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Theories of grammatical development differ in how much abstract
knowledge they attribute to young children. Here, we report a series
of experiments using a computational model to evaluate the explan-
atory power of child grammars based not on abstract rules but on
concrete words and phrases and some local abstractions associated
with these words and phrases. We use a Bayesian procedure to
extract such item-based grammars from transcriptions of 28+ h of
each of two children’s speech at 2 and 3 years of age. We then use
these grammars to parse all of the unique multiword utterances from
transcriptions of separate recordings of these same children at each
of the two ages. We found that at 2 years of age such a model had
good coverage and predictive fit, with the children showing radically
limited productivity. Furthermore, adding expert-annotated parts of
speech to the induction procedure had little effect on coverage, with
the exception of the category of noun. At age 3, the children’s
productivity sharply increased and the addition of a verb and a noun
category markedly improved the model’s performance.

Bayesian unsupervised grammar induction | language acquisition |
usage-based approach

M ost children produce their first multiword utterances at ~18
months of age. Their earliest productions usually consist of
imitated speech acts, such as Lemme-see or Where-the-bottle or
Birdie. Such utterances are grounded in social scenarios that the
child will have played out many times; hence, their function is simple
and presumably relatively straightforward for the child to deter-
mine. Successful participation in social life, however, requires a far
more diverse range of communicative acts in which the child puts
together bits of language creatively in novel utterances to produce
a wide array of meanings.

What happens over the next few years is a topic of fierce dispute.
Early work tracked children’s emerging generalizations by using
observational data, often proposing simple rules by which children
recombine familiar words and phrases (1). However, such work fell
from favor with the arrival of generative grammar and the proposal
that children’s multiword productions are possible not because of
learning but rather because of innate categories and rules, a
so-called universal grammar (UG) (2). The UG hypothesis has
fallen in popularity in recent years, with even Chomsky and
coworkers (3) arguing that the only innate component of language
is the ability to build recursive structures. Nonetheless what has
remained is a bias for thinking about the child’s linguistic knowledge
in terms of abstract categories and rules.

A number of researchers have recently challenged this assump-
tion. They have argued that to assume continuity between child and
adult language preempirically is inappropriate. Studies using data-
bases of real usage have shown that children’s speech for at least the
first 2 years of speech is actually remarkably restricted, with certain
constructions produced with only a small set of frequent verbs (4)
and a large number of utterances being built from lexically specific
frames (e.g., refs. 5-7). These data have been supported by a
substantial body of experimental work (e.g., refs. 8-11). The
account of language development supported by such work is that a
child’s progress to linguistic productivity is gradual, starting with
knowledge of specific items and restricted abstraction (e.g., refs. 12
and 13), rather than general categories and rules.
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Although the evidence supporting this view is strong, it tends to
be isolated to a construction here or an utterance frame there. What
any theory of language development needs is an evaluation that
tests whether it can account for child speech in general. In this
article we carry out just such an experiment. We present a com-
putational procedure that we use to extract grammars from ~28 h
of a child’s speech. The grammars consist of lexically specific
constructions and contain no fully abstract rules. We use these
grammars to parse up to 2 h of the child’s subsequent productions.
We measure the coverage and the predictive fit of the models
and compare them with fully abstract grammars. We then
evaluate the explanatory value of adding different kinds of
categorical information to our grammars at different points in
development.

Our Grammars

As in cognitive grammar (14), construction grammar (13), and
similarly to related frameworks [e.g., head-driven phrase structure
grammar (HPSG) (15)], the usage-based approach assumes a
continuum from concrete pieces of language such as words or set
formulas to more abstract constructions, in that they are all symbols
that are meaningful in the same way. For convenience we will
borrow a convention from HPSG and refer to all as signs. A first
kind of sign (a concrete sign) could be a single word like drink, a
whole utterance such as [ want a drink or a part utterance like want
a drink. The second kind of sign consists of some concrete speech
of any length and any number of slots into which material can be
put. We will refer to this latter variety as schemas. These signs are
lexically specific in that they are built around specific words.
However, they are assumed to cluster together into groups of
similar items, equivalent to basic semantic categories. These groups
constrain the ways in which the signs can be combined. So using the
example categories of referent, process, and attribute (16), example
signs might be Mummy PROCESS or I want REF or ATT ball or
PROCESS a REF.

