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Summary
Metastasis is the primary cause of death in most human cancers, and understanding the molecular
mechanisms underpinning this multistep process is fundamental to identifying novel molecular
targets and developing more effective therapies. Growth Factor Receptor-bound protein 2 (Grb2) is
a key molecule in intracellular signal transduction, linking activated cell surface receptors to
downstream targets by binding to specific phosphotyrosine-containing and proline-rich sequence
motifs. Grb2 signaling is critical for cell cycle progression and actin-based cell motility, and
consequently, more complex processes such as epithelial morphogenesis, angiogenesis and
vasculogenesis. These important functions make Grb2 a logical therapeutic target for strategies
designed to prevent the spread of solid tumors through local invasion and metastasis. Here we review
the role of Grb2 in cancer and specifically in metastasis-related processes, and summarize briefly
the development of anti-cancer therapeutics selectively targeting this important adapter protein.
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1. Introduction: the metastatic problem
Metastasis is the primary cause of death in most human cancers, and understanding the
molecular mechanisms underpinning this multistep process is fundamental to identifying novel
molecular targets and developing more effective anti-cancer therapies. Despite progressive
advancement in our understanding and in the treatment of cancer over the last decade, the
metastatic process remains poorly understood at the molecular level1. Many current cancer
treatments focus primarily on blocking the proliferation of tumor cells using cytostatic agents
and targeted therapies, but these regimens offer limited success, with frequent relapse. Thus,
to improve survival rates for most cancers, more effective ways of treating micrometastatic
disease are required.

Metastasis is a multistep process2, 3 in which cells from the primary tumor migrate through
the extracellular matrix, enter the circulation through newly formed blood vessels (tumor
angiogenesis) and disseminate to distant sites (extravasation), where proliferation begins again.
Blocking any stage of this process can potentially be an effective strategy to block the entire
process of metastatic disease.

A variety of extracellular signaling molecules, such as growth factors and cytokines, signal
through specific binding to membrane receptors endowed with tyrosine kinase activity4.
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Ligand binding triggers receptor phosphorylation on tyrosine residues within specific structural
motifs which constitute docking sites for several signaling molecules, such as SH2 domain
containing proteins. Recent findings show that these molecules are dynamic connectors of
intracellular networks, able to coordinate spatially and temporally diverse pathways5. One such
molecule is the adapter protein Growth Factor Receptor bound protein 2 (Grb2), which recruits
to receptors a variety of other signaling molecules to form multimeric signaling complexes
leading to cellular responses such as proliferation and invasion, two widely recognized
hallmarks of cancer6.

Grb2 was originally characterized for its role in cell proliferation7; however, emerging
evidence shows that Grb2 contributes to tumorigenesis in several other ways and to other stages
of cancer progression. Direct and indirect interactions between Grb2 and several intracellular
proteins involved in the metastatic cascade have been the subject of numerous original reports,
but unfortunately the role of Grb2 in cell motility and metastasis has not been systematically
examined. Here we summarize these findings and offer a perspective on the development of
selective inhibitors of this adapter protein as anti-cancer drugs.

2. The adapter protein Grb2
Grb2 is a ubiquitously expressed adapter protein that is essential for a variety of basic cellular
functions and acts as a critical downstream intermediary in several oncogenic signaling
pathways. The mature 25 kDa Grb2 protein has a modular structure with one Src homology 2
(SH2) domain flanked by two SH3 domains8. Originally isolated through screening for
epidermal growth factor receptor (EGFR) interacting proteins, Grb2 has been demonstrated to
interact with several proteins. In particular through its SH2 domain, which is a conserved
sequence of 100 amino acids, Grb2 can interact directly with receptor tyrosine kinases (e.g.
hepatocyte growth factor receptor, platelet derived growth factor receptor, etc.) and non-
receptor tyrosine kinases, such as focal adhesion kinase (FAK) and Bcr/Abl9, as well as
substrates of tyrosine kinases, via preferential binding to the phosphopeptide motif pYXNX
(where N is asparagine and X any residue). The carboxyl and amino-terminal Src homology 3
(SH3) domains, which have a conserved sequence of around 50 amino acids, bind proline-rich
regions within interacting proteins.

The canonical model of Grb2 function relies on the widely confirmed observation that Grb2
is constitutively associated with Son of sevenless (Sos), a guanine-nucleotide exchange factor
that promotes GDP-GTP exchange on Ras. Upon growth factor receptor activation and tyrosyl
phosphorylation, Grb2 brings Sos1 into close proximity of membrane-bound Ras, thereby
activating Ras and the downstream mitogen-activated protein kinase (MAPK) cascade10.

The grb2 gene is highly conserved among species and Grb2 expression is critical for normal
development11. Mouse embryos with homozygous deletion of grb2 die at a very early
embryological stage, precluding investigation of these cells later in development. However,
using mutations originally identified in C. elegans, it has been possible to generate a
hypomorphic allele of the mouse grb2 gene and derive grb2−/hypomorph mice that manifest
morphogenic defects in neural crest cell migration into the branchial arches and defects in
cardiovascular development12. These findings reinforce the idea that Grb2 is critical for
epithelial morphogenesis and for processes such as cell motility and vasculogenesis.

