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Implicit sampling for particle filters
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We present a particle-based nonlinear filtering scheme, related to
recent work on chainless Monte Carlo, designed to focus parti-
cle paths sharply so that fewer particles are required. The main
features of the scheme are a representation of each new proba-
bility density function by means of a set of functions of Gauss-
ian variables (a distinct function for each particle and step) and
a resampling based on normalization factors and Jacobians. The
construction is demonstrated on a standard, ill-conditioned test
problem.
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T here are many problems in science in which the state of a
system must be identified from an uncertain equation supple-

mented by a stream of noisy data (ref. 1). A natural model of this
situation consists of a stochastic differential equation (SDE)

dx = f(x, t) dt + g(x, t) dw, [1]

where x = (x1, x2, . . . , xm) is an m-dimensional vector, w is an
m-dimensional Brownian motion, f is an m-dimensional vector
function, and g(x, t) is an m by m diagonal matrix. The Brown-
ian motion encapsulates all the uncertainty in this equation. The
initial state x(0) is assumed given and may be random as well.

As the experiment unfolds, it is observed, and the values bn of
a measurement process are recorded at times tn. For simplicity,
assume tn = nδ, where δ is a fixed time interval and n is an integer.
The measurements are related to the evolving state x(t) by

bn = h(xn) + GWn, [2]

where h is a k-dimensional, generally nonlinear, vector function
with k ≤ m, G is a diagonal matrix, xn = x(nδ), and Wn is a vector
whose components are independent Gaussian variables of mean 0
and variance 1, independent also of the Brownian motion in Eq. 1.
The task is to estimate x on the basis of Eq. 1 and the observations
in Eq. 2.

If the system in Eq. 1 and Eq. 2 are linear and the data are
Gaussian, the solution can be found via the Kalman–Bucy filter
(2). In the general case, it is natural to try to estimate x via its
evolving probability density. The initial state x is known and so is
its probability density; all one has to do is evaluate sequentially
the density Pn+1 of xn+1 given the probability densities Pk of xk for
k ≤ n and the data bn+1. This evaluation can be done by following
“particles” (replicas of the system) whose empirical distribution
approximates Pn. In a Bayesian filter (3–10), one uses the prob-
ability density function (PDF) Pn and Eq. 1 to generate a prior
density, and then one uses the new data bn+1 to generate a poste-
rior density Pn+1. In addition, one has to sample backward to take
into account the information each measurement provides about
the past as well as to avoid having too many identical particles.
This can be very expensive, in particular because the number of
particles needed can grow catastrophically (11, 12).

In this paper, we offer an alternative to the standard approach
in which Pn+1 is sampled more directly and backward sampling
is done without chains (13). Our direct sampling is based on a
pseudo-Gaussian representation of a variable with density Pn+1,
i.e. a representation by a collection of functions of Gaussian
variables with sample-dependent parameters. The construction
is related to chainless sampling as described in ref. 13. The idea in
chainless sampling is to produce a sample of a large set of variables

by sequentially sampling a growing sequence of nested, condition-
ally independent subsets, with discrepancies balanced by sampling
weights. As observed in refs. 14 and 15, chainless sampling for a
SDE reduces to interpolatory sampling, as explained below. Our
construction will be explained in the following sections through
an example where the position of a ship is deduced from the mea-
surements of an azimuth, already used as a test bed in a number
of previous papers (7, 16, 17). We call our sampling “implicit” by
analogy with implicit schemes for solving differential equations,
where the determination of a next value requires the solution of
algebraic equations.

If the SDE in Eq. 1 and the observation function in Eq. 2 are
linear, our construction becomes a reformulation of sequential
importance sampling with an optimal importance function, see
refs. 5 and 6.

Sampling by Interpolation and Iteration
First, we explain how to sample via interpolation and iteration in
a simple problem, related to the example and the construction in
ref. 14. Consider the scalar SDE

dx = f (x, t)dt + √
β dw, [3]

where β is a constant. We want to find sample paths x = x(t),
0 ≤ t ≤ 1, subject to the conditions x(0) = 0, x(1) = X .

