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Planar cell polarity signaling controls a variety of polarized cell
behaviors. In multiciliated Xenopus epidermal cells, recruitment of
Dishevelled (Dvl) to the basal body and its localization to the center
of the ciliary rootlet are required to correctly position the motile
cilia. We now report that the anaphase-promoting complex
(APC/C) recognizes a D-box motif of Dvl and ubiquitylates Dvl on
a highly conserved lysine residue. Inhibition of APC/C function by
knockdown of the ANAPC2 subunit disrupts the polarity of motile
cilia and alters the directionality of the fluid movement along the
epidermis of the Xenopus embryo. Our results suggest that the
APC/C activity enables cilia to correctly polarize in Xenopus epi-
dermal cells.

cilium � Dishevelled � planar cell polarity � polycystic kidney disease � ANAPC2

D ishevelled (Dvl) is a central component of the Wnt signaling
cascade. In canonical Wnt signaling, binding of soluble

Wnts to the cysteine-rich domains of Frizzled receptors triggers
the association with low-density-lipoprotein coreceptors and the
recruitment of Axin and Dvl to the heteromeric receptor com-
plex. Recruitment of Axin to low-density-lipoprotein corecep-
tors and phosphorylation of Dvl stabilize cytosolic �-catenin,
which translocates to the nucleus and forms a complex with
transcription factors of the lymphoid enhancer-binding factor/
T cell-specific factor (LEF/TCF) family to activate gene expres-
sion. In noncanonical �-catenin-independent Wnt signaling, the
Frizzled/Dvl complex initiates the asymmetric accumulation of
core planar cell polarity (PCP) proteins such as Flamingo/Starry
Night (Fmi/Stan), Strabismus/Van Gogh (Stbm/Vang), Prickle
(Pk), and Diego (Dgo). In the Drosophila wing, Frizzled, Dvl,
and Dgo move to the distal side of the cell, whereas Pk and Stbm
accumulate at the proximal plasma membrane. Planar cell
polarity effectors such as Inturned (In), Fuzzy (Fy), and RhoA
then organize the cytoskeleton and orient cells and their ap-
pendages in the plane of the tissue (reviewed in refs. 1 and 2).
Interaction between Frizzled and Dvl is a prerequisite for PCP
signaling (3); however, subsequent stabilization of the Frizzled/
Dvl complex by components of the PCP complex, such as the
protein Dgo, is necessary to maintain the Frizzled/Dvl complex
at the plasma membrane (4).

Recent findings have uncovered a crucial role of Dvl in the
apical docking of basal bodies and subsequent polarization of the
motile cilia on the Xenopus epidermis (5). These cilia produce a
flow along the anterior-to-posterior axis of the Xenopus embryo
during gastrulation. Dvl is asymmetrically localized at the base
of the cilia; this asymmetry is required to polarize the cilia and
direct the fluid flow. Stabilization or degradation are thought to
promote the asymmetric distribution of Dvl at the basal body;
however, the underlying molecular mechanisms are currently
unknown.

Several ubiquitin ligases control mammalian Dvl localization
and turnover. The HECT-type ubiquitin ligase NEDL1 ubiqui-
tylates Dvl1 (6), whereas the KLHL12–Cullin-3 ubiquitin ligase
targets Dvl3 for degradation (7). Wnt modulators such as Naked
cuticle/PR72 and Prickle1 appear to regulate Dvl levels through
interaction with ubiquitin ligases (8, 9), whereas Dapper 1 seems
to target Dvl for lysosomal degradation (10). Inversin, an

ankyrin-repeat protein related to the PCP proteins Diversin and
Drosophila Dgo, interacts with Dvl and targets cytoplasmic Dvl
for ubiquitin-dependent degradation (11). Because Inversin
interacts with ANAPC2 (12), a cullin-domain-containing sub-
unit of the anaphase-promoting complex/cyclosome (APC/C),
this observation suggests that Inversin uses the APC/C to target
Dvl for degradation.