Such an approach may seem a far cry from generative models of
grammar. It does not assume the word to be the principal symbolic
unit or compositionality to be the default case. However, the
grammars we propose are formally equivalent to context-free
grammars (CFGs), which Chomsky (17) recognized as the minimal
power necessary to account for most human languages including
English. Some possible productions are shown in Fig. 1. A speaker
can produce an utterance in a number of ways. They may simply
produce a formula that has been entered into the grammar as a
concrete sign, as in Fig. 14. However, they might also combine
schemas with concrete signs. Either concrete signs or schemas can
go into slots of other signs, allowing fully hierarchical utterances (an
operation we refer to as insert). The nonadjacent dependency seen
in Fig. 1B requires more power than a finite-state grammar.
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the_man_wants_a_chocolate_biscuit

the man wants a chocolate biscuit

Fig. 1. Example analyses for the utterance the man wants a chocolate biscuit.
(A) Fully concrete. (B) Schema based.

Recursive productions are also possible, so that a REF slot might
be filled by the sign a REF. If we assign a special category utterance
as the starting point for all productions, they can be treated as a
series of rewrite rules just as in any formal grammar. Represented
as such our grammars differ from traditional CFGs only because the
right side of our rewrite rules always contain some specific word or
words alongside any nonterminal symbols (this is what we mean
when we refer to rules as lexically specific). The usage-based
account of development is thus not making unorthodox claims
about the child’s capacity to handle structures but rather about the
content of the child’s knowledge of the language and the extent of
their productivity.

Our Model

Our aim in this work is to acquire grammars of the form described
above from a sample of a child’s speech and then test how well they
account for the child’s later utterances. We approach this as a
problem of statistical inference and our grammars are probabilistic
models or, more precisely, a variety of probabilistic context-free
grammar (PCFG). We thus refer to them as usage-based PCFGs
(or UB-PCFGs). A PCFG pairs rewrite rules with corresponding
probabilities 0 so that a given syntactic category can be rewritten
as a given series of symbols with a given probability (e.g., VP —
V NP with a probability of 0.65). Because our grammars can be
represented as a kind of PCFG we can make use of previous work
on unsupervised grammar induction. Our model is inspired by
recent work in Bayesian unsupervised grammar learning (e.g.,
refs. 18 and 19).

The structure of our probabilistic model is represented graphi-
cally in Fig. 2. Fig. 2 Right represents the process of generating a
tree. Each z here is a node in the tree, each labeled with a particular
category, with the subscript representing the order of production
and zj being a special utterance node that is assigned a set category
with probability 1. Each x represents a sign that is produced
conditional on the coindexed category node, with the subscript
again representing the order (although note that this represents the
sequential construction of the hierarchy and not necessarily the
linear order of words). Thus, in a particular parse of the sentence
in Fig. 1, if category z; probabilistically gave rise to a sign, x;: X wants
X, this would require two more categories, z; and z3, which would
then be filled again probabilistically with x, (e.g., the man) and x3
(e.g., a chocolate biscuit). At each node, the process will always emit
one sign (with or without slots) and between zero and N child nodes
dependent on the sign type produced. If a schema is produced, then
the number of child nodes produced will be equal to the number of
slots. If a concrete sign is produced, there will be no child nodes. We
will assume N = 3, i.e., a maximum of three slots in any sign, but
it could be any number. The production of categories for child
nodes is conditional on the category assigned for the parent node
and on any previous children of that node.

