Table 2.
Dependent variable | Lag 0 | Lag 1 | Lag 2 | Lag 3 | d | R2 |
---|---|---|---|---|---|---|
Annual change in life expectancy for the whole population | −0.20* | 2.79 | 0.29 | |||
−0.24** | 0.09 | 2.32 | 0.37 | |||
−0.21** | 0.10 | 0.01 | 3.06 | 0.42 | ||
−0.22* | 0.09 | 0.03 | −0.04 | 2.94 | 0.26 | |
Annual change in life expectancy, white population | −0.19* | 2.78 | 0.35 | |||
−0.24** | −0.11 | 2.29 | 0.42 | |||
−0.21** | −0.12 | 0.01 | 3.00 | 0.42 | ||
−0.22* | −0.11 | 0.03 | −0.05 | 2.88 | 0.49 | |
Annual change in life expectancy, nonwhite population | −0.24** | 2.36 | 0.40 | |||
−0.24** | −0.02 | 2.02 | 0.43 | |||
−0.21** | −0.02 | 0.03 | 2.70 | 0.46 | ||
−0.21* | −0.01 | 0.01 | 0.04 | 2.70 | 0.49 |
*, P < 0.05;
**, P < 0.01. d is the Durbin-Watson statistic. Because d ≈ 2 · (1 − r), where r is the sample autocorrelation of the residuals, d > 2 implies negative autocorrelation of the residuals resulting in possible overestimation of standard errors and the underestimation of statistical significance.