3. Grb2 and cancer: an overview
Beside its role as critical downstream intermediary in several oncogenic signaling pathways,
Grb2 signaling has also been implicated directly in the pathogenesis of several specific human
malignancies. The human grb2 gene is located in chromosome 17(q22), a region which is
known to be duplicated in solid tumors and in leukemias13. In chronic myelogenous leukemia
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(CML), the chimeric Bcr-Abl tyrosine kinase oncoprotein is able to bind the Grb2 SH2 domain
through Y177 in the BCR region, linking the fusion protein to the Ras pathway14. Competitive
antagonism of the ATP binding site of the Abl tyrosine kinase with small molecules such as
Imatinib (STI-571) is currently the main therapy, but inhibition of Grb2-Bcr interaction could
become a valid adjuvant therapy or an alternative in patients resistant to this treatment.

Grb2 can also be overexpressed in tumors, such as in breast cancer. Indeed, in addition to its
role as a proximal mediator of ErbB2/Neu signaling, Grb2 itself was found to be overexpressed
in several breast cancer cell lines and breast cancer tissue samples15, 16, enhancing signaling
through the MAPK pathway. Grb2 is also important in polyomavirus induced mammary
carcinoma, and Grb2 gene dosage was rate limiting for the onset and development of
experimental mammary carcinomas12, highlighting its critical role in the transformation
process. Grb2 is involved in keratinocyte growth factor (KGF) induced motility in MCF-7
breast cancer cells17 further suggesting that Grb2 can be a valid therapeutic target for
pathological processes such as the spread of solid tumors through local invasion and metastasis.
In bladder cancer cells where no EGFR overexpression or H-Ras mutations have been reported,
Grb2 has been found overexpressed together with Sos1, as the only observed mechanism of
oncogenesis18. In the highly metastatic cancer cell line 1-LN, Grb2 was one of the effector
proteins significantly induced, together with Sos1, Shc and Raf1, through activation of the
[alpha]2-macroglobulin receptor19.

Consistent with a role in tumor dissemination, several groups have reported specific direct and
indirect interactions of Grb2 with molecules involved in cytoskeleton remodeling, motility and
other cellular processes recapitulated in the multistep cascade of cancer metastasis. Inhibitors
of Grb2 SH2 domain binding have been demonstrated to reduce motility in vitro and decrease
cancer metastasis in animal models20–22. Several studies, summarized below, elucidate the
molecular mechanisms by which Grb2 contributes to cell motility and other processes
characteristic of cancer metastasis (Figure 1).

4. Grb2 signaling in invasion and metastasis
4.1. Cell adhesion

Early in the metastatic cascade changes occur in the adhesion properties of potentially
metastatic cells inside the primary tumor23. These cells lose their junctions to other cells and
to the extracellular matrix (ECM) and display increased motility. In motile cells, new adhesion
sites (focal complexes) located within cell edge protrusions (lamellipodia and filopodia) are
transient and small compared to the more stable focal adhesions underlying the cell body and
localized at the extremities of actin stress fibers24. The interaction of ECM components with
the cell surface is mediated mainly by members of the integrin family of transmembrane
receptors. Integrins do not have intrinsic catalytic activity but rely on the kinase activity of
other nearby intracellular proteins. For example, focal adhesion kinase (FAK) colocalizes with
integrin receptors upon engagement of the cell with the ECM and constitutes a nodal point in
integrin signaling, and an important regulator of cell migration25.

FAK overexpression in several types of tumors is associated with increased angiogenesis,
metastasis and poor prognosis26. FAK function is regulated through tyrosyl phosphorylation
at specific sites in its amino acid sequence. Several stimuli, such as those mediated by integrins,
can induce FAK autophosphorylation, creating docking sites for proteins containing SH2
domains, including Src. Src can also activate FAK and promote its phosphorylation on other
tyrosine residues; one of these residues, Y925, occurs within a consensus sequence (pYXNX)
for high affinity binding to the SH2 domain of Grb227. Interestingly, elevated Src activity, as
observed during colon cancer progression, specifically promotes phosphorylation on tyrosine
Y925, inducing changes in integrin adhesion and deregulation of E-cadherin28 and leading to
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an E-cadherin/N-cadherin switch29. This event is part of an important hallmark of cell
transformation and metastasis, namely epithelial-mesenchymal transition (EMT). The role of
FAK in tumor metastasis has been confirmed in several studies and may explain, at least in
part, why Grb2 SH2 domain binding antagonists can inhibit migration in vitro and tumor
dissemination in animal models22. These same binding antagonists were able to suppress N-
cadherin expression in primary tumors, suggesting a novel role for Grb2 in EMT22, 30.

The interaction of Grb2 with FAK, Shc and other proteins also leads to activation of the Ras
and extracellular-signal-regulated kinases 2 (ERK2) pathways; integrin engagement of these
pathways induces cell spreading through actin cytoskeleton rearrangement. Indeed, one of the
key differences between ERK2 pathway activation by growth factor receptors versus by
integrins is that the latter require a functional actin cytoskeleton to signal, while growth factor
receptors can signal even when the actin microfilaments are disrupted by cytochalasin D, a
potent inhibitor of actin polymerization31, 32.