The process of tree generation is controlled by the variables seen
in the rectangular box in Fig. 2 Left. The dashed arrows in Fig. 2
indicate from where the value of each node is drawn. ® is the
probability distribution that generates signs for a given category
with a certain probability, while 7 is the distribution that assigns
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Fig.2. Agraphical representation of our model. (Left) Standard plate notation
is used. The circles inside the plate represent the component probability distri-
butions over categories (m), sign types (o), and signs (®). The circles outside
represent hyperparameters (on priors) that affect the shape of these distributions
or their number of parameters. The solid arrows reflect dependencies between
variables. (Right) The process of generating a tree. The circles represent nodes in
the tree that correspond to either categories or signs. The solid arrows represent
dependencies between nodes. The dashed arrows between the plate and the tree
tell us from which distributions the values of the nodes are drawn.
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categories to nodes, conditional on the categories assigned to parent
and/or sibling nodes. o represents the distribution over sign types
(the probability of seeing signs of different complexity), which
further dictates the number of child nodes produced. The rectangle
in Fig. 2 Left indicates that there is exactly one copy of the model
parameters for each node k out of the full (potentially infinite)
number of nodes in each tree. We take a fully Bayesian approach
to inference and explore a reasonable range of grammars and
production probabilities 6, by approximating the posterior distri-
bution p(z,0ID), where ¢ is the set of trees and D is our data. We
follow recent work on latent variable modeling (20) in leaving the
number of categories unspecified and to be discovered as part of
the inference procedure by using a stick-breaking procedure (see
SI Text). We insert a bias in favor of smaller grammars by
applying priors to our distributions ® and = that prefer models
with fewer signs and fewer categories respectively (see SI Text for
details). In the case of o, we remain agnostic and apply a uniform
prior, meaning that a priori signs of different complexity will be
equally likely.

Inference

Having defined our model we need to define a way to identify
candidate grammars and choose between them. The procedure for
extracting our candidate grammars is as follows. For each utterance
in the corpus, our program finds all other utterances that have any
shared lexical material and produces an alignment with each of
these. Once we have aligned our target with all items with which it
has overlapping material we can extract a set of schemas and
concrete signs. So if we started with the utterance Mummy have this
one we might, depending on the alignments found, extract the
schemas Mummy have this X, Mummy have X one, Mummy X this
one, X have this one, Mummy have X, Mummy X one, X this one,
Mummy X, X one, X have this X, X have X one, and Mummy X this
X. We would also extract the material replaced by X and any full
utterance matches as concrete signs. An example set of alignments
giving rise to the signs X have X one, Mummy, and this is shown in
Fig. 3. Having first performed this process for a full utterance, we
then take all multiword concrete strings extracted (for our example
utterance this could be Mummy have, Mummy have this, have this,
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TARGET: Mummy have this one

SIGNS: :
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MATCHES: | have that one
| have a red one
| have that one story
Mummy-'s have a tiny one and Mita...

Fig. 3. Example alignments for the utterance Mummy have this one.

have this one, and/or this one) and repeat the alignment and
extraction process. We perform this process recursively until no
further alignments are possible. See SI Text for more details.

The extraction process gives us an (often very large) set of
candidate hierarchical analyses. Our next step is to decide which
structures are most plausible and which of a potentially infinite set
of nonterminal categories plausibly characterizes each sign and each
slot. In Bayesian modeling we obtain not a single “correct” gram-
mar but rather a distribution of possible grammars each with a
probability given the data p(¢,61D). Because our parameter space is
enormous, we cannot compute the distribution directly and we
therefore use the Markov Chain Monte Carlo (MCMC) technique
of Gibbs sampling to approximate it (21). Drawing independent
samples from this distribution gives us a set of grammars that are
probable given the data. See SI Text for further details.

Our Data

The data consists of four corpora for two children, Annie and Brian,
each recorded for 6 weeks from their second birthdays and again for
6 weeks after their third birthdays. Annie was a precocious learner,
with a MacArthur Communicative Development Inventories (CDI)
vocabulary of 391 at the start of recording (=~75th percentile), and
a mean length of utterance of 1.95. Brian was less so: at 1;11;14, his
CDI was 122 (=~25th percentile) and his mean length of utterance
at the start of recording was 1.45. All recordings were transcribed
and annotated with grammatical information, although we make
only limited use of the annotation here (in Exp. 3). See SI Text for
details on the recordings and their transcription. For the experi-
ments described here we isolated the transcripts of the last two
recording sessions for the children at 2 years of age and one session
for the children at 3 years of age. The remaining (main) files were
then used to automatically acquire a grammar, and the final (test)
sessions were used to evaluate this grammar. Our interest here is in
creative multiword utterances, so we removed all single-word
utterances and all duplicated utterances from the test data. The
quantitative details of the corpora can be found in Table 1.

