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Abstract
Numerous studies have shown that biochemical and behavioral effects of cocaine are mediated by
dopamine D1 receptor (D1R) and NMDA R1 receptor (NR1)-mediated transmissions. In this study,
we investigated the physical interactions between D1R and NR1 in response to acute cocaine
administration in a time course of 5 minutes to 60 minutes. In the caudate-putamen (CPu) of male
Fischer rats, a single cocaine injection (30 mg/kg) reduced D1R-NR1 protein-protein interactions 30
minutes after treatment. In addition, activation or blockade of the NMDA receptor using NMDA (25
mg/kg) or MK-801 (0.25 mg/kg), respectively, also reduced the D1R-NR1 physical interactions.
Acute cocaine administration did not alter total D1R or NR1 protein levels in our time course of
study. These results indicate that D1R-NR1 physical interaction rather than total protein levels may
regulate the intracellular signaling after acute cocaine administration.

1. Introduction
Cocaine, a psychostimulant, is one of the most widely abused drugs in Western countries. By
acting as an indirect dopamine agonist, cocaine increases dopamine as well as glutamate release
in the striatum [2,19,23,27,33,35,45]. At the receptor level, pharmacological or genetic
manipulation of D1R and NMDA receptors attenuates acute cocaine-induced locomotor
activity [18,20,32,41,48], reinforcing and rewarding effects of cocaine [1,17,30,32], and
intracellular signaling alteration (e.g., the phosphorylation of extracellular signal-regulated
kinase (ERK) and cyclic AMP response element-binding protein) in response to acute cocaine
in the dorsal striatum/CPu [18,20,42,49]. Taken together, these findings indicate that both D1R
and NMDA receptors are involved in cocaine-induced behavioral and biochemical changes.
Although repeated cocaine exposure alters both D1R binding density in the striatum and NR1
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mRNA/protein levels in the striatum and ventral tegmental area (VTA), acute cocaine
administration does not change D1R binding or NR1 protein levels [4,12,14,21,22,39,40].
Therefore, how acute cocaine administration regulates D1R and NR1 protein levels remains
ambiguous.

One mechanism may involve in D1R and NR1 communication via protein-protein interactions
at their carboxyl terminal regions [10,24,25,31]. In the primary hippocampal neurons or
dopamine D1 and NR1 co-transfected cell lines, the stimulation of D1R results in a dissociation
of the receptors [25]. The activation of NMDA receptor enhances D1R cAMP accumulation
and recruits D1R membrane surface insertion in a D1R/NR1 physical protein-protein
interactions manner [31]. Taken together, it suggests that dopamine and glutamate levels
modulate the physical interaction between D1R and NR1 receptors. The present study was
designed to evaluate the effects of acute cocaine and NMDA receptor activation and blockade
on NR1 and D1R interactions in the dorsal striatum.

2. Methods
Animals

60-day-old male Fischer rats (Charles River, Raleigh, NC) were individually housed in
Plexiglas chambers (20 × 20 × 41 cm) and maintained on a 12-hour light/dark cycle (lights on
at 9:00 a.m.) with free access to food and water. Animal care and use was in accordance with
the Guide for the Care and Use of Laboratory Animals (NIH publication 85-23, Bethesda, MD)
and approved by the Institutional Animal Care and Use Committee of Hunter College.

Drugs and antibodies
Cocaine hydrochloride, NMDA and MK-801 were purchased from Sigma Chemical Co. (St.
Louis, MO). Antibody for D1R was purchased from Chemicon International (Temecula, CA).
Mouse monoclonal antibody for NR1 was purchased form BD Pharmingen (San Diego, CA).
α-tubulin antibody and protein A/G agarose were from Santa Cruz Technologies (Santa Cruz,
CA). Both horseradish peroxidase-conjugated anti-rabbit IgG and anti-mouse IgG were
purchased from Amersham Pharmacia (Piscataway, NJ).

Drugs administration
For cocaine time course study, cocaine solutions were prepared by dissolution in physiological
saline (0.9%) and injected intra-peritoneally (i.p.). Rats were injected with saline (1 ml/kg) or
cocaine (30 mg/kg) and sacrificed 5, 15, 30 or 60 min later. A separate cohort of rats were
injected with saline, NMDA (25 mg/kg, i.p.) or MK-801 (0.25 mg/kg, i.p) and sacrificed 30
min later.