Let N(a, v) denote a Gaussian variable with mean a and variance
v. We first discretize Eq. 3 on a regular mesh t0, t1, . . . , tN , where
tn = nδ, δ = 1/N , 0 ≤ n ≤ N , with xn = x(tn), and, following ref.
14, use a balanced, implicit discretization (18, 19):

xn+1 = xn + f (xn, tn)δ + (xn+1 − xn)f ′(xn, tn)δ + W n+1,

where f ′(xn, tn) = ∂f
∂xn (xn, tn) and W n+1 is N(0, β/N). The

joint probability density of the variables x1, . . . , xN−1 is
Z−1 exp(− ∑N−1

0 Vn), where Z is the normalization constant and

Vn = ((1 − δf ′)(xn+1 − xn) − δf )2

2βδ

= (xn+1 − xn − δf /(1 − δf ′))2

2βn
,

where f , f ′ are functions of the xn, tn, and βn = βδ/(1 − δf ′)2

(20). One can obtain sample solutions by sampling this density,
e.g. by Markov chain Monte Carlo, or one can obtain them by
interpolation (chainless sampling), as follows.

Let an = f (xn, tn)δ/(1 − δf ′(xn, tn)). Consider first the special
case f (x, t) = f (t), so that in particular f ′ = 0; we recover a ver-
sion of a Brownian bridge (21). Each increment xn+1 − xn is now
a N(an, β/N) variable, with the an = f (tn)δ known explicitly. Let
N be a power of 2. Consider the variable xN/2. On the one hand,
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xN/2 =
N/2∑

1

(xn − xn−1) ∼ N(A1, V1),

where A1 = ∑N/2
1 an, V1 = β/2. On the other hand,

X = xN/2 +
N∑

N/2+1

(xn − xn−1),

so that

xN/2 ∼ N(A2, V2),

with

A2 = X −
N−1∑
N/2

an, V2 = V1.

The PDF of xN/2 is the product of the two PDFs; one can check
that

exp
(
− (x− A1)2

2V1

)
exp

(
− (x− A2)2

2V2

)
= exp

(
− (x− ā)2

2v̄

)
exp(−φ),

where v̄ = V1V2
V1+V2

, ā = V2A1+V1A2
V1+V2

, and φ = (A2−A1)2

2(V1+V2) ; e−φ is the
probability of getting from the origin to X , up to a normalization
constant.

Pick a sample ξ1 from the N(0, 1) density; one obtains a sample
of xN/2, by setting xN/2 = ā + √

v̄ξ1. Given a sample of xN/2, one
can similarly sample xN/4, x3N/4, then xN/8, x3N/8, etc., until all the
xj have been sampled. If we define ξ = (ξ1, ξ2, . . . , ξN−1), then for
each choice of ξ we find a sample x = (x1, . . . , xN−1), such that

exp

(
−ξ2

1 + · · · + ξ2
N−1

2

)
exp

(
− (X − ∑

n an)2

2β

)
= exp

(
− (x1 − x0 − a0)2

2β/N
− (x2 − x1 − a1)2

2β/N

− · · · − (xN − xN−1 − aN−1)2

2β/N

)
, [4]

where the factor exp(− (X−∑
n an)2

2β
) on the left is the probability

of the fixed end value X up to a normalization constant. In this
linear problem, this factor is the same for all the samples and
therefore harmless. The Jacobian J of the variables x1, . . . , xN−1

with respect to the variables ξ1, . . . , ξN−1 can be seen to be a con-
stant independent of the sample and is also immaterial. One can
repeat this sampling process for multiple choices of the variables
ξ; each sample of the corresponding set of xn is independent of
any previous samples of this set.