Experiment 1

In this first experiment we test how well our UB-PCFGs can
account for the respective test utterances of each child at age 2 and
3. For parsing we use the CYK algorithm (22). We are interested
in both the recall of the grammars (what proportion of the child’s
later utterances they can account for) and how well they predict the
child’s productions, which we quantify by using the information-
theoretic measure of perplexity. We compare this value with the
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Table 1. Word and utterance counts for the corpora used

Main sessions Test data
Child Age Word Utterances Words Utterances
Brian 2 10,779 7,371 550 215
Annie 2 14,374 7,602 865 269
Brian 3 31,909 12,007 1,010 274
Annie 3 37,512 11,367 2,074 364

perplexity of fully abstract PCFG models acquired from the same
data. Finally, we use our UB-PCFGs to quantify the productivity of
the children by looking at the complexity of the analyses proposed.

Before reporting parse results we will describe the grammars
obtained. Remember that in Bayesian modeling we arrive at a
probability distribution over possible models from which we then
sample probable grammars. Our sampling procedure (described in
SI Text) gave us 1,000 grammars for the 2-year-old data and 500
grammars for the 3-year-old data. These samples reflect the
range of grammars that are plausible given the data. We thus
report the mean performance achieved when parsing with all of
these grammars.

Although the form of the UB-PCFGs was described above, the
number of signs and number of categories included were, as
explained, decided as part of the inference procedure. The sampled
grammars for Brian 2;0 had a mean of 802 unique signs and three
categories. The sampled grammars for Annie 2;0 had a mean of
1,898 unique signs and four categories. The grammars for Brian 3;0
had an average of 5,343 signs and six categories, whereas the
grammars for Annie 3;0 had an average of 5,385 signs and six
categories. There are interesting differences here between ages and
between children: Annie at 2;0 had a much larger number of signs
in her grammar than Brian, reflecting a larger vocabulary and
inventory of constructions. These are organized into a larger
number of categories, whereas at 3;0 the children’s grammars were
almost indistinguishable by these metrics. Thus, the grammars seem
to become less idiosyncratic with age.

How well do these grammars account for the children’s perfor-
mance? The charts in Fig. 4 show the percentage of items in the test
set that could be accounted for by each grammar (its recall). The
black area at the top of the charts represents the utterances for
which no analysis could be found (fails). We can see that the
percentage of utterances for which an analysis could be found was
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Fig. 4. The number of insert operations performed in the highest probability
parses of the children’s speech at ages 2 and 3 using selected grammars (the recall
is the proportion of utterances accounted for).
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Fig. 5. Perplexity of the different grammars when parsing the test data.

considerable for both children at both ages: 84% for Brian and 75%
for Annie at age 2 and 70% for Brian and 81% for Annie at age 3.
Fig. 4 also shows the complexity of analyses required to account for
the child’s productions. We will return to this shortly.

Besides coverage, we are interested in how well our models
predict the test data. We do this by measuring their perplexity (23).
Perplexity is a measure of how well a probability distribution over
a set of events (in our case words or utterances) matches the
distribution of the events seen in some data: how surprised a model
is by that data. The lower the perplexity the better the fit. For a
given probabilistic grammar and a given corpus it is calculated as the
exponential of the negative log probability of the corpus (divided by
the number of words it contains) given the grammar.

To give meaning to our perplexity figures, we compare the
performance of our UB-PCFGs with that of another kind of
grammar acquired from the same data: a fully abstract PCFG in
which words are restricted to the lexicon and do not ever appear
with categories on the right side of the rules. One problem with
comparing grammars in this way is that different grammars will
usually provide parses for different subsets of the test data and it is
impossible to calculate perplexity for unparsed utterances (i.e., for
fails). To provide a precise comparison, we want PCFGs that parse
any utterances that our concrete grammar inferred from the same
data can parse. We accomplish this by inferring PCFGs that are
smoothed so that they can assign a nonzero probability to any
context-free analysis for any utterance for which they have the
vocabulary in their lexicon. We do this using the approach of ref.
24. See SI Text for details.

Fig. 5 shows the by-word perplexity of our grammars on the
test data. The empty bars in Fig. 5 represent the mean perplexity
of our UB-PCFGs for each child at each age, and the error bars
represent the interval within which results for 95% of the
sampled grammars fall. The striped bars in Fig. 5 represent the
perplexity of the traditional PCFGs on the entire component of
the test data that they are able to parse. The filled bars in Fig.
5 represent the mean perplexity of the abstract PCFG over the
sets of utterances for which each of the sampled UB-PCFG
grammars was able to return a parse. The important thing to note
is that there is no indication for either child at either age that the
traditional PCFG provides a lower perplexity over the test set
than the UB-PCFG.

