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Abstract
Drug-induced liver injury is a significant and still 
unresolved clinical problem. Limitations to knowledge 
about the mechanisms of toxicity render incomplete 
the detect ion of hepatotoxic potential during 
preclinical development. Several xenobiotics are 
lipophilic substances and their transformation into 
hydrophilic compounds by the cytochrome P-450 
system results in production of toxic metabolites. 
Aging, preexisting liver disease, enzyme induction 
or inhibition, genetic variances, local O2 supply and, 
above all, the intrinsic molecular properties of the 
drug may affect this process. Necrotic death follows 
antioxidant consumption and oxidation of intracellular 
proteins, which determine increased permeability 
of mitochondrial membranes, loss of potential, 
decreased ATP synthesis, inhibition of Ca2+-dependent 
ATPase, reduced capability to sequester Ca2+ within 
mitochondria, and membrane bleb formation. 
Conversely, activation of nucleases and energetic 
participation of mitochondria are the main intracellular 
mechanisms that lead to apoptosis. Non-parenchymal 
hepatic cells are inducers of hepatocellular injury 
and targets for damage. Activation of the immune 
system promotes idiosyncratic reactions that result 

in hepatic necrosis or cholestasis, in which different 
HLA genotypes might play a major role. This review 
focuses on current knowledge of the mechanisms 
of drug-induced liver injury and recent advances on 
newly discovered mechanisms of liver damage. Future 
perspectives including new frontiers for research are 
discussed.
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INTRODUCTION
Drug-induced liver injury is the leading cause of  acute 
liver failure and transplantation in western countries. The 
detection of  subtle mechanisms that lead to potential 
drug hepatotoxicity is of  key importance and remains a 
major challenge in clinical practice.

The frequent involvement of  the liver in drug-
induced toxicity depends on its anatomical location (the 
liver is the primary port of  entry for ingested drugs) and 
its physiological and biochemical functions because of  
the abundance of  metabolizing enzymes.

The spectrum of  injury secondary to drug reaction 
ranges from mild damage to massive hepatic destruction. 
However, if  one considers the large consumption of  
drugs, the latter possibility is rather infrequent[1]. While 
direct toxic damage is dose-dependent, predictable and 
experimentally reproducible, idiosyncratic damage is 
rather supported by the innate and the adaptive immune 
system. With few exceptions of  intrinsic hepatotoxicity, 
most cases of  drug-induced liver injury are idiosyncratic. 
Toxicity can be experimentally tested by administering 
the compound at increasing doses, in the presence of  
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metabolic inducers or inhibitors or toxicity enhancers, 
with depletion of  protective systems, or by co-
administering the drug with a known toxic compound. 
In general, in vitro tests precede in vivo experiments. 
Intracellular organelles and their functions are often 
the primary targets of  hepatotoxicity[2]. Not only 
hepatocytes, but also cholangiocytes, Kupffer cells, Ito 
cells and sinusoidal endothelial cells can be involved in 
the process of  drug-induced hepatotoxicity. Some drugs 
can induce cholestasis by impairing bile secretion or by 
causing obstruction of  extrahepatic bile ducts[3].

This review deals with the main mechanisms 
associated with drug-induced hepatic injury, by discussing 
current views on intra- and extracellular mechanisms of  
damage and cell death with respect to different drugs. 
Future perspectives on emerging problems, namely liver 
steatosis and genetic polymorphisms, are also discussed.

RISK FACTORS
As toxicity is exerted mostly through metabolites rather 
than the parent drugs, factors affecting metabolite 
formation are of  key importance. Accordingly, genetic 
polymorphisms and environmental influences on 
metabolizing enzymes play an important role. Of  
note, drug-induced hepatotoxicity occurs mainly in 
women[4], and this points to the existence of  hormonal 
conditioning factors. Additional genetic, metabolic 
and immunological factors also may have a role in 
idiosyncratic hepatotoxicity. All such mechanisms can 
occur if  specific metabolic pathways are activated and 
previous exposure has sensitized the organ with the 
formation of  specific antibodies (e.g. halothane). In 
addition, the intrinsic toxicity of  some molecules can 
depend on the expression of  genetic variants, as occurs 
for paracetamol[5]. Although preexisting liver disease 
generally is believed to play a minor role as a risk factor 
for hepatotoxicity, there are some well-documented 
exceptions. Hepatotoxicity caused by isoniazid, for 
example, is more common among patients with viral 
hepatitis and/or human immunodeficiency virus 
(HIV) infection[6]. Patients undergoing antiretroviral 
treatment for HIV infection are at higher risk for 
severe hepatotoxicity when co-infected with hepatitis 
B or C viruses, particularly if  therapy includes protease 
inhibitors[7]. Fatty liver is another condition that is 
particularly prone to stress damage[8]. Further studies 
are needed urgently in this respect, linking toxic injury 
to liver steatosis, which is becoming an emerging health 
problem, because of  the increasing epidemic of  obesity 
and diabetes as part of  the metabolic syndrome[9].

