turns. In contrast,
glucoside 6 binds the SRIF receptors via the C1 and C6 side chains, but binds the hNK1 receptor
via the C2 and C1 side chains.

The existence of multiple binding modes (i.e. pseudosymmetry) within the glucoside scaffold
arises from the presence of nearest neighbor diols which present appended functionality in a
β-turn-like orientation in a similar, but non-identical, manner. This property of glucoside 6
explains its ability to bind the SRIF and NK1 receptors via different side chains. Thus, the
pseudosymmetry of a monosaccharide scaffold allows a single functionalized sugar to present
a multitude of turn-mimicking side chains to a receptor, enhancing the probability of finding
a favorable interaction. Therefore, for a compound library generated for lead discovery in
diverse screens, incorporation of highly pseudosymmetric scaffolds which display several
functionalities in a β-turn-like manner should increase the likelihood of obtaining one or more
leads.

Combinatorial chemistry/parallel synthesis, high throughput screening and database
mining41 have emerged as the principal underpinnings for the discovery of new leads.38 A
scaffold exhibiting multiple potential binding motifs should confer an enhanced opportunity
to bind one or more receptors. We see such polyvalency as an advantage, not a liability, because
we have demonstrated the ability to subsequently incorporate specificities into 6. For example,
14 (Figure 12), lacking a C4-benzyl substituent, binds the hNK1 receptor (IC 50 22 nM) but
does not bind the SRIF receptors.14d Conversely, the C3 benzyl substituent is important for
hNK1 receptor binding but not SRIF receptor binding, and incorporation of a methyl imidazole
at C2 enhances SRIF affinity while eliminating hNK1 receptor binding.

Summary and Prospects
In 1990, we reported the design and synthesis of glucose derivative 6, a ligand that binds SRIF
receptors, albeit weakly. It represented the first use of a sugar scaffold to mimic a β-turn. We
found glucosides, like cyclic hexapeptides, to be a privileged class. Furthermore, we
demonstrate herein that two surprising biological results, namely the unexpected finding that
a glucoside lacking a Trp-mimicking side chain (11) is a better ligand than 6 for hSSTR4 and
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the serendipitous discovery that 6 also binds the hNK1 receptor, have a common chemical
basis. These results are explained by pseudosymmetry, which is present to a larger extent in
suitably substituted glucosides than in cyclic hexapeptides. This element of privilege allows a
single functionalized sugar to offer many different combinations of β-turn mimicking side
chains to a given receptor and appears to be a significant advantage for lead discovery.
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Figure 1.
Early designed peptidomimetics.

Hirschmann et al. Page 12

Acc Chem Res. Author manuscript; available in PMC 2010 October 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Morphine (3) and enkephalins (4, 5).
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Figure 3.
Somatostatin (SRIF), L-363,301 (a potent agonist), and first-generation monosaccharide
peptidomimetics (6–8).
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Figure 4.
MK-678 and octreotide.

Hirschmann et al. Page 15

Acc Chem Res. Author manuscript; available in PMC 2010 October 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Retro-enantio cyclic analog of MK-678 (9).
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Figure 6.
Comparison of SRIF-14 and glucoside 6 (yellow carbons). Note the overlap of the two essential
side chains (Trp8 and Lys9 and their mimics in 6. Phe6 and Phe11 of SRIF-14, which are thought
to stabilize its bioactive conformation, are shown in purple.
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Figure 7.
Comparison of the SAR profiles of peptide analogs and β-D-glucose-based peptidomimetics.
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Figure 8.
Incorporation of a methylimidazole group and the resulting enhancement in activity and
affinity.
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Figure 9.
des-Indole compound 11 shown (a) in a binding mode which is unable to present an aromatic,
tryptophan-mimicking side chain to the receptor and (b) in an alternative binding mode (11′).
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Figure 10.
L-363,301-based hNK1 receptor ligands that do not bind to SRIF receptors.
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Figure 11.
The advantage of pseudosymmetry in lead discovery. Shown are (a) the ten possible ways one
pyranoside can present i+1 and i+2 mimicking motifs (marked in bold) to a GPCR and (b) the
four possible ways one cyclic hexapeptide can display the i+1 and i+2 residues of a β-turn.
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Figure 12.
Development of a receptor-specific peptidomimetic (14).
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