Now return to the general case. The functions f , f ′ are now func-
tions of the xj. We obtain a sample of the probability density we
want by iteration. The simplest iteration proceeds as follows. First,
pick ξ = (ξ1, ξ2, . . . , ξN−1), where each ξl , l = 1, . . . , N−1 is drawn
independently from the N(0,1) density (this vector remains fixed
during the iteration). Make a first guess x0 = (x1

0, x2
0, . . . , xN−1

0 )
(for example, if X �= 0, pick x0 = 0). Evaluate the functions f , f ′
at xj (note that now f ′ �= 0, and therefore the variances of the
various displacements are no longer constants). We are back in
the previous case and can find values of the increments xn+1

j+1 − xn
j+1

corresponding to the values of f , f ′ we have. Repeat the process
starting with the new iterate. If the vectors xj converge to a vector
x = (x1, . . . , xN−1), we obtain, in the limit, Eq. 4, where now on

the right side β depends on n so that β = βn, and both an, βn are
functions of the final x. The left hand side of Eq. 4 becomes

exp

(
−ξ2

1 + · · · + ξ2
N−1

2

)
exp

(
−

(
X − ∑

n an
)2

2
∑

n βn

)
.

The factor F = exp(− (X−∑
n an)2

2
∑

n βn
) is now different from sample to

sample and changes the relative weights of the different samples.
The Jacobian J of the x variables with respect to the ξ variables,
is now also a function of the sample. It can be evaluated step by
step the last time the iteration is carried out, either by an implicit
differentiation or by repeating the iteration for a slightly different
value of the relevant ξ and differencing. In averaging, one should
take the product F|J| as weight or resample as described at the end
of the following section. In order to obtain more uniform weights,
one also can use the strategies in refs. 13 and 14.

One can readily see that this iteration converges if

KL < 1, [5]

where K is the Lipshitz constant of f , and L is the length of the
interval on which one works (here L = 1). If this iteration fails to
converge, more sophisticated iterations are available. One should
of course choose N large enough so that the results are converged
in N . We do not provide more details here because they are extra-
neous to our purpose, which is to explain chainless/interpolatory
sampling and the use of reference variables in a simple context.

Finally, we chose the reference density to be a product of inde-
pendent N(0, 1) variables, which is a convenient but not manda-
tory choice. In applications, one may well want to choose other
variances or make the variables be dependent.

The Ship Azimuth Problem
The problem we focus on is discussed in refs. 7, 16 and 17, where it
is used to demonstrate the capabilities of particular filters. A ship
sets out from a point (x0, y0) in the plane and undergoes a random
walk,

xn+1 = xn + un+1,

yn+1 = yn + vn+1, [6]

for n ≥ 0, un+1 = N(un, β), vn+1 = N(vn, β), i.e., each displace-
ment is a sample of a Gaussian random variable whose variance
β does not change from step to step and whose mean is the value
of the previous displacement. An observer makes noisy measure-
ments of the azimuth arctan(yn/xn) (for the sake of definiteness,
we take the branch in −[π/2, π/2)), recording

bn = arctan
yn

xn
+ N(0, s). [7]

where the variance s is also fixed; here, the observed quantity bn

is scalar and is not denoted by a boldfaced letter. The problem is
to reconstruct the positions xn = (xn, yn) from Eqs. 6 and 7. We
take the same parameters as ref. 7: x0 = 0.01, y0 = 20, u1 = 0.002,
v1 = −0.06, β = 1 · 10−6, s = 25 · 10−6. We follow numerically M
particles, all starting from X 0

i = x0, Y 0
i = y0, as described in the

following sections, and we estimate the ship’s position at time nδ
as the mean of the locations Xn

i = (X n
i , Y n

i ), i = 1, . . . , M of the
particles at that time. The authors of ref. 7 also show numerical
results for runs with varying data and constants; we discuss those
refinements in the numerical results section below.

