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Neuronal processing depends on the input-output (I/O) relation
between the frequency of synaptic stimulation and the resultant
axonal firing rate. The all-or-none properties of spike generation
and active membrane mechanisms can make the neuronal I/O
relation very steep. The ensuing nearly bimodal behavior may
severely limit information coding, as minimal input fluctuations
within the expected natural variability could cause neuronal out-
put to jump between quiescence and maximum firing rate. Here,
using biophysically and anatomically realistic computational mod-
els of individual neurons, we demonstrate that feed-forward
inhibition, a ubiquitous mechanism in which inhibitory interneu-
rons and their target cells are activated by the same excitatory
input, can change a steeply sigmoid I/O curve into a double-
sigmoid typical of buffer systems. The addition of an intermediate
plateau stabilizes the spiking response over a broad dynamic range
of input frequency, ensuring robust integration of noisy synaptic
signals. Both the buffered firing rate and its input firing range can
be independently and extensively modulated by biologically plau-
sible changes in the weight and number of excitatory synapses on
the feed-forward interneuron. By providing a soft switch between
essentially digital and analog rate-code, this continuous control of
the circuit I/O could dramatically increase the computational power
of neuronal integration.

computational models � dentate gyrus � hippocampus � interneurons �
networks

Inhibition in the cortex is mostly achieved by interneurons
releasing GABA on principal cells. The interneuron axons

target specific postsynaptic subdomains (perisomatic, axonic,
and layer-specific dendritic shafts or spines), creating computa-
tional modules that influence the neuronal response to various
spatial and temporal patterns of excitation (1). The neuronal
input-output (I/O) relationship between the mean frequency of
synaptic stimulation and the resulting axonal firing can be
directly affected by inhibitory signals that are delivered to the
same dendritic regions receiving the excitation (2). In particular,
shunting inhibition modulates this rate-coded information pro-
cessing both in terms of offset, or stimulus threshold (3) and of
gain, or slope (4). In the cortex, however, GABAergic interneu-
rons are morphologically, chemically, and physiologically more
diverse than principal cells (5, 6). Relatively little is still known
about signal integration in different inhibitory circuits and the
effects on network dynamics (7).

Many cortical interneurons perform both feedback and feed-
forward inhibitory functions, balancing these roles dynamically
based on local and afferent activity or neuromodulation (7–10). In
feed-forward inhibition (FFI) a principal cell and an interneuron
receive excitatory inputs from the same presynaptic source. The
interneuron then outputs its inhibitory signal to the principal cell.
Thus, upon activation of the presynaptic source, the principal cell
receives 2 types of input, one excitatory and one inhibitory, sepa-
rated by a brief delay due to the interneuron integration. Feed-
forward inhibition has been reported in a variety of cortical regions,
including somatosensory (5), perirhinal (11), subicular (12), hip-

pocampal (13), piriform (14), and cerebellar (4). This neuronal
circuit may help control both spike timing in principal cells (15) and
the propagation of epileptiform waves (16).

Despite this ubiquity and functional involvement in patho-
physiological conditions, the specific role of FFI in shaping the
neuronal I/O relationship is not yet thoroughly understood. This
limited knowledge is due to the technical difficulty of controlling
all experimental conditions in the intricate, dynamic, and diverse
FFI circuit. Computational models can foster intuition about
complex problems by requiring the precise and explicit definition
of all variables and assumptions. Computer simulations cannot
falsify a hypothesis, but may provide proof of concept of putative
mechanisms as well as quantitative estimates of the parameter
range of their applicability. We recently proposed that FFI could
affect the I/O relationship above and beyond a modulation of
gain and/or offset, by stabilizing the output firing rate at an
intermediate value between quiescence and saturation over a
range of input stimulus rates (17). The underlying idea is based
on the observation that the interneuron I/O curve is itself
characterized by a linear component between offset and satu-
ration. Thus, the subtractive property of FFI can be exploited by
matching the ratio between excitatory and inhibitory signals to
the principal cell with the interneuron gain. In principle, the
resulting balance of excitation and inhibition would result in a
constant total input to the principal cell over a range of
stimulation frequencies from the presynaptic source. The cor-
responding output would also be constant, forming an I/O buffer
system analogous to that of chemical titrations (e.g., pH). Thus,
FFI could accomplish the role assigned to input vector normal-
ization in artificial neural networks.