GENERAL MECHANISMS OF DAMAGE
Although major pathways leading to drug-induced 
liver injury include necrosis and/or apoptosis, a net 
distinction between these two processes is sometimes 
difficult and both events often coexist in the same 
microscopic field[10]. Several factors may influence the 
hepatocyte response to a toxic insult and the extent 

of  damage results from the intervention of  intrinsic 
and extrinsic cell factors. A combination of  age, sex, 
genetics, hormones, cell energetic status, underlying 
liver disease, environmental factors, and local O2 supply, 
strongly contributes to the expression of  cell death 
mediators[11]. Less frequently, hepatocyte injury follows 
on from vascular damage as a consequence of  the 
occlusion of  the centrilobular vein (i.e. azathioprine, 
estrogens, progesterone, pyrrolidine alkaloids). Generally, 
hepatocytes react to toxic aggression by activating 
defense mechanisms that include hypertrophy of  the 
endoplasmic reticulum, induction of  protective systems 
(glutathione, GSH), and synthesis of  heat shock and 
acute phase proteins.

Apoptosis and necrosis initially may follow common 
metabolic pathways. When the injury affects the 
maintenance of  functional cell programs, hepatocytes 
preferentially die via apoptosis, thus limiting the extent 
of  the injury. Necrotic damage generally begins at the 
cytoplasmic level and thus involves mitochondria and 
the nucleus in determining swelling and loss of  plasma 
membrane integrity. It becomes irreversible when 
cytosolic Ca2+ concentration increases[12,13] for increased 
release by mitochondria and endoplasmic reticulum, 
or increased extracellular influx. Apoptosis determines 
cytoplasmic and nuclear condensation and fragmentation 
without loss of  membrane integrity. Drug-induced 
apoptosis is generally spotty, whereas necrosis is zonal.

The mechanisms of  damage include interference 
with hepatic transport proteins (i.e. organic anion 
transporting polypeptides), bile salt export pump, or 
with the nuclear receptor-mediated regulation of  drug 
metabolism and transport[14,15].

MECHANISMS OF CELL DEATH
Hepatocyte death typically follows an apoptotic or 
necrotic pathway[16], mainly depending on predisposing 
factors[10]. General mechanisms of  hepatotoxicity include 
reactive metabolite formation, antioxidant depletion, 
and protein alkylation. Intracellularly generated signaling 
can activate B-cell CLL/lymphoma 2 (Bcl-2) family 
members (Bax and Bid) which form pores in the outer 
mitochondrial membrane. This condition favors the 
release of  intramembrane proteins and promotes 
chromatin condensation and DNA fragmentation. 
Alternatively, mitochondrial dysfunction, through 
reactive oxygen species (ROS) delivery and peroxynitrite 
formation, triggers membrane permeability transition 
and leads to membrane potential collapse with decrease 
of  energy production and release of  nucleases[17].

Apoptosis
Apoptosis results from an ATP-dependent death 
program that is characterized by activation of  specific 
pathways involving death ligands and death receptors 
(e.g. Fas ligand with Fas) with activation of  the caspase 
cascade (Figure 1). There are two different activating 
pathways of  drug-induced hepatocyte apoptosis. The 
“intrinsic way” is triggered by intracellular signals 
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Figure 1  Schematic representation of subtoxic damage of hepatocyte in response to moderate dose of drug. Drug molecule activates Kupffer cells is metabol-
ically processed by hepatocytes. These events may result in hepatocyte stress which is worsened by the intervention of reactive oxygen species (ROS) and nitrogen 
species from activated endothelial cells. Final result is apoptotic death and Ito cells activation with promotion of fibrosis. EC-GF: Endothelial cell growth factor; IL1: 
Interleukin 1; IL1β: Interleukin 1β; RNI: Reactive nitrogen intermediates; ROS: Reactive oxygen species; TGF-b: Transforming growth factor b; TNF: Tumor necrosis 
factor a.
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Figure 2  Schematic representation of toxic damage of hepatocyte in response to high dose of drug. High drug amount is processed by hepatocytes with pro-
duction of reactive metabolites which induce cell injury. Toxic products and chemotactic factors released by damaged hepatocytes stimulate the activation of Kupffer 
and endothelial cells with a subsequent delivery of reactive oxygen (ROS) and nitrogen species. The intracellular damages result in necrotic death. LPO: Lipid peroxi-
dation; LTB4: Leukotriene B4.
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scattered directly by the drug or its metabolites, with 
activation of  a cascade of  reactions that damage nuclear 
and/or mitochondrial DNA directly. Single-stranded 
DNA subsequently will stimulate intracellular sensor 
systems and induce the expression of  the effector 
p53. In the “extrinsic way”, new surface antigens 
on hepatocyte membranes work as receptors. The 
interaction with ligands, such as tumor necrosis factor 
alpha (TNF-a) or Fas, activates cytotoxic T cells and 
liver non-parenchymal cells, with release of  cytokines[18] 
that engage death receptors on the cell surface[19]. After 
binding, the receptor trimerizes and leads to a clustering 
of  death domains. Intrinsic and extrinsic ways finally 
promote the activation of  interleukin (IL)-1b converting 
enzyme, which activates caspases and nucleases. 