Our UB-PCFGs, with their minimal assumptions about the
children’s grammatical knowledge, offer broad coverage and have

a predictive value that is at least equivalent to a traditional PCFG.
So what kind of model of production do they entail? And how does
the picture vary across children and age groups? In Fig. 4 the
different bands show the makeup of the analyses of the test
utterances in terms of the mean number of insert operations (the
insertion of a sign, concrete or schematic, into a slot of the correct
category) used in the most probable parses over all of our sampled
UB-PCFGs. These are in order, with the smallest number of
operations at the bottom of the bar. A zero-operation analysis
indicates that the utterance was contained in our grammar as a
concrete formula. Insertion operations are counted in the same way
regardless of how they are embedded. This chart quantifies each
child’s productivity at each age. At 2 years we can see that
productivity is minimal for both children. For Brian 58% of the
productions are exact repeats or involve a single insert operation.
Overall 80% of Brian’s productions can be accounted for by using
at most two insert operations, with only a single utterance requiring
as many as four operations. For Annie, only 32% of the utterances
are accounted for with one operation or less. Nonetheless, 61% of
her utterances are accounted for using at most two operations and
<0.4% of the utterances accounted for involve more than three
operations.

At 3 years, the picture is different. A markedly smaller percent-
age of Brian’s utterances can be accounted for, with considerably
more productivity required. Only 26% of utterances require one
operation or less and 10% require four or more operations.
Although 81% of Annie’s utterances can be accounted for, they
require a much higher degree of productivity, with only 13% of
utterances possible with a single operation or less and 36% of
utterances requiring four or more inserts. While the coverage is still
good, the children’s productivity at 3 years has sharply increased.

Experiment 2

The perplexity results reported in Exp. 1 show that our UB-PCFGs
provide a good fit to the data, but what might these numbers mean
in terms of their ability to make predictions about specific children
at specific ages? We conducted a second experiment in which we
took each sample of UB-PCFGs for each child at each age and
parsed the test utterances for that child at the other age and the
other child at both ages. We performed all pairwise cross-overs,
giving us 12 sets of parses. If the grammars are capturing age- and/or
child-specific linguistic knowledge we should find that mean cov-
erage is decreased.

The results are shown in Table 2. The rows represent the different
sets of test data, and the columns show the mean performance
obtained when parsing with grammars from different children and
ages. We report both coverage and perplexity here. Because there
are big differences in coverage and the grammars therefore cover
different parts of the data, the perplexity values (although normal-
ized by number of words) cannot be precisely compared, but they
provide a useful check for signs of any tradeoff between coverage
and fit. The first dimension to consider is age. Unsurprisingly the 2;0
grammars perform badly when parsing the 3;0 utterances, more so
in the case of the slower-to-develop child Brian (where we see low
coverage, 8%) than for Annie (where we see higher coverage, 29%),
and only slightly higher perplexity). More interestingly, if the
grammars were overly permissive then we might expect that the
larger grammar extracted from the 3;0 data would parse the 2;0 test

Table 2. Mean recall (and perplexity) when parsing different test sets with different grammars

Brian 2;0 grammar

Annie 2;0 grammar

Brian 3;0 grammar Annie 3;0 grammar

84% (105.4)
15% (381.9)
8% (455.7)
3% (489.5)

Brian 2;0 utterances
Annie 2;0 utterances
Brian 3;0 utterances
Annie 3;0 utterances

36% (636.3)
75% (184.1)
42% (361.5)
29% (526.4)

46% (1,076)
71% (317.6)
70% (364.6)
59% (575.8)

34% (1,486.2)
81% (425.9)
63% (363.7)
81% (276.5)
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utterances better than the 2;0 grammars. However, although for the
advanced Annie the 3;0 grammar does give slightly higher coverage
than the 2;0 grammar in parsing the 2;0 data, there is no indication
that it has better fit, and the 3;0 grammar for Brian accounts for
almost half as much of the 2;0 data (46%) as the 2;0 grammar
(84%), and has much higher perplexity.