Protein preparation and measurement
After decapitation (following a brief 20 s exposure to CO2), rat brains were removed, flash
frozen in 2-methylbutane (-40° C), and stored at -80° C until used. The coronal slices (1mm
thick) were cut out in a matrix (ASI instruments, Warren, MI). CPu was dissected out on a cold
glass plate, and then homogenized using a Polytron handheld homogenizer (Kinematica,
Luzern, Switzerland) in a lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 2 mM EDTA, 10%
Glycerol, 1% Triton X-100, 1% Igepal CA-630, 1% sodium deoxycholic acid) containing
phosphatase inhibitors mixture. After 30 min incubation, homogenates were centrifuged at
13,000 rpm for 15 min at 4° C. Supernatants were then collected and stored at -80° C until
used. Total protein content was determined using a Bradford kit from Bio-Rad Laboratories
(Hercules, CA).
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Western blot analysis
Protein samples were analyzed as previously described [18]. Briefly, 40 μg of proteins were
boiled in Lammeli buffer containing 1% β-mercaptoethanol for 5 min and separated on 10%
SDS-PAGE gels, then transferred to PVDF membranes. Membranes were blocked with 5%
nonfat dry milk for 1hr at room temperature and incubated with antibodies for D1R (1:1000)
or NR1 (1:1000) overnight at 4° C. After three washes with Tris-Tween-20 Buffer (TBST; pH
= 7.4), membranes were incubated with their appropriate secondary antibodies (1:1000) for
1hr at room temperature followed by three more washes with TBST. Antibody binding was
detected using an enhanced chemiluminescence kit (ECL; Amersham Pharmacia, Piscataway,
NJ). Intensity of protein bands was quantified with a computer densitometer and Image Quant
Program (Molecular Dynamics). For normalization of protein levels, all membranes were re-
probed with α-tubulin antibody (1:1000).

Immunoprecipitation analysis
For immunoprecipitation experiments, equal amount of protein extracts (500μg) were
incubated in lysis buffer containing protease inhibitors mixture with anti-NR1 or anti-D1R
primary antibody (1:50-100) overnight at 4° C, followed by the addition of protein A/G agarose
(20 μl) for 4hrs. For control samples, protein extracts were incubated in absence of primary
antibody. Beads were then washed four times in the lysis buffer. After final centrifugation,
Lammeli buffer containing 1% β-mercaptoethanol (50-70 μl) was added and samples were
boiled for 5 min. Equal amount of supernatants were loaded on 8% SDS-PAGE gels and the
intensity of D1R or NR1 were analyzed via Western blot. Each sample for immunoprecipitation
using anti-D1R antibody to pull down was performed three times to confirm the conclusion.

Statistical analysis
Protein levels were expressed as a ratio to α-tubulin levels in Western blot analysis. For
immunoprecipitation analysis, NR1 protein levels were expressed as a ratio over optic density
of total NR1 levels obtained from Western blot experiments. Data was expressed as mean %
± SEM relative to respective saline controls, which were arbitrarily set at 100%. Student’s t-
tests were used to determine differences between cocaine- and saline-treated animals at each
time point. To determine effects of NMDA and MK-801 administration on receptors physical
protein-protein interactions, a one-way ANOVA was used followed by LSD post hoc analysis
when appropriate. Differences were considered significant at 0.05 level.

3. Results
Effects of acute cocaine on NR1 and D1R interactions

As shown in Figure 1, acute cocaine administration did not alter total D1R or NR1 protein
levels in the CPu. Immunoprecipitation analysis however, indicated that 30 min after a single
cocaine administration NR1 and D1R interactions were decreased as compared to the
respective saline control [t (4) = 4.69, P< 0.01; Fig. 2A]. This data was confirmed using a
reciprocal immunoprecipitation approach: immunoprecipitation using NR1 antibody followed
by probing with D1R antibody (Fig 2B).