Generally, hepatocytes are resistant to TNF-a-
induced cytotoxicity[20]. In fact, under normal conditions, 
the activation of  membrane receptors stimulates the 
synthesis of  anti-apoptotic molecules and enzymes (e.g. 
Bcl-2, NO synthase), mediated by the intervention of  the 
nuclear transduction factor nuclear factor-kB (NF-kB).  
Therefore, increased cell sensitivity to TNF-a or to 
other specific ligands is required to trigger subsequent 
events[21]: a strong signaling response with activation 
of  the executioner caspases[22], and the involvement 
of  mitochondria to amplify death mechanisms in the 
presence of  a poor caspase activation[23].

Necrosis
Drug-induced cell necrosis results from an intense 
and massive perturbation of  cell homeostasis, with 
ATP depletion (Figure 2) associated with cytoskeletal 
alterations, cellular swelling and bleb formation[16]. The 
next steps include lysosomal breakdown, bleb rupture, 

and irreversible collapse of  electrical and ion gradients.
When a high amount of  toxicant reaches the liver, 

necrosis occurs because of  dramatic intracellular 
alterations, or as a consequence of  oxygen and nitrogen 
radical attack from activated Kupffer and endothelial 
cells[24]. On this occasion, drugs are oxidized by the 
cytochrome P-450 (CYP-450) enzymes, with release 
of  a large amount of  reactive metabolites, with 
promotion of  lipid and protein oxidation and depletion 
of  GSH. Oxidized proteins and protein adducts may 
have immunogenic properties and activate Kupffer 
and polymorphonuclear cells, with subsequent release 
of  ROS. The formation of  protein disulfides results 
in increased permeability of  the inner mitochondrial 
membrane, with loss of  membrane potential, decrease 
of  ATP synthesis, inhibition of  Ca2+-dependent ATPase, 
decreased capability to sequester Ca2+, oxidation of  
actin, microfilament breakage, and membrane bleb 
formation[25].

Abnormal control of  cell volume is a major factor 
that promotes hepatocyte necrosis. Oxidative stress, very 
fast consumption of  cellular energy, and mitochondrial 
dysfunction activate anaerobic glycolysis, which results 
in decreased intracellular pH. The incoming acidosis 
is contrasted partially by H+/Na+ and Na+/HCO3

-  
exchanges with influx of  Na+. As a result of  low ATP 
availability, Na+ cannot be further exchanged and 
accumulates within the cell. The consequent osmotic 
load results in cell swelling and blocks the apoptotic 
process, which requires a reduction of  the cell volume. 
This osmotic stress is worsened by the increase 
of  cytosolic Ca2+ and results in plasma membrane 
rupture[26].

Additional mechanisms include nucleotide alterations 
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Figure 3  Schematic representation of mitochondrial oxido-reductase system. Several drug molecules directly or after metabolic release of toxic intermediates 
can cause mitochondrial alterations at different levels. The following impairment of the energetic and redox balance finally triggers apoptotic or necrotic processes 
according to a poor or sufficient ATP level. Important regulatory mechanisms rely on the glutathione dependent redox status of proteins. GSH: Reduced glutathione; 
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tein sulphydrils; PS-SG: Protein mixed disulfides; PS-SP: Protein-protein disulfides; TRx: Thioredoxin; TRx-R: Thioredoxin reductase; TR-S2: Oxidized thioredoxin.
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and protein synthesis disruption. In most cases, these 
actions follow drug-induced mitochondrial injury. 
However, discriminatory nucleotide alterations and 
oxidation of  protein sulfhydryls (g-glutamyl synthetase 
and glucose 6-phosphate dehydrogenase) are promoted 
selectively by some drugs; one example is the damage 
to the ATPase complex observed after cisplatin 
intoxication[27].

