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Abstract
Schistosomiasis, caused by infections by human blood flukes (Trematoda), continues to disrupt the
lives of over 200,000,000 people in over 70 countries, inflicting misery and precluding the
individuals’ otherwise reasonable expectations of productive lives. Infection requires contact with
freshwater in which infected snails (the intermediate hosts of schistosomes) have released cercariae
larvae. Habitats suitable for the host snails continue to expand as a consequence of water resource
development. No vaccine is available, and the emergence and spread of resistance to the single
licensed schistosomicide drug would be devastating. Since human infections would cease if parasite
infections in snails were prevented, efforts are being made to discover requirements of intra-
molluscan development of these parasites. Wherever blood flukes occur, naturally resistant
conspecific snails are present. To understand the mechanisms used by parasites to ensure their
survival in immunocompetent hosts, one must comprehend the internal defense mechanisms that are
available to the host. For one intermediate host snail (Biomphalaria glabrata) and trematodes for
which it serves as vector, molecular genetic and proteomic surveys for genes and proteins influencing
the outcomes on infections are yielding lists of candidates. A comparative approach drawing on data
from studies in divergent species provides a robust basis for hypothesis generation to drive decisions
as to which candidates merit detailed further investigation. For example, reactive oxygen and nitrogen
species are known mediators or effectors in battles between infectious agents and their hosts. An
approach targeting genes involved in relevant pathways has been fruitful in the Schistosoma mansoni-
B. glabrata parasitism, leading to discovery of a functionally relevant gene set (encoding enzymes
responsible for the leukocyte respiratory burst) that associates significantly with host resistance
phenotype. This review summarizes advances in the understanding of strategies used by both this
trematode parasite and its molluscan host to ensure their survival.
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1. Introduction
“Each time a schistosome miracidium enters a snail, the outcome of the encounter is
determined by the level of concordance of genetically determined characters”

Paraphrased from Paul Basch (1975 [1]).

Why the topic is important and a review is timely
The roughly 200,000,000 people in 74 countries infected with schistosomes [2] all share the
fact that they contacted freshwater harboring infected snails. Starting about a month after being
infected by one or more miracidia larvae of a compatible schistosome, a susceptible snail
typically sheds (over several weeks) thousands of cercariae larvae into the water where they
seek human skin and, if successful, penetrate to establish an infection, eventually taking up
residence and maturing in blood vessels of the small intestine (Schistosoma mansoni) or bladder
wall (S. haematobium). Obligatory parasitism of the snail, without which no-one can be
infected, is the reason why this schistosome-snail interaction is a biomedically relevant target
for research. An important snail host of human intestinal schistosomes is Biomphalaria
glabrata. Expanding knowledge of this host-parasite system not only inspires hope of reducing
the human costs of this insidious disease [2,3], but holds the promise of broadening and
deepening our grasp of the origins and evolutionary histories of the strategies exploited by
different hosts and parasites to sustain other symbioses. With this grasp can come a deeper
understanding of the origins and evolution of immune systems [4] and of the forces that
influence the co-evolution of host and parasite [5,6].

The last thorough assessment of schistosome-snail interactions was a multi-author work [7].
Big advances have characterized the intervening years 2001-2009, due in large part to
exploratory studies in proteomics [8-12], functional genomics [13-29], and population genetics
[30-37]. These have yielded floods of new data, and several novel hypotheses have emerged.
In the meantime, high throughput protocols are giving way to even more productive
technologies, with possibilities that challenge the imagination.