Forward Step
Assume that we have a collection of M particles Xn at time tn = nδ
whose empirical density approximates Pn; now we find displace-
ments Un+1 = (Un+1, V n+1) such that the empirical density of
Xn+1 = Xn + Un+1 approximates Pn+1. Pn+1 is known implic-
itly: It is the product of the density that can be deduced from
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the dynamics and the one that comes from the observations, with
the appropriate normalization. If one is given sample displace-
ments, their probabilities p (the densities Pn+1 evaluated at the
resulting positions Xn+1) can be evaluated, so p is a function of
Un+1, p = p(Un+1). For each particle i, we are going to sample a
reference density, obtain a reference sample of probability ρ, and
then attempt to solve (by iteration) the equation

ρ = p(Un+1
i ) [8]

to obtain Un+1
i .

Define f (x, y) = arctan(y/x) and f n = f (X n, Y n). We are work-
ing on one particle at a time, so the index i can be temporarily
suppressed. Pick two independent samples ξx, ξy from a N(0, 1)
density (the reference density in the present calculation), and set

ρ = 1
2π

exp(− ξ2
x
2 − ξ2

y
2 ); the variables ξx, ξy remain unchanged until

the end of the iteration. We are looking for displacements Un+1,
V n+1, and parameters ax, ay, vx, vy, φ, such that:

2πρ = exp
(

− (Un+1 − Un)2

2β
− (V n+1 − V n)2

2β

− (f n+1 − bn+1)2

2s

)
exp(φ)

= exp
(

− (Un+1 − ax)2

2vx
− (V n+1 − ay)2

2vy

)
. [9]

The first equality states what we wish to accomplish. Indeed, divide
this first equality by exp(φ). The equality now defines implicitly
new displacements Un+1, V n+1, functions of ξx, ξy, with the prob-
ability of these displacements with respect to Pn+1 given (up to
an unknown normalization constant). The second equality in Eq.
9 defines parameters ax, ay, vx, vy, (all functions of Xn and ξx, ξy)
that will be used to actually find the displacements Un+1, V n+1.
One should remember that in our example, the mean of Un+1

before the observation is taken into account is Un, with a similar
statement for V n+1.

We use the second equality in Eq. 9 to set up an iteration for
vectors Un+1, j(= U j for brevity) that converges to Un+1. Start with
U0 = 0. We now explain how to compute U j+1 given U j.

Approximate the observation in Eq. 7 by

f (X j) + fx · (U j+1 − U j) + fy · (V j+1 − V j) = bn+1 + N(0, s),
[10]

where the derivatives fx, fy are, like f , evaluated at X j = Xn + U j,
i.e., approximate the observation equation by its Taylor series
expansion around the previous iterate. Define a variable η j+1 =
(fx · U j+1 + fy · V j+1)/

√
f 2
x + f 2

y . The approximate observation

equation says that η j+1 is a N(a1, v1) variable, with

a1 = − f − fx · U j − fy · V j − bn+1√
f 2
x + f 2

y

,

v1 = s
f 2
x + f 2

y
.

On the other hand, from the equations of motion one finds that
η j+1 is N(a2, v2), with a2 = (fx · Un + fy · V n)/

√
f 2
x + f 2

y and v2 = β.

Hence the PDF of η j+1 is, up to normalization factors,

exp
(

− (x − a1)2

2v1
− (x − a2)2

2v2

)
= exp

(
− (x − ā)2

2v̄

)
exp(−φ),

where v̄ = v1v2
v1+v2

, ā = a1v2+a1v2
v1+v2

, φ = (a1−a2)2

2(v1+v2) = φ j+1.

We can also define a variable η
j+1
+ that is a linear combination

of U j+1, V j+1 and is uncorrelated with η j+1:

η
j+1
+ = −fy · U j+1 + fx · V j+1√

f 2
x + f 2

y

.