Here, we define and explore this potential mechanism in detail
using compartmental simulations of an individual granule cell
and feed-forward interneuron from the rat dentate gyrus. This
hippocampal region has an identified FFI component (18–20)
that may modulate the I/O relationship between signals from the
entorhinal cortex and granule cell responses. The interneurons
of a particular GABAergic class, MOlecular layer Perforant
Pathway (MOPP) cells (18), extend both their dendrites and
axons through the molecular layer, thus sharing with the granule
cells the perforant pathway excitation from the entorhinal
cortex, and also targeting the granule cells dendrites in the same
regions. The results indicate that the buffering role of FFI is
compatible with plausible biophysical parameters. Moreover, the
model predicts that both the buffered output firing rate and the
input frequency dynamic range can be extensively and robustly
modulated by the number and weights of the excitatory synapses
on the FFI interneurons.
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Results
Our biophysically and anatomically realistic simulation of FFI in
the dentate gyrus is based on compartmental models of a
principal (granule) cell and a feed-forward (MOPP) interneuron
(Fig. 1A). The distribution of passive and active properties in the
MOPP and granule cells yielded firing rates as functions of
somatic current injection (Fig. 1B) in agreement with experi-
mental findings (20–23). The membrane time constant and input
resistance of the MOPP cell (15 ms, approximately 200 M�)
resulting from the model parameters were also within the
respective experimental ranges (20). Similarly, the correspond-
ing model values for the granule cells (15 ms, approximately 430
M�) were in agreement with empirical observations at physio-
logical temperatures (24, 25).

The I/O curves for the granule cell in the absence of FFI
(nf � 0 and/or wf � 0), and for the MOPP cell with a
representative combination of number and weight (nM and wM)
of excitatory synapses, display typical sigmoid shapes (Fig. 2A).
Altering nM and/or wM changed the MOPP cell I/O curve both
in terms of signal gain (corresponding to the slope of the linear
fit LI in Fig. 2 A) and offset (intercept of LI with the abscissa).
In particular, the slope was a tight linear function of the total
conductance (nM�wM), with the same proportionality observed
by changing wM while keeping nM constant or vice versa (r �
0.95). For example, either halving the number of synapses from
200 to 100 (keeping their conductance at 0.05 nS), or halving
the conductance to 0.025 nS (while keeping the number at 200)
produced an identical reduction of the I/O slope from 0.8 to
0.4. In contrast, halving the number of synapses to 100 while

doubling their conductance to 0.1 nS (thus maintaining the
same total conductance) maintained the slope value at 0.8
(supporting information (SI) Fig. S1 A).

The abscissa intercept also was sensitive to the total con-
ductance, but it increased more rapidly with a reduction of the
conductance than of the number of synapses. As a result,
halving the synaptic number nM from 200 to 100 increased the
intercept from 8 to 14 Hz, but doubling at the same time the
conductance wM from 0.05 to 0.1 nS more than compensated,
yielding a net reduction of the intercept to approximately 4.5
Hz (Fig. S1B). As a result, increasing the ratio between nM and
wM, while maintaining their product constant, shifted the curve
to the right without altering its slope. In contrast, the MOPP
cell saturation frequency (the LII ‘‘plateau’’ of the I/O curve in
Fig. 2 A) was unaffected by either nM or wM and remained
confined within � 2% of approximately 50 Hz throughout
the above parameter range (Fig. S1C). These observations
suggest that combined alterations of nM and wM could finely
tune the resulting I/O curve of granule cells in the presence
of FFI.