The APC/C is a multisubunit protein complex with at least 12
core subunits and several coactivators that regulate eukaryotic
cell cycle progression (reviewed in ref. 13). During mitosis,
components of the spindle-assembly checkpoint, such as Mad1,
Mad2, Mad3/BubR1, Bub1, and Bub3, prevent Cdc20 from
activating APC/C to ensure the fidelity of chromosome segre-
gation (14). Other inhibitors of the APC/C, such as members of
the Emi family, function as pseudosubstrates to inhibit the
APC/C (reviewed in ref. 15). After phosphorylation by calmod-
ulin kinase II (CaMKII) and polo kinase 1 (Plk1/Plx1), these
inhibitors are recognized by the �-TrCP E3 ubiquitin ligase and
targeted for degradation by the 26S proteasome. Cell-cycle-
independent functions of the APC/C are increasingly appreci-
ated (reviewed in refs. 13 and 16). The APC/C is involved with
the control of axon growth and brain patterning (17), regulates
synaptic size and activity in Caenorhabditis elegans and Drosoph-
ila (18, 19), and excludes Par-3 from the posterior cortex of the
C. elegans embryo to establish its anterior–posterior axis (20).
The APC/C is needed to asymmetrically localize Miranda and its
cargo proteins Staufen, Prospero, and Brat during Drosophila
neuroblast division, indicating a role for the APC/C in PCP (21).

We now report that expression of the APC/C subunit
ANAPC2 activates the APC/C-dependent degradation of Dvl by
disrupting canonical Wnt signaling. Knockdown of ANAPC2 in
Xenopus embryos impaired the polarization of motile cilia of the
Xenopus epidermis, demonstrating that APC/C activity is re-
quired to establish a directed fluid flow.

Results
Expression of ANAPC2 Targets Dvl for Ubiquitin-Dependent Degrada-
tion. We observed that expression of ANAPC2 reduced both
transiently expressed murine Dvl1 and endogenous Dvl in HEK
293T cells (Fig. 1A). Purification of a Flag-His-tagged version of
Dvl1 under denaturing conditions revealed its increased polyu-
biquitylation in the presence of ANAPC2 (Fig. 1 B and C).
Furthermore, ANAPC2 increased turnover of Dvl1 (Fig. 1D).
ALLN, a proteasome inhibitor, prevented the degradation of
Dvl1 (Fig. 1E). To demonstrate that the ANAPC2-induced
degradation of Dvl1 engages the APC/C, we used established
modulators of APC/C activity. The Xenopus Emi1-related pro-
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tein 1 (XErp1), a pseudosubstrate inhibitor of the APC/C during
meiosis (22), blocked the ANAPC2-mediated decrease of Dvl1
steady-state levels (Fig. 2A), whereas the APC/C activator Cdh1
facilitated degradation of Dvl1 (Fig. 2B). Together, these data
suggest that expression of ANAPC2 activates the APC/C to
stimulate degradation of cytoplasmic Dvl in HEK 293T cells.

The APC/C Antagonizes Canonical Wnt Signaling. To determine the
consequences of APC/C-induced Dvl degradation, we examined
cytoplasmic �-catenin levels in cells coexpressing ANAPC2. A
reduction in cytoplasmic �-catenin levels was observed in HEK
293T cells expressing ANAPC2 (Fig. 2C), suggesting that
ANAPC2 antagonizes canonical Wnt signaling. The function of
ANAPC2 was further characterized using TOPFLASH reporter
assays. ANAPC2 reduced Dvl1-mediated but not �-catenin-
mediated activation of TCF-dependent transcription (Fig. 2 D
and E), showing that ANAPC2 inhibits Wnt target gene activa-
tion upstream of �-catenin. To examine ANAPC2-mediated Dvl
degradation in vivo, we activated the canonical Wnt pathway
during Xenopus embryogenesis. ANAPC2 blocked secondary
axes induced by Xenopus Dvl2 mRNA (Fig. 3A) but had no effect
on TCF3 mRNA-mediated axis duplication. (Fig. 3B), confirm-
ing that ANAPC2 blocks the canonical Wnt signal pathway at the
level of Dvl in vivo. Together, these data confirm that activation
of APC/C through ectopic expression of ANAPC2 targets Dvl
for degradation, interfering with canonical Wnt signaling in vitro
and in vivo.