The observations do not affect η
j+1
+ , so its mean and variance are

known. Given the means and variances of η j+1, η
j+1
+ one can eas-

ily invert the orthogonal matrix that connects them to U j+1, V j+1

and find the means and variances ax, vx of U j+1 and ay, vy of V j+1

after their modification by the observation (the subscripts on a, v
are labels, not differentiations). Now one can produce values for
U j+1, V j+1:

U j+1 = ax + √
vxξx, V j+1 = ay + √

vyξy,

where ξx, ξy are the samples from N(0, 1), chosen at the beginning
of the iteration. This completes the iteration.

This iteration converges to Xn+1, such that f (Xn+1) = bn+1 +
N(0, s), and the phases φ j converge to a limit φ = φi, where the
particle index i has been restored. The time interval over which
the solution is updated in each step is short, and there are no
problems with convergence, either here or in the next section (see
Eq. 5); in all cases, the iteration converges in a small number of
steps.

We now calculate the Jacobian J of the Un+1 variables with
respect to ξx, ξy. The relation between these variables is laid out
in the first equality of Eq. 9. Take the log of this equation, parti-
tion it into a part parallel to the direction in which the observation
is made (i.e., parallel to the vector (fx, fy)) and a part orthogo-
nal to that direction. Because the increment Un+1, V n+1 is now
known, the evaluation of J is merely an exercise in implicit dif-
ferentiation. J can also be evaluated numerically by finding the
increment Un+1, V n+1 that corresponds to nearby values of ξx, ξy,
and differencing.

Do this for all the particles and obtain new positions with weights
Wj = exp(−φj)|Jj|, where Jj is the Jacobian for the jth parti-
cle. One can get rid of the weights by resampling, i.e., for each
of M random numbers θk, k = 1, . . . , M drawn from the uni-
form distribution on [0, 1], choose a new X̂n+1

k = Xn+1
i , such that

A−1 ∑i−1
j=1 Wj < θk ≤ A−1 ∑i

j=1 Wj (where A = ∑M
j=1 Wj), and then

suppress the hat. We have traded the usual Bayesian resampling
based on the posterior probabilities of the samples for a resam-
pling based on the normalizing factors of the several Gaussian
densities; this is a worthwhile trade because in a Bayesian filter
one gets a set of samples, many of which may have low probability
with respect to Pn+1, and here we have a set of samples, each one
of which has high probability with respect to a PDF close to Pn+1
(see Numerical Results and Conclusion).

Note also that the resampling does not have to be done at every
step—for example, one can add up the phases for a given par-
ticle and resample only when the ratio of the largest cumulative
weight exp(− ∑

(φi − log |Ji|)) to the smallest such weight exceeds
some limit L (the summation is over the weights accrued to a par-
ticular particle i since the last resampling). If one is worried by
too many particles being close to each other (“depletion” in the
Bayesian terminology), one can divide the set of particles into sub-
sets of small size and resample only inside those subsets, creating
a greater diversity. As will be seen in the numerical results section,
none of these strategies will be used here, and we will resample
fully at every step.

Finally, note that if the SDE in Eq. 1 and the observation in
Eq. 2 are linear, and if at time nδ one is given the means and the
covariance matrix of a Gaussian x, then our algorithm produces, in
one iteration, the means and the covariance matrix of a standard
Kalman filter.

Chorin and Tu PNAS October 13, 2009 vol. 106 no. 41 17251



Backward Sampling
The algorithm of the previous section is sufficient to create a filter,
but accuracy, when the problem is not Gaussian, may require an
additional step. Every observation provides information not only
about the future but also about the past—it may, for example, tag
as improbable earlier states that had seemed probable before the
observation was made; in general, one has to go back and cor-
rect the past after every observation (this backward sampling is
often misleadingly motivated solely by the need to create greater
diversity among the particles in a Bayesian filter). As will be seen
below, this backward sampling does not provide a significant boost
to accuracy in the present problem, but it must be described for the
filter to be of general use as well as be generalizable to problems
involving smoothing.