By adding to the granule cell the FFI signal from the MOPP
cell, we investigated whether the granule cell I/O curve could be
buffered at intermediate frequencies (compare red and purple
curves in Fig. 1 A). Indeed, as exemplified in Fig. 2B for different
combinations of nM and wM, the I/O function assumes a double
sigmoid shape typical of buffer systems. In particular, over a
certain input frequency interval (the buffer range R), the output
firing rate remains nearly constant (at a buffered level F).
Furthermore, altering the values of nM and wM affected both the
buffer input range and output firing rate. This suggests a

Fig. 1. Basic intrinsic properties of the modeled cells. (A) Schematic repre-
sentation of the FFI model, including an interneuron (MOPP) and a principal
(granule) cell. Red arrows identify the external excitatory input to both cells;
nM, wM, ng, and wg represent number and weight of the synapses on the MOPP
and granule cell, respectively. The blue line depicts the inhibitory output of
the MOPP cell targeting the granule cell dendrites with nf synapses of weight
wf. The granule cell output is illustrated without (red line) or with (purple line)
the MOPP inhibitory input. (B) I-f curves of the model MOPP (Left, blue) and
granule cell (Right, red) describing the firing rate response to somatic current
injections. Experimental data (black) were replotted from published reports
for MOPP cells (20) and for 3 independent studies of granule cells (exp1 (21),
exp2 (22), and exp3 (23), respectively). Insets show somatic recordings for both
experiments and models at specific current amplitudes.

Fig. 2. The number and weight of synaptic inputs on the MOPP cell can
modulate the buffering effect of FFI. (A) MOPP (blue) and granule cell (red)
firing rates as a function of the frequency of excitatory synaptic input (without
inhibition on the granule cell). The values for nM and wM were 200 and 0.05 nS,
respectively. LI and LII are the lines used to fit the slope and saturation of the
MOPP curve. Insets show sample traces for specific cases. (B) Granule cell firing
rate under different conditions of MOPP activation and determination of R
and F, by fitting the granule cell I/O curve with 4 lines (L1–L4). Error bars are
standard deviations (n � 20 simulation sets).
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fundamental physiological role of FFI, namely to normalize the
I/O properties of principal cells within values that can be
quantitatively controlled by modulating the number and weight
of the excitatory synapses on the feed-forward interneuron.
Although the main qualitative effect can be obtained from a
network of much simpler units (17), the F and R values depend
quantitatively on nonlinear interactions within and among active
channels and synaptic inputs. A realistic implementation is thus
necessary to explore the physiological significance of the pa-
rameter ranges.

To ensure that the observed buffering effect of FFI was not a
result of specific modeling conditions, we ran multiple control
simulations. In particular, we explored the use of synchronous
excitatory activation (all synapses activated in phase as opposed
to independently of each other), of regular spiking trains (con-
stant interstimulus intervals instead of Poisson distributions), of
nonuniform distribution of synaptic frequencies between 0 and
200% of the average ‘‘target’’ value (as opposed to the same
input rate for all synapses), and of a fixed spatial distribution of
synapses (instead of redistributing the inputs at each simula-
tions). Although the buffered firing rate F varied in each
condition, the general buffering effect of FFI was robustly
reproduced in all cases: the buffer range R never approached
zero and in fact was always greater than in the ‘‘base’’ conditions
selected for this study (Fig. S2).

To explore systematically the effects of nM and wM on R and
F, we varied the number of synapses on the MOPP cell dendrites
while holding their weight at different fixed values, and vice
versa, we changed the weight while maintaining the synapse
number constant. Both the output firing rate (Fig. 3 A and B) and
the input frequency range (Fig. 3 C and D) of the granule cell
buffered I/O curve were well fitted by independent linear
functions of nM and wM (average r2: 0.92). The negative slope and
left shift of these lines with increasing MOPP cell stimulation
indicate that a stronger excitatory input to the FFI interneuron
tends to lower the buffered firing rate and to restrict the dynamic
range of the buffer. Such dual linear behavior is consistent with
a set of 2 second-order equations in 2 variables without quadratic
terms:

R � a�nM�wM � b�nM � c�wM � d

F � e�nM�wM � f�nM � g�wM � h,

where the slope and intercept of R as a function of nM at a fixed
wM value are given respectively by (a�wM�b) and (c�wM�d), and
analogous relations hold for each pair of dependent and inde-
pendent variables. Square error minimization yielded best fitting
values for parameters a–h: a � �16.24 Hz/nS, b � �204.05 Hz,
c � 0.036 Hz/nS, d � 189.07 Hz, e � �3.92 Hz/nS, f � �83.13
Hz, g � 0.021 Hz/nS, h � 71.35 Hz. Inspection of these values
reveals that the cross and residual terms (a and d in R) are
relatively more predominant (compared to b and c) in the
equation of the input range than in that of the firing rate.