Effects of NMDA and MK-801 administration on NR1 and D1R interactions
Similar to acute cocaine, a single NMDA or MK-801 injection did not change the total protein
levels of NR1 subunit or D1R [Fig. 3A and B, respectively]. However, immunoprecipitation
experiment showed that there was a significant treatment effect on receptors interactions [F
(2, 6) = 22.23, P<0.05; Fig. 4A]. Further, post hoc test revealed that NMDA and MK-801
treatments significantly reduced NR1 and D1R interactions as compared to saline-treated
animals [P<0.01 and P<0.01, respectively]. There were no differences between NMDA- and
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MK-801-treated groups. This data was also confirmed using a reciprocal immunoprecipitation
approach: immunoprecipitation using NR1 antibody followed by probing with D1R antibody
(Fig 4B).

4. Discussion
Results presented here demonstrated that acute cocaine administration time-dependently
reduced NR1 and D1R protein-protein interactions in the CPu. In line with previous studies
we also showed that acute cocaine did not change total protein levels of NR1 or D1R [12,39],
suggesting the reduction of physical interactions between theses receptors is not due to total
proteins alteration. In addition, after NMDA or MK-801 treatment the association between
NR1 and D1R was also decreased. Thus, although acute regulation of D1R or NR1 receptors
does not change their total protein levels, it disrupts their physical interactions and thus may
represent as an important step in initial cocaine-induced intracellular responses.

Several in vitro studies indicated a complex interaction between NR1and D1R. For example,
in hippocampal and striatal cultures, the stimulation of D1R and PKA resulted in the
phosphorylation of NR1 subunits, increased in cytosolic calcium and phosphorylation of ERK
proteins [3,5,26,38,43,47]. In the cultured striatal neurons or the VTA in vivo, D1R agonists
or a single cocaine administration induced a rapid NR1 subunits postsynaptic membrane
insertion [8,34]. The membrane insertion of NR1 subunits may contribute to the potentiation
of NMDA receptor-mediated current by D1R. However, Lee et al [25] showed that the
activation of D1R receptor by dopamine application disrupted the NR1/D1R physical
interactions and reduced the NMDA receptor-mediated calcium influx via NMDA-NR2A/D1R
carboxyl terminal interactions. Previously, we have demonstrated that, in the CPu, a single
cocaine administration (30 mg/kg) transiently induced ERK phosphorylation, which gradually
returned to basal levels 30 min after injection [37]. In present study, although the functional
significance of cocaine-induced dissociation of NR1/D1R interactions is still unknown, it is
tempting to postulate that the dissociation of receptors interactions may act as a time-limited
gating mechanism on ERK activation in response to acute cocaine: (1) a rapid ERK
phosphorylation due to potentiated NMDA-mediated calcium influx and/or NR1 redistribution
through cocaine-elevated extracellular dopamine levels and D1R activation; followed by (2)
a deactivation of ERK protein because of the decrease in intracellular calcium via the disruption
of NR1 and D1R interactions.

Alternatively, the NR1/D1R physical associations may regulate the D1R surface expression.
Recently, NR1/D1R oligomerization was also found in cells co-transfected with D1R and
NMDA receptors including NR1/NR2B subunits as well as in the striatal post-synaptic density
(PSD) [10,11]. In the presence of the NMDA-NR2B subunit, the NR1/D1R complex was
delivered to membrane surface and then prevented the D1R agonist-induced D1R
internalization, suggesting these receptors interactions may represent a mechanism to recruit
D1R to the striatal PSD [10,29]. However, in the present study, we demonstrated a decreasing
of NR1 and D1R receptor physical interactions after acute cocaine. We propose two plausible
explanations. First, evidence has shown that D1R stimulation results in NMDA receptor
membrane insertion in the striatum [7,8]. Thus, acute cocaine-induced D1R activation, may
recruit NMDA receptor to the membrane region. The newly inserted NMDA receptor may not
physically associate with D1R immediately but form receptors interactions at later time point.
This temporal change in receptors interactions is consistent with present results in that transient
reduction of NR1/D1R interactions was only observed 30 min after acute cocaine
administration. Second, a previous in vivo study has shown that a single intrastriatal D1R
agonist infusion or amphetamine injection (i.p.) rapidly induced D1R internalization in the
striatum [6]. The modification of D1R distribution was found in cell bodies and dendrites but
not in dendritic spines at the periphery of synaptic clefts, where PSD is located [6]. Thus, after
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cocaine administration, the dissociation of NR1/D1R physical interactions may indicate D1R
segregation and the reduction of receptor availability for extracellular ligands in a region-
specific manner as suggested by Fiorentini and Missale [11]. However, further biochemical
fractionation procedure and immunohistochemical labeling at the ultrastructural level should
be conducted to examine cocaine-induced D1R internalization and the decrease of receptors
interactions in different neuronal compartments.