CELLULAR AND INTRACELLULAR 
TARGETS OF DRUG HEPATOCELLULAR 
INJURY
Aspects to discuss include non-parenchymal hepatic 
cells, microsomes, mitochondria, and nuclear receptors. 
Much evidence suggests the participation of  non-
parenchymal hepatic cells in drug-induced hepatocellular 
injury[28], which depends on factors such as the intrinsic 
characteristics of  the drug, its dose, its metabolites, and 
the local O2 supply[29]. Activation of  Kupffer cells results 
in the release of  inflammatory mediators and ROS, and 
modulates hepatocyte injury[30]. It has been shown that 
inhibition of  macrophage activation or administration 
of  TNF-a antagonists protects hepatocytes against 
paracetamol toxicity[31], and that depletion of  Kupffer 
cells attenuates thioacetamide hepatotoxicity[32]. Indeed, 
both Kupffer and endothelial cells can be activated 
secondarily by chemotactic factors (i.e. leukotriene 
B4) released by injured hepatocytes[24,33], which in turn, 
can be damaged by TNF-a and IL-1b released from 
activated non-parenchymal cells. Examples of  drug 
hepatotoxicity that involves non-parenchymal cells 
are that seen with methotrexate (activation of  hepatic 
stellate cells to myofibroblasts, and liver fibrosis may 
develop even in the absence of  liver enzyme elevation); 
bosentan (inhibition of  transport proteins including the 
bile salt export pump[34]); sulindac (competitive inhibition 
of  canalicular bile salt transport, a contributing factor 
to cholestatic liver injury[35]); cyclophosphamide and 
azathioprine (sinusoidal obstruction syndrome, veno-
occlusive disease, follows a severe depletion of  GSH 
in sinusoidal endothelial cells. This damage results in 
fibrosis of  the hepatic sinusoids).

Microsomes are another target of  hepatocellular 
damage induced by drugs. Biotransformation of  
lipophilic drugs via CYP-450 metabolic pass and the 
subsequent excretion of  their metabolites are essential 
to avoid intracellular accumulation of  toxic compounds. 
Less than 10 CYP-450 enzymes accounts for > 90% 
of  all drug oxidation. Most adverse drug reactions 
depend on the release of  reactive metabolites and 
ROS, which may overwhelm lethal insult, sensitize 
the innate immune system, or haptenize, thus eliciting 
immunoallergic reactions[36]. If  metabolites have a 
particularly high reactivity, they can even bind and 
inactivate the metabolic enzymes[37]. This occurs with 
drugs that show a narrow therapeutic index (e.g. 
terfenadine and astemizole). Several factors may affect 
the efficiency of  the microsomal metabolism: namely 

aging, liver disease, enzyme induction and inhibition, 
genetics (existence of  slow and fast acetylators), and 
O2 supply. Changes in the level of  CYPs may have a 
dramatic impact on drug metabolism. P-450 enzymes 
are subjected to multiple levels of  regulation and 
expression; the latter being dominant in zone 3 just 
surrounding the centrilobular vein. Expression of  P-450 
isoforms varies with age; therefore, the capacity for drug 
metabolism is a function of  age[38,39]. Polymorphisms 
in P-450s or induction/inhibition account for the 
appearance of  adverse reactions. In this regard, it has 
been noted that the constitutive androstane receptor 
(CAR) binds drugs and regulates the expression of  
the genes that code for CYP3A and CYP2B[40]. Also, 
induction or inhibition of  CYPs by herbal remedies 
accounts for the increasing number of  case reports of  
hepatotoxicity[41]. In fact, some herbal components are 
converted to toxic metabolites by P-450 enzymes; this is 
the case of  aristolochis acid, which generates the highly 
reactive cyclic nitrenium ions[42]. Upregulation of  specific 
P-450 enzymes has been described during rifampicin 
treatment[43] in experimental models of  obesity and 
fatty liver[44] and in humans with nonalcoholic fatty liver 
disease (NAFLD)[45]. 

Mitochondria are often a major target of  drug 
toxicity, and therefore mitochondrial dysfunction 
represents a major determinant of  hepatotoxicity[46,47] 
(Figure 3). Indeed, mitochondria are the gateway at which 
signals that initiate cell death converge[3,48]. By integrating 
signaling networks, mitochondria have an active role 
in several metabolic pathways[49]. Signals may damage 
mitochondria directly or act indirectly by activating death 
receptors. In particular, reactive metabolite formation, 
GSH depletion and protein alkylation are associated 
with mitochondrial dysfunction, and represent critical 
initiating events for drug-induced toxicity. Opening of  
pores in the outer mitochondrial membrane, release of  
proteins and cytochrome c, imbalance in intracellular 
Ca2+ homeostasis, and intracellular accumulation of  
Na+ are essential steps in hepatocyte death[17,50]. In this 
context, the maintenance of  the mitochondrial GSH 
pool[21,51] is important to detoxify ROS and maintain 
the reduced status of  membrane protein sulfhydryls, 
including the ATP synthase complex and the Ca2+-
dependent ATPase. A fall of  total cellular GSH below 
15% (< 1 mmol/g) inevitably is associated with lethal 
cell damage by involving the mitochondrial stores[52,53]. 
Common events that lead to apoptosis and necrosis 
act through mitochondrial permeabilization and 
dysfunction. In particular, it seems that the number of  
mitochondria that undergo pore opening is associated 
with apoptosis or necrosis, according to ATP availability 
or deficiency[47]. Some drugs exert toxic effects on 
mitochondria only after their metabolic activation at the 
microsomal level (isoniazid/rifampicin), after inducing 
endoplasmic reticulum stress (paracetamol) or even 
lysosomal dysfunction. The study of  these mechanisms 
has  revea led intr igu ing re la t ionships  between 
mitochondria and other intracellular organelles[54-56].