The second interesting dimension is parsing across the children.
We can see that in all cases the Brian grammars perform worse than
the Annie grammars in parsing the Annie data (15% against 75%
coverage and higher perplexity at age 2 and 59% against 81% and
higher perplexity at age 3) and vice versa (36% against 84% and
higher perplexity at age 2 and 63% against 70% and equivalent
perplexity at age 3). Note that there is some interaction with age
here. Usage-based theory predicts that children’s grammars start
off more idiosyncratically and move gradually toward the grammars
used by other members of the community. This is indeed the
pattern we see: at 2 years the children’s grammars do very badly at
parsing one another, but at 3 years they do considerably better.
Thus, as predicted, the grammars seem to converge over time.
Taken as a whole these results confirm that our UB-PCFGs are less
than permissive and seem to capture the idiosyncrasies of the
different children at the different ages.

Experiment 3

Exp. 1 revealed that UB-PCFGs acquired from 26 h of child’s
speech can account for a large proportion of the child’s subsequent
utterances. But some utterances were still unaccounted for by the
grammars. How can we explain these utterances? The 28 h,
although large for child language corpora, account for <5% of their
total productions over the 6-week period covered. Thus, there will
be constructions and words found in the test sessions not seen in the
main corpus. However, we cannot be sure how much to attribute to
sample size and how much to the children having greater produc-
tivity than can be accounted for with a purely lexically specific
grammar. Research in the usage-based tradition has argued that
children’s knowledge of categories emerges gradually, but has not
claimed that children at 2 or 3 years have no such knowledge. In
Exp. 1 we built fully abstract grammars that had wide coverage for
the purpose of comparison, but they were required to allow all
possible combination of categories and words to be legal produc-
tions and were not intended as realistic models of the children’s
knowledge. If we produced realistic grammars that were not fully
lexically specific, would we see better performance? There is also
evidence that children acquire categories in a particular order,
for example that English-speaking children develop a basic noun
category relatively early (9) and do not develop the verb category
until much later (8). What effect might the inclusion of different
information have at different ages? To explore this question we
set about obtaining grammars that contained specific abstract
categories.

The experiment worked as follows. During the inference proce-
dure we performed alignments over selected parts of speech
(nouns, proper nouns, and verbs by using the expert annotated
categories found in our corpus). We then extracted candidate rules
in which the word forms were replaced by the appropriate part of
speech. Something like categories were, of course, discovered
during our previous extraction process, but they occurred only as
slots and hence signs could never be fully abstract. The key
difference in this experiment is that our grammars can have rewrite
rules in which the right side of the production includes only abstract
information: our inferred categories and/or the expert annotated
categories. We performed two such inference procedures for each
child at each age, first inserting noun and proper noun categories
and then adding verbs. The sampling procedure was the same as for
Exp. 1, giving us 1,000 grammars for the 2;0 data and 500 grammars
for the 3;0 data. We then used these grammars to parse test
utterances in which the relevant parts of speech had also been
substituted.
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Fig. 6. The impact of categorial knowledge on the coverage of our grammars
(the recall is the proportion of utterances accounted for). None, no use of
categories; N, common nouns; PROPN, proper nouns; V, verbs.

Fig. 6 shows the percentage of utterances that were accounted for
when there was no use of categories and when we added in
generalization across all words that are common nouns and proper
nouns, and then additionally across verbs. Because our experimen-
tal manipulation here involves substituting words for parts of speech
in the test and the training data, perplexity would be confounded
with experimental condition so we report only coverage. The bars
in Fig. 6 represent the mean coverage obtained by parsing with the
multiple grammars. The error bars in Fig. 6 represent the range
within which results fall with 95% probability, the lower bound
being the results at 2.5% of the range of obtained results and the
upper at 97.5%. The picture at 2;0 is similar for the two children.
There is a notable impact on recall from the addition of general-
ization across common and proper nouns (6% for Brian and 13%
for the more advanced Annie). For both children the error bars in
Fig. 6 suggest that there is a significant improvement in perfor-
mance. However, the effect of adding generalization over verbs is
much smaller. The addition of the verb category adds very little to
Brian (just 2%). And importantly the mean result for the grammar
with verbs occurs within the 95% interval of the grammars includ-
ing only noun generalizations. For the more advanced Annie the
impact of the verb category is also low (3%), albeit very slightly
outside of the 95% interval for the grammars including only a noun
category.