The discovery of Grb2 mediated adhesion signaling raises questions as to its precise role in
this context. In particular, it is important to understand the signaling that permits migrating
tumor cells to go through a series of continuous attachments and detachments, and how
signaling proteins such as Grb2 direct these transitions and promote cell movement.

4.2. Extracellular matrix remodeling
Once tumor cells have detached from neighbor cells and from the ECM, they must move
through the tissue and into blood vessels to reach distant sites. Proteolytic ECM remodeling
facilitates this process and involves a wide spectrum of proteinases33. Matrix
metalloproteinases (MMPs) are a family of secreted and transmembrane proteins capable of
degrading virtually every component of the extracellular matrix. They function in physiologic
processes such as tissue growth, morphogenesis, tissue repair and angiogenesis, as well as in
pathological conditions such as tumor invasion and metastasis34. The MMP family includes a
class of membrane-anchored metalloproteinases, ADAMs (A Disintegrin And
Metalloprotease), involved in proteolytical cleavage and release of membrane-bound growth
factors, cytokines and receptors35. ADAMs overexpression and dysregulation have been
implicated in angiogenesis and metastasis, especially in ErbB ligand cleavage and activation
as well as in the processing of other proteins involved in oncogenesis36. ADAM12 (Meltrin
alpha), upregulated in several cancers, interacts directly with the SH3 domains of Grb2 through
prolin-rich sequences in its cytoplasmic tail37. Moreover, Grb2 and ADAM12 colocalize at
membrane ruffles, structures visible specifically during epithelial cell migration. Another
protein in this family, ADAM15 (metargidin) also interacts with Src and Grb2 in vitro through
proline-rich sequences in the cytoplasmic domain38. In addition to weakening the structural
integrity of the ECM, these proteolytic activities can liberate matrix-bond chemokines and
growth factors, that further enhance to the motility and proliferation of cancer cells. This
collection of important oncogenic properties has prompted the development of selective
ADAMs inhibitors now entering clinical trials, and reinvigorated hopes placed earlier on MMP
inhibitors39, 40.

4.3. Cytoskeletal plasticity and cell motility
Despite the name “growth factor”, most proteins so named not only stimulate proliferation, but
a plethora of other effects. Upon binding to membrane receptors, growth factors initiate signals
leading to survival, changes in energy metabolism and other activities such as motility and
invasion. Most, if not all, growth factors are also motogens. One of the best characterized
growth factors involved in cell motility and invasion is hepatocyte growth factor (HGF), also
known as the scatter factor (SF), the ligand for the tyrosine kinase receptor c-Met41. Scattering
is a spatially and temporally complex response to HGF/c-Met interaction in which a cluster of
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grouped cells lose apical/basal polarity and initiate membrane ruffling, then dissociate from
the ECM and neighboring cells through disruption of E-cadherin mediated cell-cell adhesion
and subsequently migrate42. Intracellularly, HGF binding activates the c-Met kinase domain,
and through a series of auto- and trans-phosphorylations on specific tyrosine residues, docking
sites for effector proteins are created. Grb2 interacts directly with pY1356 in c-Met (Swissprot
Database sequence, accession P08581), or indirectly through the adapter protein Gab1 (Grb2
Associated Binder 1). Among the many downstream pathways implicated in this process are
activation of the Rho family GTPase Rac and Ras43, 44. Activation of the Ras-Rac1/Cdc42-
PAK and Gab1-Crk-C3G—Rap1 effector cascades also regulates cytoskeletal and cell
adhesion proteins such as Arp2/3, N-Wiskott-Aldrich Syndrome protein (N-WASP), paxillin,
integrins, FAK and cadherins.

Grb2 mediated motogenic signaling extends beyond its role as a receptor-proximal adapter
protein in growth factor and ECM stimulated cell motility: Grb2 interacts directly with the
actin filament machinery. One such interaction is with the cytoskeletal associated protein
WASp45, a regulator of actin cytoskeletal rearrangement. Patients affected by a mutation in
the gene encoding this protein show functional defects in platelets, in T and B cell polarization,
and in the ability of these cells to migrate in response to external stimuli, resulting in
thrombocytopenia, immunodeficiency and a propensity to develop malignancies46. The WASp
protein contains proline rich sequences that interact with the Grb2-SH3 domains; binding to
Grb2 translocates WASp from the cytosol to the plasma membrane, where it can interact with
membrane bound proteins such as Rac and Cdc4247. Grb2 also links the EGF receptor to WASp
protein constitutively and this interaction is enhanced upon EGF stimulation. WASp at the
membrane interacts with Nck48, and together with Grb2, cooperatively stabilizes actin-
nucleating complexes. So Grb2 and Nck, both SH2 and SH3 domain containing proteins, link
membrane receptors and membrane-bound proteins to intracellular cytoskeletal regulators,
increasing their local concentrations at the membrane and facilitating enzymatic reactions and
activation. Model organisms, such as Listeria monocytogenes and vaccinia virus, have been
used to refine our understanding of the role of Grb2 in actin-based motility. These pathogens
subvert the actin cytoskeletal machinery to navigate through the host cytoplasm48, 49. N-WASp
is necessary for the actin-based motility of vaccinia virus, and in mammalian cells regulates
actin polymerization through the Arp2/3 complex (the nucleation factor of newly formed actin
filaments) and interaction with Cdc4250. When N-WASp is not present, Grb2 triggers only a
weak activation of Arp2/3 with defective actin polymerization51. These findings further define
the role of Grb2 in connecting signaling molecules to the actin cytoskeleton and cell motility.