These results imply that the buffering properties of FFI can
be modulated broadly. Specifically, the output firing rate can
be equalized to any level between 20% and 80% of the
saturation frequency of the principal cell (approximately 70 Hz
in this case), and the dynamic range of the neuron can be
augmented �10-fold relative to the purely excitatory I/O
relationship (from �10 Hz to �100 Hz). Moreover, these two
features can be independently controlled by appropriate com-
binations of the number and weight of excitatory synapses on
the interneuron, all within a reasonable biological variation. In
particular, to yield a desired pair of values for R and F, the
corresponding quantities of nM and wM can be computed with
the quadratic formula after substitution from the above equa-
tions (Fig. 3 E and F). For example, to obtain a buffered output

firing rate of 25 Hz over an input frequency dynamic range of
20 Hz (corresponding to a stimulation interval of 10–30 Hz),
the inhibitory cell should receive 140 synapses of 0.07 nS
weight. The output firing rate could be doubled (with the same
input frequency range) by changing the synaptic values nM and
wM to 1600 and 0.0856 nS, respectively. Similarly, the input
range could be extended to 40 Hz (10–50 Hz stimulation),
without altering the buffered firing frequency, with nM and wM
values of 18 and 0.335 nS, respectively.

Inhibitory neurons can also inhibit each other (18), poten-
tially decreasing the slope of their I/O curve. To investigate the
impact of such possibility on the I/O relation of granule cells,
in a variant of the model we substituted the MOPP cell with
a randomly connected network of 10 mutually inhibiting
interneurons (see SI Text). This variation drastically enhanced
the buffering effect of FFI (Fig. S3A Left) by more than
doubling R and progressively lowering F with increasing
synaptic coupling (Fig. S3A Right).

As synaptic plasticity could also dynamically affect FFI, we
explored the effect of short-term depression of the inhibitory
contacts (see SI Text for details and rationale), using parameters
from the experimental literature (26). This mechanism added a
temporal dimension to the buffer (Fig. S3B). The strong effect
observed at stimulation onset was drastically reduced after
approximately 250 ms (Left), practically disappearing at 500 ms,

Fig. 3. The buffer range and frequency can be broadly and systematically
controlled by the input to the inhibitory neuron. (A–D) Independent modu-
lation of the granule cell firing rate F (Top) and range R (Bottom) as a function
of the weight wM (Left) and number nM (Right) of the excitatory synapses on
the MOPP cells. (E–F) Computed nM and wM values to obtain a target pair of
F and R values. The quadratic equation has 2 solutions for each pair of F and
R (high nM and low wM or vice versa), illustrated by corresponding color shades.
Dots are fitted data.
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with corresponding decay of R and gradual increase of F (Right).
These simulations thus predict a finite time window for FFI
buffering.

Discussion
Ever since their establishment as the fundamental spiking de-
vices in the nervous system, neurons have been recognized for
their ability to transform rate-coded information. The I/O
relation between the mean firing frequencies of the excitatory
synaptic input and axonal output is typically described as a
sigmoid function (27), whereas the neuron is nearly silent at
input rates below a characteristic offset, then at intermediates
input rates increases its firing output with a given slope or gain,
finally reaching a plateau at saturation input rates. Synaptic
integration and neuronal excitability, and thus the shape of the
I/O curve, are affected by many factors, including dendritic
morphology, passive and active membrane properties, and the
spatiotemporal input patterns.

The all-or-none properties of axonal spiking and the presence
of active dendritic channels can yield a steep I/O sigmoid (28)
with limited dynamic range. The resulting nearly bimodal be-
havior may severely compromise information coding, as minimal
input fluctuations within the expected natural variability could
cause neuronal output to jump between silence and maximum
firing rate. Network simulations of feed-forward excitation,
notoriously susceptible to falling into bistable activity (29), are
often fixed with external algorithms that impose hard constraints
on average and instantaneous firing rates (30). These solutions
are meant to capture underlying inhibitory dynamics, but the
actual biological mechanism allowing the extensive feed-forward
excitatory networks in the cortex to operate continuously over a
broad frequency range is unknown.