Given a set of particles at time (n+1)δ, after a forward step and
maybe a subsequent resampling, one can figure out where each
particle i was in the previous two steps and have a partial history
for each particle i: Xn−1

i , Xn
i , Xn+1

i (if resamples had occurred, some
parts of that history may be shared among several current parti-
cles). Knowing the first and the last members of this sequence,
one can interpolate for the middle term as in the first example
above, thus projecting information backward. This requires that
one recompute Un.

Let Utot = Un + Un+1; in the present section, this quantity is
assumed known and remains fixed. In the azimuth problem dis-
cussed here, one has to deal with the slight complication due to
the fact that the mean of each displacement is the value of the
previous one, so that two successive displacements are related in
a slightly more complicated way than usual. The displacement Un

is a N(Un−1, β) variable, and Un+1 is a N(Un, β) variable, so that
one goes from X n−1 to X n+1 by sampling first a (2Un−1, 4β) vari-
able that takes us from X n−1 to an intermediate point P, with a
correction by the observation half-way up this first leg, and then
one samples a N(U tot, β) variable to reach X n+1, and this is done
similarly for Y . Let the variable that connects Xn−1 to P be Unew,
so that what replaces Un is Unew/2. Accordingly, we are looking
for a new displacement Unew = (Unew, V new) and for parameters
anew

x , anew
y , vnew

x , vnew
y , such that

exp

(
−ξ2

x + ξ2
y

2

)

= exp
(

− (Unew − 2Un−1)2

8β
− (V new − 2V n−1)2

8β

)
× exp

(
− (f new − bn)2

2s

)
× exp

(
− (Unew − U tot)2

2β
− (V new − V tot)2

2β

)
exp(φ)

= exp

(
− (Unew − āx)2

2vnew
x

− (V new − āy)2

2vnew
y

)
,

where f new = f (X n−1 +Unew/2, Y n−1 +V new/2) and ξx, ξy are inde-
pendent N(0, 1) Gaussian variables. As in Eq. 9, the first equality
embodies what we wish to accomplish—find displacements, which
are functions of the reference variables that sample the new PDF
at time nδt. The new PDF is defined by the forward motion, by
the constraint imposed by the observation, and by knowledge of
the position at time (n + 1)δt. The second equality states that this
is done by finding particle-dependent parameters for a Gaussian
density.

We again find these parameters as well as the displacements by
iteration. Much of the work is separate for the X and Y compo-
nents of the equations of motion, so we write some of the equations
for the X component only. Again set up an iteration for variables
Unew, j = U j, which converge to Unew. Start with U0 = 0. To find

U j+1 given U j, approximate the observation in Eq. 7, as before, by
Eq. 10; define again variables η j+1, η j+1

+ , one in the direction of the
approximate constraint and one orthogonal to it. In the direction
of the constraint, multiply the PDFs as in the previous section;
construct new means a1

x , a1
y and new variances v1

x , v1
y at time n, tak-

ing into account the observation at time n as before. This also
produces a phase φ = φ0.

Now take into account that the location of the ship at time n+1
is known; this creates a new mean āx, a new variance v̄x, and a
new phase φx, by v̄ = v1v2

v1+v2
, āx = a1v2+a2v1

v1+v2
, φx = (a1−a2)2

v1+v2
, where

a1 = 2a1, v1 = 4v1
x , a2 = X tot, v2 = β. Finally, find a new interpo-

lated position U j+1 = anew
x
2 +

√
vnew
x
4 ξx (the calculation for V j+1

is similar, with a phase φy), and we are done. The total phase for
this iteration is φ = φ0 + φx + φy. As the iterates U j converge to
Unew, the phases converge to a limit φ = φi. One also has to com-
pute Jacobians and set up a resampling. After one has values for
Xnew, a forward step gives corrected values of Xn+1; one can use
this interpolation process to correct estimates of Xk by subsequent
observations for k = n−1, k = n−2, . . ., or as many as are useful.