Molluscs have impressive capacities to protect themselves against infections by potential
pathogens. For example, those rare microbes known to be pathogenic in any snail, limpet, slug
or oyster are restricted to marine species [38,39]. This implies versatility in both the recognition
and the destruction of microbes by the molluscan immune (or internal defense) system.
Molluscan responses to immune challenge are lymphoid-independent, mediated by phagocytic
hemocytes in cooperation with humoral components [40]. That is not to say that the innate
immune system relies exclusively on constitutive (pre-formed) elements: microbes entering
the body cavity of a mollusc can elicit a variety of responses [23]. When a foreign object is
encountered by a hemocyte in the body of a gastropod mollusc, soluble opsonins may have
already marked the object for attention [40-41], plasma-borne enzymes may have altered its
surface chemistry [42,43], non-self receptors on the cell surface will signal through kinases
and phosphatases to activate or deactivate intracellular enzymes and transcription factors
[44-46], gene transcription is selectively enhanced or reduced [13-29 see Table 1], specific
plasma proteins are synthesized and secreted [47,48], and cell behaviors (migration,
phagocytosis or encapsulation and degranulation) alter in orchestrated ways that reflect the
innate immune repertoire of the mollusc. Resistance to infection is the norm; susceptibility –
as in the case of compatible schistosomes - is the exception.

This review is timely because, predominantly from research on the Schistosoma mansoni-
Biomphalaria glabrata and Echinostoma spp-B. glabrata systems, the years since the last
review [7] have yielded both a torrent of information [reports cited above, with the addition of
the S. mansoni genome [49], (http://www.genedb.org/genedb/smansoni/,
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http://schistodb.net/schistodb20/, http://www.sanger.ac.uk/Projects/S_mansoni/), an
expansive database of the S. japonicum transcriptome [50], and progress in sequencing the B.
glabrata genome
(http://genome.wustl.edu/genome.cgi?GENOME=Biomphalaria%20glabrata)], but powerful
new tools: a BAC library for B. glabrata ([51],
http://biology.unm.edu/Biomphalaria-genome/index.html), oligonucleotide microarrays for
both parasite [52,53] and host [Loker ES, University of New Mexico, and C. Jones, University
of Aberdeen, personal communications], and the means to suppress gene expression in both
the snail [54] and the trematode [55]. Furthermore, it has become apparent that epigenetic
phenomena may regulate schistosome gene transcription [C. Cosseau et al, presented at Xth

EMOP in Paris, France, August 2008]. On the host side, studies that have targeted molecules
falling within the sphere of oxidative and nitrative stress have provided a solid basis for
appreciating mechanisms by which snail hemocytes (phagocytic leukocytes) kill parasites
[56,57].

In the past 10 years, resistance to the anti-schistosome ‘drug of choice’ (Praziquantel) has been
observed [58] and just one new potential drug has emerged [59]. At the same time, human
activities such as dam construction that expand habitats for vector snails and facilitate
transmission have run ahead of efforts to short-circuit parasite transmission through the
provision of piped water and sanitary systems. It is widely hoped that a vaccine may be
developed with the potential to reduce morbidity and mortality, but even if vaccine
development succeeds, it is not seen as a likely panacea [3,58]. In short, we are not yet providing
the tools for public health personnel to lessen suffering and mortality due to human blood fluke
infections, and a multipronged approach is needed to lessen their human impacts.

The challenge we now face is to separate the grain from the chaff in the process of ascertaining
what molecules are relevant to the success of the parasite and to the failure of susceptible hosts
leading to the shed of cercariae from snails. This is a noble challenge because such knowledge
may help in the effort to reduce blood fluke burdens in afflicted human populations. However,
if the complete account of schistosome-snail interactions were to take the form of a painting
by Van Gogh, no more than 1/10th of the canvass would have paint, and the strokes remain
mostly broad. This review will focus on the painted regions of the canvass to see what they
suggest or reveal, and to gain a sense of direction in choosing where to invest future efforts in
the hope of gaining a comprehensive picture of snail-schistosome relationships.