The APC/C Targets a Conserved D-Box of Dvl. Substrate recognition
by the APC/C occurs through a variety of degradation motifs, the
most common of which are the destruction box (D-box) and the
KEN-box. Sequence analysis of murine Dvl1 revealed three
potential destruction boxes containing the RxxL consensus
motif, located in the N or C terminus (Fig. 4A). To determine
whether the D-boxes regulate Dvl1 stability, we examined the
protein levels of two murine Dvl1 truncations in the presence of
ANAPC2. An N-terminal deletion lacking the first two D-boxes
(mDvl1�DIX) was degraded in the presence of ANAPC2.
However, a C-terminal deletion mutant lacking the DEP domain
(mDvl1�DEP) remained stable despite coexpression of
ANAPC2 (Fig. 4B), suggesting that the APC/C recognizes the
highly conserved D-box 3 (Fig. 4A). To confirm this, a Dvl1
RxxL 3 AxxA mutant was tested in HEK 293T cells. Mutation
of the third D-box increased Dvl1 steady-state levels in the
presence of ANAPC2 (Fig. 4 C and D). Thus, the RxxL motif
present in the DEP domain mediates the ANAPC2-dependent
ubiquitylation and degradation of Dvl. To demonstrate that
APC/C-mediated degradation of Dvl requires D-box 3 in vivo,
we compared the phenotypic effect of wild-type and mutant Dvl1
by using double-axis formation in Xenopus. The more stable
AxxA Dvl1 mutant induced an increase in secondary body axis
formation during Xenopus embryogenesis compared with that of
wild-type protein (Fig. 4E). These findings support our hypoth-
esis that APC/C controls the half-life of Dvl in vivo. Typically,
one or more lysine residues serve as ubiquitin attachment sites
(reviewed in ref. 23), so our suspicions fell upon a highly
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Fig. 1. ANAPC2 targets Dvl for ubiquitin-dependent degradation. (A) Levels
of both transiently expressed (Left) and endogenous Dvl (Right) were reduced
in HEK 293T cells expressing ANAPC2; �-tubulin levels were used as a loading
control. (B) Expression of Myc-tagged ANAPC2 led to an increase in ubiqui-
tiylated Dvl in HEK 293T cells, cotransfected with Flag-His-tagged Dvl1 and
HA-tagged ubiquitin. (C) Coexpression with Myc-ANAPC2 enhanced the con-
jugation of endogenous ubiquitin to Dvl1, as detected by the polyubiquitin
antibody FK1. (D) The half-life of Dvl1 decreased in the presence of ANAPC2.
Forty-eight hours after the transfection of HEK 293T cells, 40 �g�mL �1 cyclo-
heximide (CHX) was added for 0, 2, 4, and 8 h. The levels of Dvl1 and
Myc-ANAPC2 were monitored by Western blot analysis, and �-tubulin levels
were used as a loading control. (E) The proteasome inhibitor ALLN (30 �M)
reversed the ANAPC2-mediated reduction of Dvl1 levels; �-tubulin levels were
used as a loading control.
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Fig. 2. ANAPC2 inhibits canonical Wnt signaling. (A) In HEK 293T cells, the
APC/C inhibitor XErp1 reversed the ANAPC2-dependent reduction of Dvl1 levels
in a dose-dependent manner; �-tubulin levels were used as a loading control. (B)
The APC/C activator Cdh1 reduced Dvl1 levels in a dose-dependent manner. (C)
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served as a loading control. (D) ANAPC2 inhibited Dvl1-induced activation of the
TOPFLASH reporter construct in transiently transfected HEK 293T cells. (E)
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conserved lysine that lies adjacent to the third D-box (Fig. 4A).
Indeed, ANAPC2 failed to diminish levels of Dvl1 when the
critical lysine was replaced by methionine (Fig. 4F), indicating
that this residue mediates APC2-dependent ubiquitin attach-
ment. Interestingly, two Drosophila Dvl mutations (dshA3 and
dsh1) that specifically affect PCP signaling (24–27) map to either
the third D-box (R413H) or the adjacent lysine (K417M).