Numerical Results
Before presenting examples of numerical results for the azimuth
problem, we discuss the accuracy one can expect. We run the
ship once and record synthetic observations (with the appropriate
noise), which will remain fixed. Then we find other ship trajecto-
ries compatible with these fixed observations as follows. We have
160 observations. We note that the maximum likelihood estimate
of s given 160 observations is a random variable with mean zero
and variance .11s. Then we make other runs of the ship, record
the azimuths along the path and calculate the differences between
these azimuths and the fixed observations. If the set of these differ-
ences in any run is a likely set of 160 samples of a N(0, s) variable
(which is what the noise is supposed to be), then we declare that
the new run is compatible with the fixed observations. We view the
set of differences as likely if their empirical variance is within one
standard variation (.11s) of the nominal variance s of the obser-
vation noise. One can impose further requirements (for example,
one may demand that the empirical covariance of two successive
noises be within a standard deviation of zero), but these turn out
to be weaker requirements. To lighten the burden of computa-
tion, we make the new ship runs have fixed displacements in the
observed direction (equal to those that the first ship experienced)
and sample new displacements only in the direction orthogonal to
the observed direction. We use the variability of the compatible
runs as an estimate of the lower bound on the possible accuracy
of the reconstruction.

In Table 1, we display the standard deviations of the differences
between the resulting paths and the original path that produced
the observations after the number of steps indicated there (the
means of these differences are statistically indistinguishable from
zero). This table provides an estimate of the accuracy we can
expect. It is fair to assume that these standard deviations are
underestimates of the uncertainty—a maximum variation of a sin-
gle standard deviation in s is a strict requirement, and we allowed
no variability in β. In particular, our construction, together with
the particular set of directions in the linearized observation equa-
tions that arises with our data, conspire to make the error estimate
in the x component unrealistically small.

Table 1. Intrinsic uncertainty in the azimuth problem

Step x component y component

40 0.0005 0.21
80 0.004 0.58

120 0.010 0.88
160 0.017 0.95
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Table 2. Mean and standard variation of the discrepancy between
synthetic data and their reconstruction, 2,000 runs, no back step,
100 particles

x component y component

Number of steps Mean SD Mean SD

40 .0004 0.04 0.001 0.17
80 −0.001 0.04 −0.01 0.54

120 −0.0008 0.07 −0.03 1.02
160 −0.002 0.18 −0.05 1.62

If one wants reliable information about the performance of the
filter, it is not sufficient to run the ship once, record observations,
and then use the filter to reconstruct the ship’s path, because the
difference between the true path and the reconstruction is a ran-
dom variable that may be accidentally small or large. We have
therefore run a large number of such reconstructions and com-
puted the means and standard deviations of the discrepancies
between path and reconstruction as a function of the number of
steps and of other parameters. In Tables 2 and 3, we display the
means and standard deviations of these discrepancies (not of their
mean!) in the the x and y components of the paths with 2,000 runs,
at the steps and numbers of particles indicated, with no backward
sampling. (ref. (7) used 100 particles). On average, the error is
zero so that the filter is unbiased and the standard deviation of
the discrepancies cannot be expected to be better than the lower
bound of Table 1, and in fact it is compatible to that lower bound.
The standard deviation of the discrepancy is not catastrophically
larger with one particle (and no resampling at all!) than with 100—
the main source of the discrepancy is the insufficiency of the data
for accurate estimation of the trajectories. The more-sophisticated
resampling strategies discussed above make no discernible differ-
ence here because they are unable to remedy the limitations of the
dataset. One can check to see that backward sampling also does
not make much difference for this problem, where the underlying
motion is Gaussian and the variance of the observation noise is
much larger than the variance in the model.

In Fig. 1 we plot a sample ship path, its reconstruction, and the
reconstructions obtained (i) when the initial data for the recon-
struction are strongly perturbed (here, the initial data for x, y were
perturbed initially by, respectively, 0.1 and 0.4), and (ii) when the
value ofβassumed in the reconstruction is random:β = N(β0, εβ0),
where β0 is the constant value used until now and ε = 0.4 but the
calculation is otherwise identical. This produces variations in β of
the order of 40%; any larger variance in the perturbations pro-
duced here a negative value of β. The differences between the
reconstructions and the true path remain within the acceptable
range of errors. These graphs show that the filter has little sensi-
tivity to perturbations (we did not calculate statistics here because
the insensitivity holds for each individual run).