Several motogenic signaling pathways from the cell surface converge on the p21-activating
kinases (PAKs), which consequently translocate to the leading edge of the cell and contribute
to motility and invasion. Activation of PAKs and translocation to the plasma membrane are
processes that involve interaction with adapter proteins such as Nck and Grb2. PAKs are serine/
threonine kinases that regulate cancer signaling networks and are considered platforms that
amplify and propagate oncogenic signals elicited by extracellular stimuli52. PAKs are
important regulators of actin cytoskeletal dynamics and the role of PAKs in cancer has been
widely reported in literature. Specifically, PAK1, the best characterized member of the PAK
family, was discovered in 199453 as a target for CDC42 and Rac1, well-known regulators of
the actin cytoskeleton and implicated in the formation of fingerlike protrusions (filopodia;
CDC42) and sheetlike structures at the cell periphery (lamellipodia; Rac1). Interestingly, PAK
can directly and specifically interact with Grb2 through a prolin-rich motif in the PAK
sequence54. This interaction is independent of EGF stimulation, but it is increased after
stimulation of the EGF receptor and EGFR-Grb2-PAK1 interaction is required for EGF
induced lamellipodia formation.

Giubellino et al. Page 5

Expert Opin Ther Targets. Author manuscript; available in PMC 2009 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The importance of Grb2 in sites of dynamic actin rearrangement is further underscored in the
formation of podosomes. Originally identified in cells of mesenchymal origin, podosomes have
also emerged as adhesive structures in epithelial cells. These clusters of actin organized in
rosette-like structures have components also found in focal contacts, as well as dynamin,
cortactin, Arp 2/3, N-WASP and VASP55. Grb2, but not Nck, participates in podosome
formation, and overexpression of Grb2 interferes with the organization of these structures56.
Characteristically, these structures disappear when cells become motile and re-form when cells
are no longer moving. Podosomes have also a similar structure and composition to the
invadopodia found in malignant tumor cells.

The complexity of Grb2 involvement in actin-based cell motility is illustrated by a growing
list of interacting cytoskeletal proteins (Table 1). Merlin localizes to the leading edge of cells
(membrane ruffles), where it colocalizes with actin and contributes to actin assembly and
interaction with the cortical cytoskeleton (actin cortex). Merlin is the product of the
Neurofibromatosis 2 (NF2) gene; NF2 mutations give rise to an autosomal dominant syndrome
characterized by vestibular schwannomas and meningiomas. The sequence of merlin shows
similarities with ERM proteins (Ezrin, Radixin and Moesin) that link membrane proteins to
the actin cytoskeleton; merlin has the FERM domain for interaction with F-actin. In a screen
for Merlin binding proteins, a novel protein, Magicin (merlin and Grb2 interacting cytoskeletal
protein) with a consensus sequence (pYVNG) for the SH2 domain of Grb2, was
discovered57. Magicin creates a multiprotein complex with merlin, although the main
interaction appears to be through the SH3 domain of Grb2. The functional consequences of
magicin-Grb2 interaction and how this interaction reflects manifestations of neurofibromatosis
syndrome remain unclear.

The filamentous-actin binding protein cortactin (from “cortical actin binding protein”),
translocates from the cytoplasm to the cell periphery where it assists the Arp2/3 complex in
nucleating actin58 and promoting the formation of lamellipodia. Grb2 can associate directly
with cortactin, linking several receptor tyrosine kinases to the actin cortex. When
phosphorylated on serine or threonine by ERK, cortactin assumes a conformation that allows
N-WASp and other nucleation-promoting factors to bind to the cortactin-Arp2/3-actin
complex59. Cortactin is also overexpressed in certain cancers and is associated with
invasiveness, formation of invadopodia and secretion of MMPs, favoring the spread of cancer
cells through tissue60, 61. Moreover, cortactin can bind to another Grb2 interacting protein,
caldesmon. When tyrosyl phosphorylated, caldesmon forms a protein complex with Grb2, Nck,
Shc, PAK1 and myosin light chain kinase62, creating an oncogenic platform that signals
independently of EGFR ligand activation and distinctly from the Ras mitogenic pathway.