Our results demonstrate that FFI may allow the continuous
control of the circuit I/O, providing a soft switch between
essentially digital and analog rate-code. The qualitative tran-
sition of the traditional synaptic integration mode to a buffer
system greatly enhances the robustness of the response to noisy
stimuli. This could be crucial in brain regions prone to
epileptic activity such as the hippocampus, where excitability
is finely regulated by multiple inhibitory mechanisms (31). The
dentate gyrus, entry point of the hippocampal circuit, is
especially sensitive, and disruption of its inhibitory efficacy
may cause the aberrant activity observed after brain injury
(32). Buffering the granule cell I/O may also be essential to
spatial coding of place cells (SI Text). A prominent FFI circuit
is also present in CA1, where pyramidal cells receive GABAer-

gic input corresponding to each of the 2 main excitatory
afferents, namely Schaffer collateral from CA3 (33) and
perforant pathway from the entorhinal cortex (34). Interest-
ingly, in CA1 pyramidal cells the relative contribution to
network activity of feed-forward and feedback inhibition
(respectively from radiatum and alveus interneuron) depends
on the input frequency at the afferent fibers (9).

The proposed FFI mechanism enables the quantitative and
independent modulation of the buffered I/O properties, input
range, and output firing rate, by synaptic circuit fine tuning.
Although we only presented analyses of the simulations that
altered the excitatory input to the interneuron (nM and wM),
similar results can be obtained by varying the number and
weight of the inhibitory contacts on the principal cell (nf and
wf). Both of these connection types are dynamically regulated
in the cortex through a variety of short- and long-term
plasticity mechanisms (26, 35). Thus, plastic synaptic changes
could rapidly regulate both the buffered firing rate output (F)
and the corresponding range of input frequency (R), while
maintaining the robustness of the buffer system (Fig. S3).

Our computational model, designed from a parsimonious
set of biophysically and anatomically plausible conditions,
provided a ‘‘proof by construction’’ for this novel potential role
of FFI. The goal was to test whether the hypothesized buffer
function could be achieved in a biologically relevant interval
of frequencies with realistic connectivity. From this perspec-
tive, the lack of other biophysical details such as Ca2� dynamics
or homeostatic plasticity is a feature, not a limitation. The
model was validated with available experimental data most
pertinent to the I/O relationship (the I-f curves) but did not
attempt to recreate faithfully all aspects of MOPP and granule
cell electrophysiology or to reproduce phenomena not directly
affecting mean firing rate. In fact, except for the selection of
an anatomically well-characterized FFI circuit (the entorhinal-
MOPP-granule cell system), these results might be represen-
tative of other FFI circuits throughout the cortex and other
brain regions. The Na� and K� channels in our model are
ubiquitous components of active membranes, ultimately de-
termining neuronal excitability and thus the I/O relationship.
At the same time, the buffering ability of FFI demonstrated
here could be further modulated by other membrane proper-
ties and subcellular mechanisms, such as the up/down-
regulation of the interneuron K� conductances (36). Similarly,
the stimulation characteristics could also play a role: to a first
approximation, increasing the synchrony of synaptic activation
corresponds to grouping synapses together (37), i.e., raising

Table 1. Morphometric propertiesa

n257

MOPP (N � 12)

n500

Granule (N � 19)

� � � Min–Max � � � Min–Max

# Dendritic trees 4 3.6 � 1.1 2–5 2 1.9 � 1.1 1–4
# Branches 147 126 � 58.6 63–283 35 37.4 � 11.3 23–67
Width, �m 585 662 � 206 309–1029 326 300 � 72.2 182–518
Height, �m 642 501 � 196 257–961 270 260 � 54.9 159–401
Depth, �m 24.8 41.3 � 20.8 20.3–86 56.1 208 � 94.9 31–377
Avg. diameter, �m 0.6 0.7 � 0.2 0.5–1.3 0.5 0.8 � 0.2 0.5–1.2
Total length, �m 11994 10455 � 4802 2745–19053 3025 4058 � 959 2298–6060
Max eucl. dist., �m 437 508 � 104 312–678 400 385 � 39.6 327–456
Max path dist., �m 1618 1182 � 443 421–2161 419 482 � 55.1 399–597
Max branch order 20 15 � 6.1 7–27 6 5.7 � 1 3–7
Partition asymmetry 0.5 0.5 � 0.1 0.4–0.7 0.6 0.5 � 0.1 0.2–0.6
Bifurcation angle, deg 80.8 76.8 � 8.8 66.3–90.2 47.8 43.4 � 6.6 29.8–53.2