We now show that the parameter β can be estimated from the
data. The filter needs an estimate of β to function; call this estimate
βassumed. If βassumed �= β, the other assumptions used to produce the

Table 3. Mean and standard variation of the discrepancy between
synthetic data and their reconstruction, 2,000 runs, no back step,
one particle

x component y component

Number of steps Mean SD Mean SD

40 −0.003 0.20 −0.0008 0.19
80 −0.01 0.54 −0.019 0.56

120 −0.01 0.84 −0.027 1.04
160 −0.016 0.94 −0.02 1.62

Fig. 1. Some ship trajectories (as explained in the text).

dataset (e.g. independence of the displacements and of the obser-
vations) are also false, and all one has to do is detect the fallacy.
We do it by picking a trajectory of a particle and computing the
quantity

D = (
∑K

2 (U j+1 − U j))2 + (
∑K

2 (V j+1 − V j))2∑K
2 (U j+1 − U j)2 + ∑K

2 (V j+1 − V j)2
.

If the displacements are independent, then on the average D = 1;
we will try to find the real β by finding a value of βassumed for which
this happens. We chose K = 40 (the early part of a trajectory is
less noisy than the later parts).

As we already know, a single run cannot provide an accurate
estimate of β, and accuracy in the reconstruction depends on how
many runs are used. In Table 4 we display some values of D aver-
aged over 200 and over 3,000 runs as a function of the ratio of
βassumed to the value of β used to generate the data. From the
longer computation, one can find the correct value of β with an
error of about 3%, whereas with 200 runs the uncertainty is about
10%. The limited accuracy reported in previous work can of course
be achieved with a single run. A detailed discussion of parameter
estimation using our algorithm will be presented elsewhere.

Conclusions
The numerical results for the test problem are comparable with
those produced by other filters. What should be noted is that our
filter behaves well as the number of particles decreases (down to
a single particle in the test problem). There is no linearization or
other uncontrollable approximation. This good behavior persists
as the number of variables increases. The difficulty encountered
by Bayesian particle filters when the number of variables increase

Table 4. The mean of the discriminant D as a function of σassumed/σ,
30 particles

σassumed/σ 3,000 runs 200 runs

0.5 1.15 ± 0.01 1.15 ± 0.06
0.6 1.07 ± 0.01 1.07 ± 0.06
0.7 1.07 ± 0.01 1.07 ± 0.05
0.8 1.04 ± 0.01 1.04 ± 0.05
0.9 1.02 ± 0.01 1.02 ± 0.05
1.0 1.01 ± 0.01 1.00 ± 0.05
1.1 0.95 ± 0.01 1.01 ± 0.05
1.2 0.95 ± 0.01 0.95 ± 0.04
1.3 0.94 ± 0.01 0.96 ± 0.05
1.4 0.90 ± 0.01 0.88 ± 0.04
1.5 0.89 ± 0.01 0.88 ± 0.04
2.0 0.85 ± 0.01 0.83 ± 0.04

Chorin and Tu PNAS October 13, 2009 vol. 106 no. 41 17253



is due to the fact that the relative size of that part of space that
the data designate as probable decreases, so that it is harder for
a Bayesian filter to produce probable samples. This situation can
be modeled as the limit of a problem where both the variance
β of the model and the variance s of the observation noise tend
to zero; it is easy to see that in this limit, our iteration produces
the correct trajectories without difficulty. In refs. 11 and 12 Sny-
der, Bickel, et al. produced a simple, many-dimensional problem
where a Bayesian filter collapses because a single particle hogs

all the probability; one can see that in that problem our filter
produces the same weights for all the particles with any number of
variables.
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