APC/C Activity Is Required To Polarize the Motile Cilia of the Xenopus
Epidermis. To analyze a possible function for ANAPC2-mediated
Dvl degradation, morpholino oligonucleotides (MOs) targeting
the splice sites of the intron/exon boundaries of ANAPC2 intron
2 were used (Fig. 5A). This approach delayed the onset of
ANAPC2 depletion, avoiding early cytotoxicity. Fate maps were
used to selectively target the MO to defined tissues (28).
ANAPC2 MO or ANAPC2 RNA injection, directed to the
dorsal blastomeres, resulted in classical axis elongation and
neural tube closure defects, which were identical to the changes
described for Dvl depletion or overexpresssion (29). The phe-
notype caused by depletion of ANAPC2 was partially rescued by
coinjection of murine APC2 RNA not targeted by the MO,
indicating that the observed phenotype was specific to ANAPC2
depletion (Fig. S1).

In multiciliated cells of the Xenopus epidermis, Dvl is required
to dock the basal bodies to the apical membrane, which precedes
the nucleation of the ciliary axoneme (5). In completely polar-
ized cilia, Dvl is confined to the center of the ciliary rootlet
immediately adjacent to the basal body; this asymmetric Dvl
localization was shown to maintain the polarization of motile
cilia of the Xenopus epidermis (5). Immunostaining of human
respiratory epithelial cells revieled a localization of both Dvl and
ANAPC2 at the basal body region (Fig. S2).

In addition, the MO concentrations were titrated to allow
normal embryonic development and epidermal differentiation
(Fig. S1). We found that two nonoverlaping MO, targeted to the
Xenopus epidermis, randomized the localization of the ciliary
rootlet in relationship to the basal body, marked by CLAMP-

GFP and Centrin-red fluorescent protein (RFP), respectively
(Fig. 5B). Knockdown of Xenopus ANAPC2 also reduced the
speed of particles moving across the Xenopus epidermis (Fig.
5C), suggesting that the APC/C is required to maintain the
polarization of motile cilia.

To investigate whether the APC/C affects the localization of
Dvl, we expressed very low levels of xDvl2-GFP (50 pg). At this
dose, no developmental alterations were observed, and the
Dvl2-GFP signal was barely detectable along the plasma mem-
brane. When ANPAC2 MO was coinjected, Dvl2-GFP aggre-
gates became readily detectable. Some aggregates showed a
randomized polarization relative to the basal body; others were
not associated with basal bodies at all (Fig. 5D). To exclude an
unspecific accumulation of GFP, membrane-tagged GFP (mem-
GFP) was used as a control (Fig. S3). To demonstrate that
xDvl2-GFP is targeted by ANAC2 in vivo, we analyzed Xenopus
lysates expressing xDvl2-GFP in combination with or without
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Fig. 3. ANAPC2 inhibits the formation of a secondary body axis in Xenopus
embryos. (A) Four-cell-stage embryos were injected with mRNA into one
ventral blastomere and scored at the tadpole stage. The secondary body axis
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ary body axis induced by TCF3-VP16 (4 pg) was not affected by ANAPC2. A
partial secondary axis consists of a secondary trunk and tail only, whereas a
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ANAPC2. As shown in Fig. 5E, ANAPC2 decreased the steady-
state levels of xDvl2-GFP in microinjected embryos.