Key attributes adding value to this model host-parasite system
Species of Biomphalaria (B. pfeifferi [31,32] and B. glabrata [33]) and their trematode parasites
[34,35] are surprisingly genetically diverse. Furthermore, in natural populations only some
schistosome individuals are compatible with any snail individual [1,7,30,60-61]. Throughout
the geographic ranges of schistosome species parasitizing humans (mostly the humid tropics),
such compatibility polymorphisms are a hallmark of the trematode-mollusc relationship [11,
62,63]. These facts were first documented decades ago [60-63], and the underlying temporal
and spatial heterogeneities in compatibility phenotypes have, with rare exceptions (e.g. B.
glabrata strain BS90 individuals are invariably resistant to S. mansoni), stymied efforts to
describe susceptibility/resistance phenotypes using stable quantitative values. We seem to have
a moving target, consistent with rapid co-evolution. Key concepts about which we must be
clear are shown in Box 1. In Nature, a range of compatibilities exist, and the fates of schistosome
larvae that penetrate snails of the host species vary from (i) destruction within hours to (ii)
productive infections that yield human-infective cercariae several weeks later. Subtle
additional phenotypes exist, such as infections that persist long term in a developmentally
stalled state, and that may or may not regain developmental momentum for reasons that no-
one knows.
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Box 1

Key concepts of infectivity, susceptibility, resistance, compatibility,
incompatibility, unsuitability: what these mean in this system

• Infectivity: the capacity of individuals in a parasite population to establish viable
infections in individuals within a host population.

• Susceptibility: condition in which a host fails to inactivate or kill a parasite,
resulting in an infection that progresses to patency, requiring physiological
suitability of the host’s milieu interieur for parasite development.

• Resistance: condition in which a host prevents the development of the parasite by
killing it.

• Compatibility: a quality of a pair of species in which an individual parasite infects
an individual host in which the parasite completes the part of its life cycle
appropriate to the host.

• Incompatibility: a quality of a pair of species in which an individual parasite infects
an individual host in which the parasite fails to complete the part of its life cycle
appropriate to the host.

• Unsuitability: host condition in which the needs of the parasite are not adequately
met.

Laboratory models of this host-parasite system [65] are readily available (e.g. in the USA,
http://www.schisto-resource.org/), relatively easily maintained in the laboratory, and widely
exploited by investigators interested in gaining an understanding of this host-parasite system.

Infectivity, susceptibility, resistance, compatibility, incompatibility, unsuitability: what does
it all mean?

Schistosome infections are typified by their very high degree of host snail specificity: a
miracidium is capable of infecting only some individuals of any one strain of the host species.
Given the impressive efficacy of the snail’s defenses, some very special circumstances must
account for the success of these parasites in exploiting the snail as a host. Classical genetics
showed, unsurprisingly, that genotypes of both partners determine the outcome of each
infection [1,62]. With snails, they implied a multi-gene control of resistance in juveniles, and
a single dominant gene controlling resistance in adults. With schistosomes [1,6,65], they
revealed that the capacity to infect one strain of snail can be independent of the capacity to
infect another strain of snail. The challenges we now face are to identify genes controlling the
different S/R compatibility phenotypes and to use this knowledge to reduce parasite burdens
in human populations.

Aspects of schistosome and snail biology most relevant to the topic of this review are shown
in Box 2. The echinostomes are closely related trematodes. Some parasitize Biomphalaria
snails, but appear to be more proactive than schistosomes in immune suppression/interference
[15], and we lack the space here to describe the differences.

Box 2

The schistosome’s survival mechanisms that need to be understood, and
Questions which need to be addressed concerning the snail’s mechanisms,

with answers when available

The schistosome’s survival mechanisms that we need to understand.

Bayne Page 4

Mol Biochem Parasitol. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.schisto-resource.org/


1. Locating a host snail.

2. Penetrating a host snail.

3. Minimizing the furor of the attack by the host’s internal defense (immune) system.

4. Protecting self and counter-defending against host immune effector pathways.

5. Metamorphosing from miracidium to mother sporocyst.

6. Migration in the host.

7. Nutrition, growth and differentiation, including asexual proliferation.

8. Redirecting host resources to the benefit of the schistosome.

9. Ensuring the survival of the host (in order to sustain parasite development).

10. Escaping (birth) at the cercarial stage, and emigrating from the snail fit for survival
in freshwater.

11. Locating and penetrating human skin (and subsequent activities within the
definitive host)

Questions which need to be addressed concerning the snail’s mechanisms, and answers
when available.

