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Many human cardiac diseases have a genetic cause. A large number of these occur in genes
coding for the myofibrillar proteins (see [1-8] for reviews). The catalogue of mutations
continues to expand. The most extensive observations have been on the beta myosins gene
where over 200 different mutations have been found [9]. A wealth of structure-function
information has been gleaned from studies of these altered forms.

Studies regarding mutation effects on the giant protein titin have lagged in comparison to the
other myofibrillar proteins. It's 12 to 16 fold larger message size (relative to myosin) would
suggest it to be a frequent mutation target. There are several reasons why so few titin mutations
have been identified. First, the extreme size of titin makes conventional molecular biological
approaches impossible. The protein is coded by a single gene in higher organisms [10], and
there are 363 exons in the human version [11]. Sequencing a cDNA for full length titin is not
possible with current techniques (no one has found ways to deal successfully with an intact
80,000 to 100,000 bp mRNA). Scanning this many exons for sequence variants has only
recently been done because of time and expense. Second, there is a large diversity of titin
protein forms. The gene is alternatively spliced with different isoform classes in heart and
skeletal muscle [10]. The original descriptions identified unique regions near the N line in
cardiac (N2B) and skeletal (N2A) that were associated with the tissue specificity. It was
subsequently shown that cardiac muscle also contained isoforms with both the N2B unique
and N2A unique sequences, and these have been termed N2BA. Further studies have
demonstrated a plethora of sub-splicing pathways in the N2BA isoform class [11]. Splicing
pathway heterogeneity is particularly diverse in the PEVK region where 10 different clones
from a single PCR amplification of human heart cDNA yielded 10 different splicing patterns
[12]. Third, much of the protein is believed to function as a structural chain, so unraveling a
single link out of potentially 100 immunoglobulin (Ig) domains in the I-band region would
change the length very little and have little effect on passive tension [13]. Even drastic changes
in the number of exons expressed, as occurs in a recently described rat mutant, produce minimal
changes in heart function [12,14]. Thus changes in titin length alone may not result in serious
health consequences. Finally, the understanding of the diverse functions of this protein remains
incomplete (see [15-17] for reviews), so its relation to cardiac disease remains even less clear.
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Several early reports linked cardiac disease to the chromosome 2q31 region of the titin gene
[18,19]. The precise locations have now been determined in each case, and a total of 20 different
titin mutations have been identified to date (Table1). Of these 10 are located in the 6 most 3’
exons (358 to 363) that code the protein region near the M-line and 4 are found in exon 49
(N2B unique region). Four others occur in the Z-line region (see Figure 1 for a map of these
sites to their approximate half sarcomere location). Undoubtedly many other mutations may
have occurred with little or no functional consequences. Likewise mutations that do not cause
chain termination in the PEVK region would not modify passive tension. Finally the disruption
of a single domain from titin's A-band region would also likely not affect the assembly of the
thick filament because of the assumed multiple binding sites.

A couple animal models with altered titin have also been found. The mdm mouse (muscular
dystrophy with myositis) has an 83 amino acid deletion in the N2A region thought to be
involved in calpain 3 binding [20,21]. The lack of cardiac involvement in this model is
presumably related to the essential lack of calpain 3 in adult heart [22]. The pickwick mutation
in Zebrafish results in a dilated cardiomyopathy like condition with poor sarcomere assembly
[23]. The mutation is a T to G transversion in the N2B unique region, but the exact functional
effect remains to be determined.

Because obtaining samples from living human hearts is both technically challenging and hard
to justify ethically, the development of suitable cellular and animal models has driven the field.
Many new mechanistic insights have been gained from transfection of cultured cells and
development of transgenic animals, primarily rodents [24-29].

In the current issue Gramlich and coworkers [30] report for the first time the properties of a
knock-in mouse containing a titin mutation similar to one reported previously in humans
[31]. This autosomal dominant mutation (an AT insertion in the large exon 326 in the myosin
binding protein C region of the middle half A band) results in a termination codon and a
truncated expressed protein. Heterozygote individuals developed dilated cardiomyopathy with
sudden death, but the penetrance was incomplete. Curiously, although this exon is
constitutively expressed in skeletal muscle as well, there has been no skeletal muscle mutant
phenotype detected to date.

Homozygocity of the current knock-in mouse was found to be lethal by embryonic day 9.5.
This was consistent with previous cell culture work showing that near full length titin was
essential for myofibrillogenesis [24,25]. Heterozygotes, however, were essentially normal in
regard to health and fertility. Hearts contained normal ratios of titin to myosin, and had similar
passive tension properties to wild type. Systolic and diastolic function of heterozygotes was
not significant different when compared to normal animals. Echocardiography revealed no
dilation or altered cardiac structural dimensions. This lack of the effect of the mutation on the
mouse model was probably not too surprising in light of the mild effects in humans. Why would
we expect to see changes in a mouse when it takes 20 to 40 years for the phenotype to develop
in humans and only in a certain proportion of mutation carriers?

The novelty of the current work was that the investigators found ways to induce the DCM
phenotype in the knock-in heterozygotes. Two different approaches were used. In the first
angiotensin II was continuously infused into wild type and heterozygote mice to cause arterial
hypertension. Both groups responded with increased ejection fraction and fractional shortening
after one week, but by two weeks the performance of the heterozygotes had significantly
declined for both these parameters. Echocardiography also indicated increased dilation
between one and two weeks in the heterozygotes. Microscopic examination showed essentially
normal myofibril structure by electron microscopy. However, large increases in interstitial
fibrosis (∼12% of area in heterozygotes versus ∼4% in wild type) were observed. The second
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approach was the continuous infusion of the beta agonist isoproterenol. After one week, the
heterozygotes had significantly lower ejection fraction (∼39% vs ∼53%), significantly lower
fractional shortening (∼24% vs ∼34%) and significantly enlarged left ventricle chamber size.

Western blotting using antibodies from the expressed titin region and those from the carboxyl
end deleted part verified that a truncated titin was expressed in the knock-in heterozygotes.
The amount of this shortened titin was much lower than expected, perhaps due to elevated
proteolysis. Real time PCR indicated that the message levels for the wild type allele were
elevated in heterozygotes, but this compensation was incomplete.

The use of stressors to induce a dilated cardiomyopathy phenotype in rodent models of human
disease may prove to be a valuable approach for study of mechanisms related to other
mutations. Many unanswered questions remain: what controls the level of up-regulation of
wild type alleles in heterozygotes and could we fully express an adequate amount of wild type
protein from a single allele? Was the truncated protein fully incorporated into the myofibril
structure? Would it be possible to completely shut down expression of the mutant allele, and
would this provide a rescue of the wild type cardiac phenotype? Could we further increase the
rate and extent of breakdown of mutant protein and thus achieve the normal phenotype? What
are the signals that lead a heart to develop dilated cardiomyopathy? These questions must await
further studies, but our knowledge appears to have taken a step forward from stressing the
giant.
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Figure 1.
Diagram of human titin regions and locations of mutations in the half sarcomere. The single
titin molecules extend from the Z-line to the M-line in the middle of the sarcomere. The I-band
region background is shown in yellow and the A-band region in white. Each number listed
refers to a single titin mutation in the corresponding exon annotated in GenBank AJ277892.
The mutation for the knockin-mouse report in the current issue [30] is denoted with an asterisk.
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