aAll NeuroMorpho.Org reconstructions that belonged to the same classes as n257 and n500 (12 MOPP and 19 granule cells) were used in the analysis. MOPP
cells include both axons and dendrites (axons were excluded in subsequent modeling); only dendrites were reconstructed in these granule cells.
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their weight (w) while lowering their number (n), consistent
with the doubling of R in Fig. S2.

The simple conditions selected in this study point to the
generality of the FFI buffer function that might dramatically
increase the computational power of neuronal integration. An
experimentally testable prediction of this model is that an
intermediate plateau could be observed in the I/O relationship
of neurons controlled by FFI and that this deviation from a
sigmoid curve would be eliminated by blocking GABAergic
conduction. Preliminary evidence may be found in recent
experimental data (38, 39). However, the different conditions
of these approaches (fixed pharmacological inhibition or in-
direct measure of firing rate) invite caution. Stronger exper-
imental tests could involve organotypic slice cultures of ento-
rhinal cortex and dentate gyrus to isolate the feed-forward
component (40).

Different populations of interneurons often coexist in a given
brain circuit (2). Thus, more than one class of feed-forward cells
could independently target the same population of principal
neurons, each with distinct synaptic parameters (e.g., number
and weights of excitatory synapses on the interneuron). This
would result in multiple buffer effects on the I/O curve of the
principal cells, each with its own dynamic range R and buffered
firing rate F. The example illustrated in Fig. S4, resembling the
pH titration curve of a weak polyacid, was created by using for
each of the neurons a generic I/O sigmoid (the integral form of
the normal distribution, or error function), emphasizing that this
phenomenon reflects a general computational property of FFI
architectures (17) and not a specific combination of biophysical
parameters.

Methods
The 3D morphological reconstructions of the 2 cells were downloaded from
Turner’s collection (41) of the public NeuroMorpho.Org database (42) (http://
neuromorpho.org), namely n500 (granule) and n257 (MOPP). The morpho-
metric parameters of these neurons were representative of their respective
classes (Table 1). The NEURON models files and a simulation script are publicly
available on the ModelDB database (http://senselab.med.yale.edu). More
details are described in SI Text.

Passive and active properties in both cells (Table 2) matched empirical
values if reported (22, 43), or were set to obtain I-f curves consistent with

available experimental data (20 –23) (Fig. 1B). This selection aimed at the
simplest biophysical models suitable to explore the I/O relationships in
terms of mean firing rate. For the sake of parsimony, Ca2�, Ca2�-
dependent, and other slow conductances involved in spike adaptation,
after-hyperpolarization, depolarizing after-potential, and other postspike
events (43) were not included. The large difference in capacitance between
the 2 cells accounts for the contribution to membrane surface area of
dendritic spines, which are dense in granule cells (44), but not in MOPP
cells (18).

Granule and MOPP cells received a barrage of excitatory synaptic stim-
ulation from the same (‘‘entorhinal’’) source (red arrows in Fig. 1A). In both
cells, these inputs were stochastically distributed on the dendrites in the
outer two-thirds of the molecular layer, corresponding to the perforant
pathway. Unless otherwise noted, each synapse received an asynchronous
train of irregular stimuli at the same mean frequency. In particular, inter-
spike intervals were independently sampled from a Poisson distribution
matching the target mean frequency, and the phase (i.e., the first activa-
tion time) of each synapse was uniformly sampled between zero and the
interspike interval. The granule cell was also targeted by inhibitory syn-
apses from the MOPP cell (blue dotted arrow in Fig. 1A) in the same
dendritic zones.