The microtubule network is also affected by Grb2-mediated signaling. For example, dynactin,
a multisubunit activator of the microtubule motor protein dynein that contributes to cell
polarization during migration, forms a constitutive complex with Grb2 in vivo, through its N-
terminal SH3 domain, in osteoclasts63. Another microtubule associated protein, microtubule
associated protein2 (MAP2), a major cytoskeletal protein in neurons64 that participates in
neuronal morphogenesis, also binds Grb2, linking the microtubule network to multimeric
signaling complexes in the cytosol. Finally, hungtingtin, whose malfunction is associated with
Huntington's Disease, has several proline-rich motifs and interacts specifically with the Grb2
SH3 domains not associated with Sos, linking hungtingtin to the EGF receptor65. Hungtingtin
is mainly associated with microtubules and appears to function in cytoskeletal anchoring.

4.4. Tumor angiogenesis
In order to grow beyond a relatively small size, primary tumors have to establish a blood supply.
Tumor cells secrete several growth factors that induce the formation of new blood vessels
(angiogenesis). Angiogenesis is an important step in the transition of the primary tumor to
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malignancy. In addition to nourishing the tumor, newly formed vessels provide a means to
disseminate metastatic cells. Recent findings describe angiogenesis at the primary tumor as a
mosaic of tumor cells and endothelial cells, and this structure facilitates the shedding of cancer
cells into systemic circulation.

Many of the pathways in which Grb2 is involved are important in angiogenesis and
lymphangiogenesis. Several growth factors such as vascular endothelial growth factor (VEGF),
angiopoietin-1, fibroblast growth factor 2 (FGF2) and HGF contribute to the development of
new blood vessels in physiologic and pathological conditions, such as tumor angiogenesis.
Several other angiogenic signaling pathways, including the ones driven by platelet-derived
growth factor (PDGF), ALK and Eph also require Grb2 as a critical downstream effector.
VEGF receptor 2 (VEGFR2/KDR) is phosphorylated in response to its ligand, VEGF-A, which
is secreted by many tumor cells, leading to the direct recruitment of Grb2, Shc and Nck66. Grb2
interacts similarly with VEGF receptor 3 (FLT4L) as well as indirectly through interaction
with Shc67. Consequently, Grb2 can mediate cell cycle progression via the Sos/Ras pathway
and cell motility through activation of the Rac1/Rho pathway. The latter response appears to
be sensitive to specific binding antagonists of the SH2 domain of Grb268, with reduction of
cell invasion and inhibition of more complex processes, such as endothelial cell tubulogenesis
and vasculogenesis in the chick chorioallantoic membrane (CAM). Other signaling pathways
such as those driven by angiopoietin-1 and FGF-2 also stimulate angiogenesis through
Grb269, 70. HGF has been shown to enhance tumor angiogenesis and the interaction between
tumor and endothelial cells, mostly by increasing endothelial cell expression of CD4471 or
integrin expression in cancer cells72. These events require the activation of multiple signaling
for which Grb2 has been demonstrated to be a key intermediate73, 74.

Grb2 SH2 domain binding to pY925 on FAK can also link ECM-integrin engagement to Ras-
ERK pathway activation and increased production of VEGF in tumor cells, stimulating
endothelial cell motility and survival75. Moreover, previous studies have demonstrated that
hypoxia, likely to occur inside tumors, increases phosphorylation of FAK with consequent
Grb2 binding76. This is in addition to the role of FAK in regulating endothelial cell adhesion
and motility during angiogenesis.

4.5. Tumor cell dissemination
After surviving in the systemic circulation, tumor cells adhere to the vessel endothelium,
extravasate and seed secondary sites. One of the best characterized models of extravasation is
represented by the movement of leukocytes from the circulation to the site of tissue damage
or infection, in response to cytokines released by macrophages in the affected tissue. These
cytokines induce the expression of a particular class of adhesion molecule, selectins, while
specific chemokines act as chemoattractants on circulating leukocytes77. Selectins mediate the
adhesion of lymphocytes on the endothelial cell luminal surface with a series of low affinity
binding sites, slowing down their speed to complete arrest. Studies of the intracellular signaling
events upon L-selectin activation have identified Grb2 as an important adapter: Grb2 binds
directly to L-selectin and triggers activation of Rac278. In analogy to rolling leukocytes, cancer
cells can use the same rolling mechanism to extravasate and lodge in the secondary site79, 80.
In fact, tumor progression has been associated with increased expression of selectin ligands,
and L-selectin can enhance the formation of metastasis to lymph nodes in vivo81. Endothelial
cells in different tissues are not alike and can express different patterns of adhesion molecules;
this may explain in part why tumor cells prefer specific organs, skipping organs that may be
the most logical target based on vascular drainage from the primary tumor.

Integrins are also important mediators of cancer cell rolling adhesion and subsequent
extravasation77. Integrins expressed on the surface of circulating tumor cells engage the surface
of endothelial cells and this binding triggers association of the integrin cytoplasmic tail to the
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intracellular cytoskeleton; consequently, tumor cells can change their shape and form
pseudopodia for facilitating passage between endothelial cells. After successful extravasation,
tumor cells must again activate ECM degradation, migrate to the metastatic site and proliferate
again. Thus metastatic cells must switch from a migratory to a proliferative state, again
modulating pathways in which Grb2 is a well known mediator.