Recent advances in molecular biology have revealed 
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that nuclear receptors such as the pregnane X receptor 
(PXR) and CAR act as intracellular sensors for lipophilic 
compounds by encoding proteins and regulating the 
expression of  enzymes[57,58] that are involved in drug 
oxidative metabolism, disposition and transport[15]. 
Their incorrect activation may result in drug metabolism 
disturbance. PXR can be activated or inhibited by a 
variety of  structurally different drugs. Its activation 
is associated with downregulation of  several genes[59] 
that influence mitochondrial ketogenesis[60] and favor 
mitochondrial imbalance and hepatic steatosis[61]. These 
receptors also represent important drug targets. In fatty 
livers, peroxisome proliferator-activated receptor (PPAR) 
activation/deactivation is particularly important, not only 
for the switch from simple steatosis to steatohepatitis, 
but also for maintaining the efficiency of  specific 
metabolic drug pathways[62]. PPARs and other oxidative 
stressors can be activated also by macrophage-released 
molecules (i.e. Stat-3 and NF-kB)[63]. The existence of  
single-nucleotide polymorphisms is associated in humans 
with drug transport alterations as a predisposing factor 
for drug-induced cholestasis[14].

COMMON PATHWAYS OF DRUG-
INDUCED LIVER DAMAGE
Immune system
The liver is a site of  intense immunological activity and 
represents a tolerogenic immune organ for lymphocytes. 
Activation of  Kupffer cells, and recruitment of  
macrophages and immune cells result in inflammation 
and injury caused by cytokines release[64]. These events 
are major factors in initiating and maintaining drug-
induced liver injury[65].

The drug itself  and its metabolites can activate an 
immune response in the liver: the molecule is processed 
by antigen-presenting cells in the central lymphoid 
tissue directly, or after the appearance of  haptens or 
new antigens on the hepatocyte membrane. The latter 
case follows a covalent binding of  the drug molecule 
with membrane constituents or intracellular proteins[66]. 
This hypothesis is supported by the observation that 
neutrophil depletion protects against paracetamol 
toxicity[67]. Also, idiosyncratic reactions are more likely 
to occur in the presence of  an inflammatory state[68]. 
Effectors are dendritic cells, which act by sensing 
pathogens and triggering adaptive immune responses. 
These responses are characterized by activation of  
B lymphocytes, which release immunoglobulins and 
kinines and activate the complement cascade, and of  
T lymphocytes, which produce lymphokines (CD4) 
or determine direct cytotoxicity (CD8) via surface-
molecule expression and the release of  mediators (e.g. 
perforin and granzyme)[69]. As a consequence, inhibition 
of  lymphocyte activation reduces the extent of  drug-
induced hepatocyte injury[70].

The local O2 supply has an important role in the 
progression of  immune-mediated toxic liver injury. For 
example, metabolism of  halothane under the anaerobic 

conditions of  the reductive pathway may result in 
mild hepatitis, whereas, in the presence of  a high O2 
supply, the oxidative pathway may induce massive liver 
necrosis[29]. These different effects may be explained by 
the higher immunogenicity of  oxidized metabolites that 
form adducts with proteins. This example suggests the 
potential capacity of  some drugs to trigger autoimmune 
hepatitis in some patients. In fact, statins, hydralazine 
and procainamide may trigger autoimmune reactions 
in predisposed patients[71]. Most of  these patients are 
positive for HLA-DR3, 4 or 7, which are known to 
be associated with increased risk of  autoimmunity. 
Halothane toxicity rarely occurs after first exposure; but 
antibodies against CYP 2E1-mediated trifluoroacetylated 
metabolite-protein adducts can be detected after 
frequent exposures to halothane. 