The contrast between the picture at 2 and 3 years is dramatic for
Brian. The effect of noun generalization is extremely large, giving
an increase in coverage of 14%. Perhaps even more striking is the
>7% increase that is produced by the addition of the verb category,
almost four times that found at 2 years and well outside the 95%
range for the noun-only results. For Annie the picture at 3 years
seems to be similar to that found at 2 years. The addition of nouns
again gives a 13% improvement in coverage. The improvement
produced by the addition of a verb category is again 3%.

These results suggest that at 2;0 the children do have some
knowledge of nouns that is general rather than word-specific, which
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agrees with experimental findings. For example, ref. 9 showed that
children at 23 months are able to use novel nouns as arguments of
familiar verbs that they had not seen them used with before,
suggesting that they are able to infer the behavior of new items
based on their similarity to seen items. The findings for verbs also
agree to some extent with experimental findings. For Brian the
addition of a verb category has almost no effect at 2 years,
suggesting little generalization of knowledge across forms. Ref. 8
found that children at 25 months were not productive in their use
of eight novel verbs learned over a several-week period, using them
only in the constructions with which they had encountered them.
However, experimental results reflect average development and
some children showed greater competence. Similarly the more
precocious Annie shows effects of all of the three parts of speech
we tested for at both 2 and 3 years. It is important to note that our
choice of categories here is very coarse. It seems unlikely that
children jump from having no notion of verbs or nouns as classes
of items to fully general categories. The improvement in coverage
we see when adding categories could perhaps be produced by
positing far narrower categories. So we should temper our claims to
say that the impact of abstraction that we find suggests that neither
child’s knowledge of the set of nouns they use is entirely lexically
specific at age 2, and the same for verbs at age 3.

Discussion

According to the usage-based account, a child’s knowledge of
language builds up slowly, beginning with fully concrete speech
acts acquired by direct imitation, progressing to a productive
competence with constructions but one that is still for the most
part specific to particular words or sequences of words, before
they are able to infer how to generalize appropriately and display
the kind of category-based productivity that characterizes adult
speech. In Exp. 1 we found that, at 2 years, lexically specific
grammars inferred from only 26-28 h of the speech of two
children were able to perspicuously account for their later
productions and had high predictive value (low perplexity)
relative to a fully abstract PCFG. In Exp. 2 we found evidence
that the grammars did capture something of the children’s
specific knowledge states. In Exp. 3, we found that the addition
of a noun category improved the coverage of the grammars for
both children at age 2, whereas the addition of knowledge of
verbs had limited explanatory value. We found that the gram-
mars at age 3 offered a less perspicuous account of the data. It
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was clear from the complexity of the analyses that, for the
advanced Annie, speech has moved far beyond simple formulaic
schemas. And furthermore we found that for Brian at age 3, for
whom the lexically specific grammars still gave a reasonably
perspicuous account of the data, the addition of a verb category
also had a significant impact on coverage. Overall, this finding
that early in development children’s speech can be accounted for
as effectively with generalization over only nouns as with addi-
tional generalization over verbs, whereas later in development
wider generalization (although perhaps not so wide as used here)
is needed to achieve the widest coverage supports a usage-based
account of development.

It is important to acknowledge the limits of this analysis. First, we
have not addressed how the child acquires the categorical knowl-
edge that we see developing. Second, as we have emphasized
throughout we use only a sample of a child’s speech (=5% of their
total productions over the period). That a mere sample can provide
a grammar that gives such good coverage supports our claims that
the children are limited in their productivity. However, we must also
recognize that the children are capable of producing utterances not
found in our test data. Finally, any production study can only tell us
about what children know how to produce. It has often been
claimed that young children have extensive knowledge of grammar
that they are simply unable to use in production because of
performance demands. Such an argument has been particularly
strong among those who believe that a core component of children’s
grammar is innate knowledge of UG (25), but it has in recent times
been made by authors who are not so committed to this perspective
(26). This position is logically impossible to falsify with empirical
methods. However, there has recently been some suggestion that
children show evidence of grammatical knowledge for certain tasks
[e.g., word order-based discrimination of semantic roles in a pref-
erential looking study (27)] that they do not show on other tasks
[e.g., production (8); act out (10)]. Others have reported contrary
results (28), and we would prefer to think in terms of a graded
representations account (29) that is quite consistent with a usage-
based perspective. In any case, what we have done here is to show
that lexically specific explanations, according to standard methods
of assessment, provide a good account of children’s language use at
early points in development.
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