Excitatory (AMPA and NMDA) and inhibitory (GABAA) synapses were
modeled using double exponential time courses. Raise and decay time
constants, number of synapses, dendritic location, peak conductance, and
reversal potential (Table 3) were consistent with available experimental
data (SI Text). To test if model and results were representative of a more
general phenomenon not restricted to the rodent dentate gyrus, we also
tried a broader range of values. Such exploratory simulations indicated
that the main finding was robustly reproducible with several alternative
combinations. For example, buffering is observed also in the absence of
NMDA conductances in granule cells. Therefore, the selected simulation
parameters should be interpreted as a proof of principle and not in the
limiting sense.

The output of the inhibitory neuron (schematized by the blue sigmoid in
Fig. 1A) and its effect on the granule cell could be modulated by several
parameters, including the number and weight of excitatory inputs on the
MOPP cell (nM and wM, respectively) and of its feed-forward outputs (nf and
wf). In the hypothesized FFI mechanism described in the Introduction, the
ratio between excitatory and inhibitory input to the granule cell (ng�wg/
nf�wf) must match the MOPP cell gain, i.e., the slope of the I/O curve of the
interneuron between offset and saturation. Since the numbers of excita-
tory and inhibitory synapses on the granule cell (ng and nf) were fixed to the
same constant number (2000), only nM and wM remained as free parame-
ters. To study the I/O characteristics of the circuit (Fig. 1A), simulations were
run for several combinations of nM and wM, keeping in all cases ng and wg

constant (Table 3). For each combination, the output firing frequency of
the granule cell was computed as a function of the excitatory input
frequency over a simulation period sufficient to record 10 or more spikes at
each input frequency. Results were averaged over 20 simulations, stochas-
tically resampling in each case the location and initial activation time
(phase) of individual synapses.

The interneuron gain was computed by least square error fitting of the
MOPP cell I/O results with a 3-parameter function defined as the minimum
between a line, determining the slope, and a constant corresponding to the
saturation frequency (Fig. 2A). Similarly, the buffered firing rate F and the
buffering range R were found by best fit of the granule cell I/O data with a
6-parameter function consisting of 2 linear components and 2 constants,
corresponding to the intermediate plateau and to the saturation frequency
(Fig. 2B).

Separate simulations modeled short-term depression of GABAergic syn-
apses (26) by monotonically decreasing wf with each activation, plateauing at
the 5th to 40% of the initial value.

Table 2. Passive and active properties

MOPP Granule

Resting potential, mV �55 �74
Rm, K��cm2 15 6
Cm, �F/cm2 1 2.5
Ra, ��cm 150 200
Input impedance, M� 199.6 433
gNa soma/dend, pS/�m2 800/160 2000/666
gK_DR soma/dend, pS/�m2 100/20
gK_A soma/dend, pS/�m2 200/40
gK_f, pS/�m2 600

Table 3. Synaptic properties

Cell
Distribution

(distance from soma) Type Number (nx)
Reversal
potential

Peak conductance
(wx, in nS)

Raise/decay
time, ms

MOPP �300 �m AMPA 14–1000 0 mV 0.0075–0.3 0.5/3
Granule �200 �m NMDA 2000 0 mV 0.02 0.5/10

AMPA 2000 0 mV 0.04 0.5/3
�200 �m GABA 2000 �80 mV 0.012–0.039a 0.5/10

aThis value was adjusted to match the ratio between the excitatory conductance on the granule cell and the gain of the MOPP (the slope of the linear
component of its I/O curve between offset and saturation).
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In another simulation set, 10 MOPP cells, each receiving the same random
excitatory input (wM and nM), were interconnected with 200 inhibitory synapses
stochastically sampled (with repetition) among all possible pairs (SI Text).
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8. Mittmann W, Chadderton P, Häusser M (2004) Neuronal microcircuits: Frequency-

dependent flow of inhibition. Curr Biol 14:R837–R839.
9. Wierenga CJ, Wadman WJ (2003) Excitatory inputs to CA1 interneurons show selective

synaptic dynamics. J Neurophysiol 90:811–821.
10. Thomson AM, Lamy C (2007) Functional maps of neocortical local circuitry. Front

Neurosci 1:19–42.
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