5. The development of Grb2 inhibitors as anti-cancer drugs
5.1 Grb2 Silencing

The importance of Grb2 in several oncogenic signaling pathways has prompted significant
efforts to selectively disrupt its intracellular interactions. Grb2 gene silencing using RNAi
technology has been used to explore the role of this protein in signal transduction82 and in
receptor downregulation83. Nuclease-resistant antisense oligonucleotides directed against
Grb2 mRNA inhibit the proliferation of Philadelphia-chromosome positive leukemic cells84

and ErbB2 overexpressing breast cancer cells85, reinforcing the importance of Grb2 in
oncogenesis and enabling gene silencing as a potential anti-cancer strategy for this target.

5.2 Targeting the Grb2 SH2 domain
SH2 domains are well-recognized pharmaceutical targets86. The concept that disruption of
Grb2 SH2 domain interactions can significantly inhibit Grb2 signaling is supported by the
effects of the general transcriptional inhibitor actinomycin D, which has been shown to block
Grb2 SH2 domain interaction with Shc and tumor cell cycle progression87–89. Natural products
and derivatives that block Grb2 SH2 domain binding interactions have also been
characterized90. Substantial efforts to develop Grb2 SH2 domain binding antagonists have also
focused on structure-based approaches, building on the unique features of the Grb2 SH2
domain recognition motif91, 92.

The Grb2 SH2 domain prefers ligands containing an asparagine residue at the second position
carboxy-terminal to the phosphotyrosyl residue (pY+2) and it requires that ligands adopt β-
bend configurations93. The structural basis for these requirements became clear when the
crystal structures of the Src and Grb2 SH2 domains became available for comparison. This
showed that while Src family SH2 domains bind phosphopeptides in extended sheet
conformations, peptides binding to the Grb2 SH2 domain are forced into a β-bend conformation
by the presence of a Trp-121 indole side chain that prevents the extended ligand form.

As a starting point for the synthesis of this class of binding antagonists, short peptides
containing pYXN sequences from physiological binding targets of Grb2 have been used. Since
the cytosolic environment has a high level of constitutive tyrosine phosphatase activity, a major
challenge has been to confer hydrolytic stability to these phosphopeptides in vivo. Conferring
phosphatase resistance by replacing the pY residue with phosphonomethyl phenylalanine
(Pmp), or related structures94, or by subsequent refinements using non-phosphate containing
ligands95, have been successful strategies (for a detailed review see96). Other phosphonate-
based mimetics and their corresponding prodrugs have also shown activity in cell models97.
Recently, Song et al.98 reported the synthesis of a potent Grb2 SH2 domain inhibitor free of
phosphotyrosine or any phosphotyrosyl mimetic, demonstrating that complete replacement of
the pY residue can be accomplished without significant loss of binding affinity.

Systematic and stepwise substitution of the pYXN recognition motif and mimicking of the β-
turn conformation has led to high affinity synthetic compounds capable of blocking RTK-Grb2
interactions in intact cells99. The development of potent peptidomimetic inhibitors of Grb2
SH2 domain binding has been aided by macrocyclization to stabilize the critical β-turn
conformation. [For a detailed description of the chemical development of these inhibitors,
see86, 92]. Non peptidic Grb2 SH2 domain antagonists have also been developed. Building on
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the prior structure-based design of peptidomimetic ligands of the Grb2 SH2 domain100,
Caravatti et al. demonstrated that it is possible to design Grb2 SH2 domain antagonists devoid
of any peptidic character101.

Small, synthetic Grb2 SH2 domain-binding antagonists have been shown to potently block
HGF-stimulated cell motility, matrix invasion, and branching morphogenesis in epithelial and
hematopoietic target cell models21. Those compounds did not affect HGF-stimulated
mitogenesis, implying that dependence on Grb2 for mitogenic signaling may be cell-type
specific. The same compounds also inhibited the basic morphogenetic events required for
angiogenesis, such as HGF, VEGF and bFGF-driven endothelial cell migration and invasion
in a reconstituted extracellular matrix68. Moreover, inhibition of VEGF-stimulated
angiogenesis in an in vitro human umbilical vein endothelial cell (HUVEC) cord formation
assay, and suppression of vasculogenesis in vivo in the chick chorioallantoic (CAM) assay,
further implicate Grb2 in pro-angiogenic pathways and suggest that its blockade may represent
an effective anti-angiogenesis strategy68.

Because Grb2 SH2 domain binding antagonists were not found to be universal inhibitors of
cell proliferation, models of tumor metastasis were favored for further study of these
compounds in vivo. Using a murine syngeneic melanoma cell line (B16-F1) in an experimental
metastasis model (tail vein injection) and a human prostate adenocarcinoma cell line (PC3M)
in a spontaneous metastasis model (xenograft transplant), in conjunction with bioluminescence
technology, a significant reduction in metastatic burden was achieved using a prototypical Grb2
SH2 domain binding antagonist22. These results demonstrated that it is possible to specifically
target the spread of solid tumors using small molecules and it implies a critical role for the
Grb2 SH2 domain in this process.