Discussion
The ankyrin-repeat protein Inversin switches between canonical
and noncanonical Wnt signaling by targeting cytosolic Dvl for
ubiquitin-dependent degradation (11). Inversin interacts with
the APC/C subunit ANAPC2 (12) and mediates the formation
of a heterotrimeric complex with Dvl (11). ANAPC2 lies in close
proximity to Cdh1 and together with ANAPC11 forms a plat-
form at which substrates are ubiquitylated (30). Ectopic expres-
sion of ANAPC2 induces the ubiquitin-dependent degradation
of Dvl. The APC/C appears to play a pivotal role: The APC/C
inhibitor XErp1 blocks the ANAPC2-induced degradation of
Dvl, whereas the APC/C activator Cdh1 facilitates Dvl degra-
dation. Furthermore, Dvl degradation is contingent on the
presence of a conserved D-box and an adjacent lysine residue
within the DEP domain of Dvl; mutation of this D-box stabilizes
Dvl and initiates canonical Wnt signaling and double-axis for-
mation in the Xenopus embryo. Because we did not detect a
direct interaction between Dvl and ANAPC2, adaptor proteins
such as Inversin may link Dvl to ANAPC2 to initiate APC/C-
dependent degradation. Although the tetratricopeptide repeat
domain (TRP) domains of Cdc27/ANAPC3 and ANAPC7 are
thought to interact with Cdh1 to recruit substrates to the
proximity of the cullin/RING core formed by ANAPC2/
ANAPC11 (31), Cdh1 appears capable of both direct and
indirect interaction with ANAPC2 (32). Because both ANAPC2
and ANAPC11 can dissociate selectively from the APC/C (31),
ANAPC2 conceivably recruits additional binding partners to the
APC/C to initiate their degradation by this E3 ubiquitin ligase in
nondividing cells.

Cell cycle-independent functions of the APC/C are well
documented, but how the activity of the APC/C is regulated in
interphase cells is largely unknown. The APC/C is present on
centrosomes in dividing cells (33), suggesting that the centroso-
mal region harbors the APC/C activity required to control Dvl
protein levels in Xenopus epidermal cells. Dvl orchestrates the
functions of Rho, Inturned, and Sec8 to dock the basal bodies of
budding cilia to the apical membrane. Dvl subsequently assumes
an asymmetric localization within the center of the ciliary rootlet
(5). Our findings reveal that the APC/C is essential for main-
taining the Dvl-dependent polarity of these motile cilia. The
initial polarization of the motile cilia of the Xenopus embryo is
established by tissue patterning; however, subsequent refine-
ment through fluid flow determines the final ciliary polarity (34).
Because the cilia of the Xenopus epidermis function as both
motile effectors and mechano-sensory organelles, mechano-
sensory signaling such as flow-induced calcium transients may
regulate the activity of the APC/C and thereby spatially modu-
late the degradation of Dvl that underlies the asymmetric
accumulation of Dvl at the basal bodies of multiciliated Xenopus
epidermal cells.