Direct toxicity 
Paracetamol hepatotoxicity is the classical example 
of  direct liver injury. Given at recommended doses, 
paracetamol is generally safe, but its intrinsic toxicity at 
higher doses represents the most important cause of  
acute liver failure and transplantation. Predominantly 
metabolized by conjugation with sulfate and glucuronide 
(metabolites are excreted into bile by Mrp2 and extruded 
into blood through Mrp3), only a small amount is 
degraded by CYP 2E1 to the highly reactive metabolite 
N-acetyl-benzoquinoneimide (NAPQI). NAPQI is, in 
turn, detoxified by binding with GSH. If  the amount 
of  paracetamol that reaches the liver exceeds 12-15 g,  
the conjugating capacity is overwhelmed and the 
remaining unbound NAPQI covalently binds to cellular 
and mitochondrial proteins, which leads to cell necrotic 
death. In the presence of  CYP 2E1 hypertrophy and/
or decreased GSH availability (e.g. chronic alcoholism, 
malnutrition, and prolonged intake of  barbiturates), 
NAPQI formation is increased even at therapeutic 
doses, and after overwhelming the GSH stores, it may 
cause severe liver injury[72,73].

Events start with disturbances of  intracellular Ca2+ 
homeostasis, with an increase in cytosolic Ca2+ levels, 
Bax and Bid translocation into mitochondria, and 
mitochondrial oxidative changes with accumulation 
of  oxidized GSH and peroxynitrite[74,75]. The latter 
induces membrane permeability transition, with collapse 
of  mitochondrial membrane potential, inability to 
synthesize ATP, release of  mitochondrial proteins 
with calpain activation, and release of  cytochrome 
C and endonucleases.  ATP deficiency prevents 
caspase activation but induces nuclear DNA damage, 
and activates intracellular proteases that lead to cell 
membrane rupture and hepatocyte necrosis[76,77]. These 
intracellular events explain the massive cell death and 
liver failure observed after paracetamol poisoning[17]. 
The recent observation that paracetamol toxicity is 
modulated by CAR gives rise to new concepts that 
are important for the general understanding of  drug-
induced liver injury[78]. Accordingly, the presence of  gene 
polymorphisms may explain inter-individual differences 

4870    ISSN 1007-9327      CN 14-1219/R    World J Gastroenterol     October 21, 2009      Volume 15     Number 39



www.wjgnet.com

in susceptibility to paracetamol toxicity. Finally, a role for 
hepatic non-parenchymal cells in paracetamol-induced 
hepatocellular injury also has been suggested. In fact, 
the chemical elimination of  Kupffer cells by gadolinium 
chloride has been observed to reduce the extent of  
paracetamol-induced liver injury[31].

Direct toxicity of  the liver is also induced by another 
drug, valproate, a branched medium-chain fatty acid with 
eight carbon atoms. Its chronic intake is associated with 
weight gain and it causes insulin resistance and NAFLD 
in 61% of  treated patients[79]. Mechanisms of  toxicity 
rely on mitochondrial b oxidation inhibition followed 
by the appearance of  microvesicular steatosis[80]. 
Mitochondrial dysfunction follows the microsomal 
production of  toxic metabolites (4-ene-valproate, 
2,4-diene-valproate)[81], decreased activity of  complex 
Ⅳ of  the respiratory chain, and depletion of  coenzyme 
A (CoA) and carnitine[80]. Preexisting mitochondrial 
impairment or deficiency of  cofactors involved with 
valproate metabolism (e.g. carnitine) may represent risk 
factors for hepatotoxicity[82].

Idiosyncratic reactions 
Unpredictable idiosyncratic reactions can follow the 
administration of  virtually any drug. As a consequence, 
an enormous number of  hepatic reactions have been 
registered for practically all drug classes. Several 
mechanisms have been elucidated, including TNF-a-
induced apoptosis, inhibition of  mitochondrial function, 
and neoantigen formation. Here, we report some of  
the most representative cases. Hepatotoxicity associated 
with the non-steroid anti-inflammatory drug (NSAID) 
nimesulide has led recently to its commercial withdrawal 
in some countries[83]. The mechanism is unknown, 
although liver histology has shown centrilobular and 
bridging necrosis[84]. Diclofenac potentially leads to zone 
3 necrosis, autoimmune hepatitis, or even cholestasis[85] 
in predisposed individuals. The major pathway of  
diclofenac metabolism is through 40-hydroxylation 
by CYP 2C9[86]. Diclofenac also undergoes oxidative 
metabolism by CYP 2C8 to form reactive diclofenac acyl 
glucuronide and 5-hydroxydiclofenac[87]. Nucleophilic 
displacement can then replace the glucuronic acid 
moiety to form adducts with free cysteine thiols[88], and 
act as a potential hapten that triggers autoimmunity. 
Studies with diclofenac-protein conjugates have shown 
that diclofenac-treated hepatocytes carry antigens 
that are recognized by T-cell- and non-T-cell-enriched 
splenocytes[89]. As a consequence, changes in the activity 
of  CYP 2C8, its haplotype distribution, or impairment 
in the clearance of  acyl glucuronide may potentially 
increase the risk of  hepatotoxicity. Polymorphisms, 
such as the presence of  UGT2B7*2 allele, favor the 
development of  diclofenac hepatotoxicity[90].