Several important steps remain in the preclinical development of Grb2 SH2 domain binding
antagonists as anti-cancer drugs. Establishing the selectivity of rationally designed compounds
for the Grb2 SH2 domain is critical in avoiding potential toxicity due to antagonism of off-
target SH2 domain-mediated interactions. Modification of compounds with chemical tags
while maintaining biological activity has been used to create powerful tools for exploring target
protein selectivity as well as other basic aspects of Grb2 signaling102, 103. The development
of pharmacodynamic markers of drug action in intact animals represents another high priority.
Global analysis of gene expression in the presence and absence of treatment with selective
Grb2 SH2 domain binding antagonists to identify a molecular signature is a promising approach
that was recently used to identify N-cadherin as a potential pharmacodynamic marker22.

5.3 Targeting the Grb2 SH3 domains
SH3 domains are small modules that were identified 20 years ago104, 105 as one of the first
recognized modular protein domains. Unlike SH2 domains, SH3 and SH3-like domains
appeared earlier in evolution and are ubiquitous in eukaryotes as well as prokaryotes. The
structure of these modules is known in great detail. The ligand binding surface of SH3 domains
is relatively flat and hydrophobic and consists of three pockets characterized by conserved
aromatic residues. The ligand typically occupies two of these pockets with two hydrophobic
prolines, while the third pocket frequently interacts with basic residues, in a so called
polyproline-2 (PPII) conformation106. The basic residue is important for SH3 domain ligand
orientation: when the basic residue is at the amino-terminal end the SH3 domain binds in an
amino to carboxyl orientation, while the reverse orientation is preferred when the basic residue
is at the ligand carboxyl-terminus. The same conformation is recognized by other proline-
recognizing modules such as WW and profilin domains106, and this similarity has been the
subject of several studies to better understand the selectivity of SH3 domains for target proteins.
The importance of conformation over sequence for SH3 domain ligand recognition is also
gaining acceptance. Although SH3 domains have long been thought to bind preferentially to
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proline rich sequences of the form PXXP in target proteins, several exceptions to this rule have
been found107. The SH3 domains of Grb2 have been found to bind a RXXK core consensus
motif108.

The relatively low binding affinities reported for SH3/target protein interactions, together with
the ability of SH3 domains from different proteins to recognize the same target, have raised
questions regarding the basis for SH3 domain selectivities observed in intact cells as well as
the feasibility of screening peptide libraries using SH3 domains to discover binding
antagonists109. Nonetheless, progress has been made on both fronts110. For Grb2 in particular,
SH3 domain target selectivity may be increased through two mechanisms, one intrinsic to the
SH3 domains themselves and the other through their context in an SH2 domain containing
protein. For example, both Grb2 SH3 domains may interact simultaneously with different sites
on a single target molecule, e.g. SOS1, thereby increasing both the apparent affinity and
selectivity of Grb2-target interaction107. Because the Grb2 SH2 domain restricts Grb2
subcellular localization, the pool of potential SH3 domain binding partners is also likely to be
limited, further increasing their apparent selectivity.

The SH3 domains from several proteins have been used to screen short peptide libraries in
search of binding antagonists. Peptides binding the SH3 domain containing adaptor protein
Mona/Gads with high affinity have been identified and subsequent structural studies using one
of these peptides revealed a novel type of peptide-SH3 domain interaction111. Similarly,
screening for peptides binding the SH3 domains of the C. elegans Grb2 homolog Sem-5 yielded
a bivalent peptide ligand with nanomolar affinity112. Pak1-derived peptides encompassing
proline-rich sequences in that protein were found to specifically disrupt Grb2 SH3 domain-
Pak1 interactions with relevant impact on growth factor mediated migration and lamellipodia
formation54. Non-naturalamino acids analogs have been substituted at the proline-requiring
site of Grb2 SH3 domain ligands113. These have provided peptides with nanomolar affinity
and reinforced the concept that proline residues may be dispensable in the design of SH3
domain binding antagonists.

An adaptation of the target peptide screening approach in developing SH3 domain binding
antagonists has been to systematically introduce point mutations in target peptide sequences.
High affinity peptides capable of blocking the proliferation of primary blast cell cultures
derived from patients with chronic myelogenous leukemia (CML) and Bcr/Abl positive cell
lines have been developed using this strategy114. Subsequent modifications of these peptides
to improve their ability to permeate cells yielded agents that more potently disrupted Grb2
signaling complexes in CML-derived cells115. These preclinical studies support the concept
that Grb2 SH3 domain binding antagonists could provide a therapeutic alternative for CML
patients developing resistance to standard treatments116.