Another line of evidence to support the role of APC/C in
cellular asymmetry and PCP signaling comes from a recent
genetic screen for defective neuroblast division in Drosophila.
The APC/C subunit ANAPC5 was identified as a crucial com-
ponent of asymmetric Miranda localization (21). In PCP, gain-
of-function and loss-of-function mutations often produce similar
phenotypes, suggesting that the steady-state levels of PCP com-
ponents are precisely controlled to maintain normal polarization
and tissue asymmetry. Thus, a resistance to APC/C-mediated
degradation could explain the PCP defects observed in the
Drosophila Dsh1 and DshA3 mutants, insinuating a more general
role for the APC/C in noncanonical Wnt signaling.
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without (Left) or with ANAPC2 mRNA (Right) into four-cell-stage embryos. Em-
bryo lysates were prepared at stage 10.5 and analyzed for protein levels by
Western blot. Although ANAPC2 reduced xDvl2-GFP levels, the levels of GFP
remained unaffected by ANAPC2.
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Materials and Methods
Reagents and Plasmids. ALLN (Sigma) and cycloheximide (Sigma) were used at
concentrations as indicated. Human Myc-His-tagged ANAPC2 was provided by
J. M. Peters (Research Institute of Molecular Pathology, Vienna), and mouse
Myc-tagged ANAPC2 was provided by Y. Xiong (Lineberger Comprehensive
Cancer Center, University of North Carolina, Chapel Hill). HA-tagged full-
length Dvl, murine DvlHA�DEP, and DvlHA�DIX were provided by P. Salinas
(Imperial College, London). XErp1-GFP was provided by T. U. Mayer, Max-
Planck-Institute of Biochemistry, Martinsried, Germany, and plasmids for
Xenopus Dvl2 (xDvl2, formerly Xenopus Dsh), �-catenin, and TCF3 (TCF3-VP16)
were provided by S. Sokol (Mount Sinai School of Medicine, New York).
Flag-His-tagged Dvl was generated by PCR using standard cloning techniques.
HA-GSK3�, HA-ubiquitin, and M/P DvlHA, containing a myristylation/
palmitoylation site, were described in ref. 11. DvlHA AxxA, xDvl2 AxxA, and
DvlHA K to M were constructed by site-directed mutagenesis. Antibodies used
in this study included mouse monoclonal antibody to HA (Roche), rabbit
polyclonal antibody to HA (Covance), antibody to Myc (Upstate Biotechnol-
ogy), antibody to �-catenin (Transduction Laboratories), antibody to �-tubulin
(Sigma), antibody to Flag (Sigma), antibody to Dvl2 (Abcam), antibody to
polyubiquitin clone FK1 (Affiniti Research), and antibody to GFP (Santa Cruz
Biotechnology). Rabbit polyclonal antiserum against Dvl was provided by
S. Sokol.

Cell Culture and Western Blots. HEK 293T cells were grown in DMEM supple-
mented with 10% FBS. Transient transfections were performed by using the
calcium phosphate method. To determine steady-state levels of proteins, HEK
293T cells were transfected in 10-cm dishes by the calcium phosphate method,
harvested after 24 h in cold PBS, and lysed in a buffer containing 20 mM
Tris�HCl (pH 7,5), 1% Triton X-100, 25 mM NaF, 12.5 mM Na4P2O7, 0.1 mM
EDTA, 50 mM NaCl, 2 mM Na3VO4, and protease inhibitors. To analyze the
turnover of proteins, cells were treated with 40 �g/mL cycloheximide in DMEM
48 h after transfection; cells were lysed in the same buffer as above after 0, 2,
4, and 8 h of incubation with cycloheximide. To analyze cytoplasmic levels of
�-catenin, transfected HEK 293T cells were treated as described (35). Proteins
were fractionated by 10% SDS/PAGE, and protein levels were analyzed by
Western blot.

Luciferase Assay. HEK 293T cells seeded in 12-cm dishes were transiently
transfected with a luciferase reporter construct, a �-galactosidase expression
vector, and vectors directing the expression of proteins as indicated. Cells were
harvested 24 h after transfection in cold PBS and lysed in 100 �L of reporter
lysis buffer (Applied Biosystems). Luciferase activity was determined by using
a commercial assay system following the manufacturer’s instructions and
normalized to �-galactosidase activity to correct for transfection efficiency.

Ubiquitylation Assay. Thirty hours after transfection, HEK 293 T cells were
washed in PBS and lysed in buffer A (8 M urea, 100 mM NaH2PO4, 10 mM Tris,
and 1% Triton X-100, pH 8, all steps at room temperature). The supernatant
obtained after two centrifugation steps was used for purification on Ni2�–
nitrilotriacetate agarose (Qiagen) for 1.5 h and washed twice with buffer A
and twice with buffer B (same as A except for 0.5% Triton X-100 and pH 6.3).
Bound proteins were eluted with buffer C (same as A except for 0.1% Triton
X-100 and pH 4.5).