EXAMPLES OF LIVER DAMAGE INDUCED 
BY COMMONLY USED DRUGS
Aspirin induces hepatotoxicity that is different 

from that of  other NSAIDs. Aspirin is hydrolyzed 
into salicylic acid, which is transformed actively by 
mitochondria into its salicyl-coenzyme A derivative. 
This compound indirectly inhibits the b oxidation 
of  long-chain fatty acids and increases NADH 
availability, thus resulting in increased capacity of  
mitochondria to decarboxylate branched chain amino 
acids[91,92]. The negative effect on mitochondrial b 
oxidation probably is augmented by concomitant 
viral infection that affects mitochondrial function. 
This combination may determine microvesicular  
steatosis known as Reye’s syndrome[93].

Nefazodone, a triazolopyridine trazodone, an 
antidepressant drug, recently has been withdrawn from 
the market because of  hepatotoxicity. Mechanisms 
include inhibition of  mitochondrial respiratory complex 
Ⅰ and Ⅳ, associated with accelerated glycolysis. This 
effect leads to mitochondrial membrane potential 
collapse, GSH depletion and oxidative stress[94].

Hepatotoxicity exerted by isoniazid, an anti-
tuberculosis drug is related to its metabolite monoacetyl 
hydrazine, which is activated at the CYP-450 level and 
detoxified by N-acetyltransferase 2. These enzymes 
undergo genetic var iabi l i ty and environmental 
alterations; slow acetylator status and CYP 2E1 
genetic polymorphism are risk factors for isoniazid 
hepatotoxicity[95,96]. Concomitant therapy with rifampicin, 
a CYP-450 inducer, significantly increases the risk of  
liver injury[56].

Amiodarone is a commonly used antiarrhythmic 
drug that consists of  a benzofuran ring coupled with 
two iodine and diethyl-ethanolamine side chains 
substituted with a p-OH-benzene structure. Amiodarone 
accumulates within mitochondria and causes toxicity by 
inhibiting state 3 glutamate and palmitoyl-CoA oxidation 
and by decreasing mitochondrial respiration[55]. Electron 
transport chain complexes and b oxidation are also 
inhibited by amiodarone[96]. The chemical structure of  
benzarone resembles that of  amiodarone. Benzarone, 
a non-halogenated benzbromarone derivative, is used 
for the treatment of  vascular disorders. It decreases 
mitochondrial membrane potential, as well as state 
3 oxidation and respiratory control ratio, uncouples 
oxidative phosphorylation, and inhibits b oxidation. 
Benzarone increases the production of  ROS, as well as 
the leakage of  cytochrome C, with final induction of  
mitochondrial permeability transition[97].

Troglitazone, a PPAR agonist, causes hepatocyte 
injury by dissipating the mitochondrial transmembrane 
potential ,  which favors superoxide generation, 
thioredoxin oxidation and activation of  the kinase-1-
dependent apoptosis signaling pathway[98].

HIV-1 protease inhibitors are essential components 
of  antiretroviral therapy. However, mitochondrial 
toxicity represents a serious problem for patients 
taking antiretroviral drugs. It occurs most often 
with administration of  a full dose of  ritonavir and 
saquinavir[7]. Genetic HLA variants of  the immune 
system seem to participate in the hepatotoxicity induced 
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by abacavir, another antiretroviral drug. Co-infection 
with hepatitis viruses is known to increase the risk of  
mitochondrial toxicity induced by these nucleoside 
compounds[6].

CHOLESTASIS
Hepatic clearance of  drugs depends on the activity of  
transport proteins that are located on the hepatocyte 
canalicular membrane. Alterations of  these transporters 
by drugs or genetic polymorphisms increase the 
susceptibility to cholestatic injury[14]. As a consequence, 
cholestasis is one of  the most important features of  
drug-induced hepatotoxicity[99]. Substrates for hepatic 
transport proteins include indomethacin, statins, 
digoxin, enalapril, midazolam, tamoxifen, diclofenac, 
methotrexate, and troglitazone. Selective inhibition of  
ATP-dependent bile salt transport proteins represents 
an additional mechanism of  damage; therefore, co-
administration of  drugs at this level may enhance the 
risk of  cholestasis. Examples are troglitazone plus 
lisinopril, itraconazole and verapamil, bosentan and 
glyburide[100,101]. Changes in the expression of  drug 
transporters in conditions of  chronic liver disease can 
also result in marked alterations in drug disposition[102]. 
Examples are increased bioavailability of  drugs with 
high hepatic extraction, and decreased hepatic clearance 
of  drugs with a low hepatic extraction and of  those with 
biliary excretion[103]. Finally, cholangiocytes can also be 
damaged directly by drugs. Flucloxacillin, an isoxazolyl-
penicillin, can cause cholestasis by injuring bile duct 
epithelial cells[104].