In the CPu, we demonstrated that the NR1/D1R receptors physical interactions were decreased
30 min after MK-801 administration. Similarly, an in vitro study showed that NMDA receptor
antagonist, AP-5, pre-application led to the dissociation between NR1 and D1R receptors in
cells, suggesting that the NMDA receptor activation is necessary to maintain the protein-
protein interactions between theses receptors [31]. In the striatum, a recent study showed that
MK-801 (0.1 mg/kg) did not modify NR1 and D1R interactions [11]. However, a higher dose
of MK-801 (0.25 mg/kg) was used in the present study. Previous studies have shown that the
higher MK-801 (0.2-0.5 mg/kg) doses elevated extracellular dopamine levels in the striatum
[28,44,46]. Thus, by increasing synaptic dopamine levels, MK-801 itself may reduce NR1 and
D1R interactions (similar to acute cocaine administration). Surprisingly, NMDA treatment also
reduced NR1/D1R physical interactions, suggesting that the activation of NMDA receptor also
disrupts the receptors interactions. In cortical neurons, a study has demonstrated that chronic
neuronal activity promotes the degradation of NR1 through ubiquitin-proteasome system [9].
However, in the present study, total NR1 protein levels were not altered after NMDA
administration, indicating that the reduction in NR1/D1R physical interactions is not due to
the decrease in NR1 levels. In hippocampal neurons, PKC-induced rapid NMDA receptors
dispersal and lateral mobility between the synaptic and extra-synaptic domains have been
documented [13,15]. NR2B-containing NMDA receptors exhibit faster mobility than those
containing NR2A subunit [16]. In addition, NR2B-containing receptors are prominently
expressed in the striatum [36]. Thus, through NMDA receptors, the NMDA treatment (25 mg/
kg i.p.) may induce PKC activation and lateral mobility of NMDA receptors and then contribute
to the decrease of NR1/D1R physical interactions.

In summary, the present study demonstrated that acute cocaine reduced the NR1 and D1R
physical protein-protein interactions in a time-dependent manner. We postulate that the
dissociation may regulate cocaine- and/or dopamine-mediated intracellular signaling cascades
and D1R distribution underlying the cocaine-induced behavioral changes. In addition, we have
also showed that the homeostatic state of NMDA receptor is necessary for the NR1/D1R
physical interactions, since both NMDA receptor activation and inhibition reduced receptors
associations. However, the functional significance of their receptors interactions on NR1- and
D1R-mediated intracellular signaling transduction and addictive behaviors needs further
elucidation.
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Figure 1. Time course of cocaine effects on total NR1 and D1R in the CPu
(A) NR1; (B) D1R. Total protein levels after 5, 15, 30, or 60 min of cocaine administration
over α-tubulin levels, expressed as percentage of saline control (4-6 animals per group). M is
the molecular marker in kDa.
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Figure 2. Time course of cocaine effects on NR1 and D1R physical interactions in the CPu
(A) NR1 protein levels after D1R antibody immunoprecipitation. Data shown is the protein
level over total NR1 level, expressed as percentage of saline control after 5, 15, 30, or 60 min
of cocaine injections (3-6 animals per group). *p <0.05 as compared with respective saline
group. (B) A reciprocal immunoprecipitation showing D1R protein levels after NR1 antibody
pull down (Con = Control; S = Saline; C = Cocaine).
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Figure 3. Effects of NMDA and MK-801 administration on total NR1 and D1R in the CPu
(A) NR1; (B) D1R. Results represent total protein levels over α-tubulin levels, expressed as
percentage of saline contro after 30 min of saline, NMDA or MK-801 injections (4-6 animals
per group). M is the molecular marker in kDa.
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Figure 4. Effects of NMDA and MK-801 administration on NR1 and D1R physical interactions in
the CPu
(A) NR1 protein levels in D1R antibody pull down. Results represent protein levels over total
NR1 levels, expressed as percentage of saline control, after 30 min of saline, NMDA or
MK-801 injections (3 animals per group). *p <0.05 as compared with saline control. (B) A
reciprocal immunoprecipitation showing D1a protein levels after NR1 antibody pull down.
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