Enhancing the affinity and selectivity of artificial SH3 domain binding antagonists by
exploiting the existence of two SH3 domains in Grb2, dimeric peptides with high affinity
binding to both SH3 domains of Grb2 have been designed with the goal of disrupting Grb2-
SOS1 interactions117. These “peptidimers” inhibited cell growth in vitro and displayed anti-
tumor effects in xenograft models, and thus represent the first examples of in vivo activity for
this class of compounds118. Introducing N-alkylated residues into both monomers of the
peptidimer and optimizing the linker improved the affinity for Grb2 to the subnanomolar
range119. Finally, non-peptidic small molecule inhibitors have also been explored. The first
example is the Src signal transduction inhibitor UCS15A that disrupts several SH3 domain
mediated interactions, including those of Grb2120. Although target selectivity remains to be
improved, this and similar chemical structures may provide a platform for the development of
small synthetic drugs that potently antagonize specific SH3 domain binding interactions.
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Expert Opinion
Virtually all cancers develop as a consequence of abnormal cell signaling, and protein tyrosine
phosphorylation controls several important oncogenic signaling pathways. Targeting tyrosine
kinases has already demonstrated its utility in the clinical arena. As an alternative and
complementary approach, targeting downstream signaling pathways is also logical. Hence, it
is not surprising that in the last decade there has been a flourishing interest in better
understanding and targeting signal transduction modulators, such as Grb2, as a strategy to
develop novel cancer therapeutics. The importance of protein binding modules to complex cell
signaling cascades such as those involved in motility and invasion is well known. For example,
the SH2 and SH3 domains of the tyrosine kinase c-Src are required for facilitating cell
spreading, while its catalytic activity is dispensable for this function121. Targeting adapter
proteins by developing antagonists of well-characterized protein binding modules builds upon
these important basic science advances.

The role of Grb2 as a signal transducer for several oncogenic growth factor receptors and the
broad involvement of Grb2 in multiple steps of the metastatic cascade make it an excellent
target for anti-tumor therapeutic strategies. Small, synthetic Grb2 SH2 domain binding
antagonists have been developed that potently inhibit cell migration, invasion and
angiogenesis, supporting their potential as anti-metastatic therapeutics. Innovative approaches,
such as the incorporation of fluorophores122 for tracking cellular localization and the
incorporation of biotin123 for the study of selectivity and the identification of drug-associated
proteins, have enabled rapid characterization of the molecular mechanisms of action of these
novel compounds in intact cells. Despite improvements in the design and effectiveness of this
class of compounds, important questions such as bioavailability and long-term toxicity remain
largely unanswered. Considering the widespread expression of Grb2 in tissues, the embryonic
lethality of Grb2 gene deletion11, and the central role of Grb2 in immune receptor
signaling124, detailed analysis of cellular and organ specific toxicity is an important future
goal.

The rational design of drugs targeting specific molecules involved in oncogenesis and
metastasis is still in its infancy. To address the problem of low efficacy for some single agents
therapies, and to address complex processes such as metastasis, combinations of drugs acting
at different signaling nodes and processes will probably be needed. For example, targeting
multiple tyrosine kinase receptors has a proven advantage over single agent therapy and can
overcome resistance to treatment and biological heterogeneity125. Hence, Grb2 SH2 and SH3
domain antagonists may become part of individualized combination of targeted therapies built
on the molecular profiles of specific cancers. Further studies are needed to define the tumor-
specific biology of Grb2 in diverse human cancers in order to determine where and when these
inhibitors may have the best chance to be of benefit. Considering the fundamental role of
adapters such as Grb2 in cell signaling and in the development of human cancer, we anticipate
substantial growth in efforts to develop drugs that selectively target adapter proteins as a class.
Such efforts are likely to be rewarded with improved cancer treatments and a deeper
understanding of adapter protein function.
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Figure 1. The role of Grb2 in the metastatic process
When primary tumors progress and establish a new blood supply, cells within the primary site
detach from neighboring cells as an effect of the Integrin-FAK-Grb2-ERK2 signaling cascade.
Invasion through surrounding tissue is preceded by abnormal activation of matrix
metalloproteinases. Subsequently, tumor cells reorganize their cytoskeleton, extending
lamellipodia and filopodia, and migrate; Grb2 interactions with several cytoskeletal proteins
is crucial in this process. Several angiogenic signals rely on Grb2 in order to develop new blood
vessels, either through growth factor receptor or integrin signaling. Tumor cells, after
infiltrating and surviving in the systemic circulation, adhere to the endothelial cell luminal
surface through cell membrane Selectins and extravasate. In the new environment, tumor cells
can rapidly proliferate, or remain dormant until new signals stimulate their growth.
Proliferation and invasiveness at the metastatic site is also supported by the Grb2-Sos-Ras-
MAPK cascade.
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Table 1
Reported interactions of Grb2 with cytoskeletal proteins.

Grb2 interacting protein Function
ACTIN cytoskeleton
Focal Adhesion Kinase (FAK) Focal Adhesion formation
WASp and N-WASp Transducers of signals from surface receptors to the actin cytoskeleton
p21-activated kinases (PAK) Regulators of cell cycle progression and cell shape change
Magicin Cytoskeletal organization and transcriptional repressor
Cortactin Cytoskeletal and adherens-junction organization
Caldesmon Regulates actin and calmodulin interaction
MICROTUBULE cytoskeleton
Dynactin1 Dynein activator
MAP2 Stabilizes microtubule elongation
Huntingtin Cytoskeletal anchoring to tubulin
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