Xenopus laevis Embryo Manipulations. The methods used have been described
previously (11). Briefly, Xenopus females were injected with 600–800 units of

human chorionic gonadotropin. Eggs were harvested, fertilized in vitro, and
cultured in 0.3� Marc’s modified Ringer’s medium (MMR). Capped synthetic
RNAs were generated by using the mMessage mMachine kit (Ambion). Plas-
mids were linearized and transcribed as follows: Centrin-RFP (NotI, SP6);
CLAMP-GFP (NotI, SP6); xDvl2-GFP (KpnI, T3); GFP-HA (SalI, T7); hANAPC2-HA
(SalI, T7). The RNA microinjections were performed according to standard
techniques using a time- and pressure-triggered microinjection system (Nar-
ishige) at volumes of 8–10 nL per blastomere. The Xenopus tropicalis ANAPC2
orthologue was identified by BLAST search of the U.S. Department of Energy
Joint Genome Institute (JGI) genome assembly 4.1 on scaffold 366. A 1-kb
fragment was amplified by RT-PCR (Invitrogen) using Xenopus laevis mRNA.
The PCR amplification of intron 2 from genomic DNA revealed the intron/exon
boundaries. The sequences were deposited at the National Center for Bio-
technology Information (accession No. EU887535) Splice-blocking MOs were
obtained from Gene Tools: ANAPC2 I2E3 (Mo1), 5�-GTCACTAGAGAAATCCAA-
GAAATAC-3�; ANAPC2 E2I2 (Mo2), 5�-TGCACCTAAAAACTACTTACAAA-3�;
standard control, 5�-CCTCTTACCTCAGTTACAATTTATA-3�. Both MOs pre-
vented splicing of intron 2 and introduced an in-frame termination codon,
which was confirmed by RT-PCR and sequencing of the resulting product. To
determine the polarity of basal bodies, embryos were fixed at stage 28–30.
Confocal imaging was performed on an inverted Zeiss LSM 5 DUO Live. Angles
were measured with ImageJ (http://rsbweb.nih.gov/ij/) and analyzed with
Oriana 2.0 statistical software (Kovach Computing Service). For streamline
assays, fluorescent beads (Molecular Probes/Invitrogen) were diluted in 0.3�

MMR 1:1,000,000 and imaged in intervals of 0.1 s with a SPOT Insight FireWire
system (Diagnostic Instruments) on a Leica MZ16 stereomicroscope. Video
recordings were analyzed with Imaris 6.0 software (Bitplane). Approximately
50–300 beads were tracked, and the average speed was calculated for each
embryo. Streamline images resulted from superimposing all frames of one
recording. Confocal images of xDvl2-GFP (Fig. 5D) and mem-GFP (Fig. S3) were
recorded on a Zeiss LSM 510 microscope. Four optical sections at the apical
membrane were stacked to depict the entire apical cell surface. Single-channel
images in Fig. 5D are magnifications of one optical focus plane containing
basal bodies. Imaging settings were identical between control MO and
ANAPC2 MO embryos. For preparation of Xenopus embryo lysates, 20 em-
bryos for each group were injected as indicated and lysed at stage 10 with the
same lysis buffer as described above. The supernatant obtained after two
centrifugation steps at 17,000 � g was used to analyze protein levels by
Western blot.

Respiratory Epithelial Cells. Human respiratory epithelial cells were obtained
by nasal brush and incubated at 37 °C in serum-free bronchial epithelial
growth medium (Clonetics and Lonza) as described (36). For staining, the
specimen were fixed in 4% paraformaldehyde/PBS and blocked in 5% goat
serum supplemented with 0.1% Triton X-100. Staining was done following
standard procedures. Images were taken on a Zeiss Axiovert 200 M equipped
with the Zeiss ApoTome technology using a 63 � 1.2 numerical aperture
water-immersion objective. Images were processed with Axiovert software.
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