FUTURE PERSPECTIVES
Drug-induced liver injury occurs when the organ defense 
systems are overwhelmed. Preexisting conditions may 
contribute to the extent of  damage. Two examples in 
this respect are the existence of  fatty liver disease (liver 
steatosis), and genetic polymorphisms.

The mechanisms that favor high sensitivity of  fatty 
liver to drug toxicity and necrotic cell death are depicted 
in Table 1. It is known that fatty liver has a reduced 

tolerance towards stress conditions, i.e. ischemia-
reperfusion, prolonged fasting, and exposure to t-butyl-
hydroperoxide[105,106]. Potential mechanisms that favor 
increased susceptibility of  steatotic liver to drug-induced 
toxicity include mitochondrial imbalance[107], increased 
mitochondrial ROS production[108], and deficient repair 
capacity[109]. Indeed, a high incidence of  hepatotoxicity 
has been observed in patients with type 2 diabetes[110], a 
condition that is associated inevitably with fatty liver[111]. 
Therefore, it is conceivable that hepatotoxic drugs 
might produce injury even at non-toxic doses in patients 
with fatty liver, although in a recent study[112], steatosis 
appeared to protect against paracetamol toxicity through 
preserving microcirculatory alterations. Defective 
hepatobiliary transport as well as the downregulation of  
Mrp2, as observed in rats with fatty liver, may represent 
additional predisposing factors for damage in these 
organs[113].

Genetic polymorphisms are another important issue. 
Polymorphisms of  CYP-450s account, at least in part, 
for the variability of  efficacy and for the occurrence of  
adverse drug reactions, and may explain the variety of  
effects exerted by the same drug in different subjects. 
Genetic variations in the glutathione S-transferases 
(GSTT1 and GSTM1) have been associated with 
drug-induced hepatotoxicity[114]. Subjects who display 
mutations in some alleles that code for manganese 
superoxide dismutase have a higher risk of  developing 
drug-induced liver injury[115]. Genetic mitochondrial 
abnormalities are a major determinant of  the high 
susceptibility towards idiosyncratic liver injury caused 
by drugs that target mitochondria, especially in aged and 
female subjects[116]. Genetic polymorphisms associated 
with alteration of  hepatobiliary transporters have 
implications in drug-induced cholestasis[14].

CONCLUSION
The search for the underlying mechanisms of  damage 
is expected to lead to new intriguing perspectives for 
diagnosing and treating toxic liver injury. Today, certain 
microsomal and mitochondrial metabolic pathways can 
be assessed easily in vivo by performing breath tests with 

Initial change Intermediate effects Consequences

Increased bioactivation (microsomal CYP 450s) Higher amount of toxic metabolites Consumption of antioxidants
Increased release of ROS Lipid peroxidation

Mitochondrial dysfunction Decreased energy production (ATP) and 
cytochrome c content

Over-expression of uncoupling protein 2
Increased Ca2+ efflux

Increased release of ROS and NO derivatives Protein oxidation and nitration
Pores opening and increased membrane permeability Expression of FAS ligands

Calpain activation and protein cleavage
Impaired intracellular signaling and trafficking Alterations of nuclear receptors and sensors Defective transcription of repair mechanisms

Increased DNA fragmentation rate
Activation of non-parenchymal cells (Kupffer 
cells) and enzymes

Increased release of transforming growth factor-b1, 
p53, TNF-a

Inflammation and pro-oxidant attack

Increased NADPH oxidase activity

Table 1  Mechanisms that favor high sensitivity of fatty liver to drug toxicity and necrotic cell death

ROS: Reactive oxygen species; TNF: Tumor necrosis factor.
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substrates that release CO2 during their metabolism. 
Methionine and a-ketoisocaproate breath tests assess 
mitochondrial functions and are altered after exposure 
to alcohol or drugs, thus reflecting specific metabolic 
alterations induced by exogenous compounds[92,117]. Such 
noninvasive diagnostic tools may guide evaluation of  the 
effect of  therapeutic strategies.

Future issues might include the use of  cytokine and 
death receptor antagonists, strategies directed at factors 
that cause mitochondrial damage, and approaches that 
promote survival gene expression that may overcome 
drug-induced cell death. In this regard, toxicogenomics, 
a combination of  toxicology and genomics, attempts 
to identify the effects of  drugs on gene expression, and 
the role of  genetic polymorphisms in drug-induced 
liver injury. However, although recent developments in 
genetics and toxicology have provided some new insights 
into drug hepatotoxicity, the complex interactions of  
hepatotoxins with genetic and environmental risk factors 
responsible for the onset of  toxic injury have yet to be 
elucidated. Severe drug-induced liver diseases therefore 
remain unpredictable for most drugs. The identification 
of  new risk factors and a better understanding of  
pathogenetic mechanisms will certainly have implications 
for health care and pharmaceutical developments in the 
near future.
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