1. Do snails release clues that can be used by the miracidium to locate a host? YES
[98].

2. Are there barriers to penetration of the miracidium? NOT EFFECTIVE.

3. How is the presence of the schistosome recognized? NOT KNOWN.

4. What mechanisms are marshaled to kill the invader? These are humoral and cell-
mediated, with behavioral, membrane-dependent and granule-dependent
components. There are both constitutive changes (not evidenced by changes in the
transcriptome) and induced changes (evidenced as altered levels of mRNAs and
proteins).

5. What else is known of responsible immune mediators and effectors? SEE TEXT.

6. What is the process of dealing with killed parasites? SEE TEXT.

7. How are resources partitioned to sustain both symbionts when a snail is unable to
get rid of the invader? NOT KNOWN.

What, then, are the mechanisms that govern the variable outcomes of schistosome-snail
encounters and for which of those that are theoretically possible do we have empirical data
supporting or devaluing a model that incorporates that mechanism?

Others [66] have argued that the success or failure of the host’s recognition system plays the
dominant role in determining the outcomes of schistosome-snail encounters. We prefer to think
that the fate of a parasite is determined by several factors including recognition or its failure:
a complex interplay of the recognition capacities of the host, evasion capacities of parasites,
effectiveness of killing activities of hosts, and counter-defense capacities of parasites seems a
more realistic scenario. Some elements of the system will be active acutely (within minutes to
hours of the infection) while others act chronically, even for the duration of the infection (up
to >2 months).
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Recognition and means to escape it
We have explained why - in the absence of special circumstances - snails would be expected
to resist infections. However, before unleashing the furor of its defense system, the snail needs
first to recognize the presence of something to be attacked. Trematodes do not ‘lie low’ when
they enter a snail; to the contrary, they release a veritable cloud of molecules that have come
to be known as their excretory-secretory products (ESP) [8,12]. Many are released from the
penetration glands, and it is possible that others derive from ciliated plates that are shed when
the miracidia metamorphose to sporocysts, exuding tegumental components in doing so. These
ESP molecules include enzymes (cysteine proteases [12], superoxide dismutase [8,67]) along
with a variety of polymorphic mucins, the so-called SmPoMuc family members [11]. Research
at the University of Perpignan, France [68] suggests that these mucins become diversified
within the life of each individual and that their expression is regulated to some degree by
epigenetic changes that could be different between individual parasites. These polymorphic
mucins are released by schistosomes as they penetrate a snail, and could be recognized by
reciprocally polymorphic receptors in host plasma and on host hemocytes [25,47,48], an idea
that has been independently suggested by E. Roger (personal communication).

Knowledge of receptors that recognize foreign (non-self) determinants in molluscs is
disproportionately comprehensive for one family, the FREPs [25,47,48,70-75,77], and
fragmentary for others. However, most, if not all, non-self receptors described in molluscs are
lectins. This holds for cell receptors that bind sporocyst molecules [69] and for plasma proteins
which bind parasite ESPs [see FREPs papers]. Other candidates for molluscan immune-
activating non-self receptors include mannan- and laminarin-binding molecules [76], and
peptidoglycan-binding and Gram-negative-bacteria-binding proteins [77], but others exist
[78]. Members of the FREP family of plasma proteins (14 family members are now known
[75]; these are lectins but not known to be cell membrane receptors; [79] is a recent review)
appear or increase in the plasma following trematode infections. By recognizing sugars, they
precipitate glycan-bearing molecules released by trematodes, and will bind to sporocysts,
bacteria and yeast [75]. The FREPs are compelling because, in addition to these properties,
they are mosaic proteins with 1 or 2 immunoglobulin-like (Ig) domains and a fibrinogen
domain, and the Ig domains are diversified within individual snails [70]. This discovery has
bolstered a paradigm shift in comparative immunology, changing from the old view that
immune recognition in invertebrates relies entirely on invariant, genome-encoded receptors.
Insects have been reported to exploit diversification of receptors within the lifetime of the
individual [80], while the genomes of echinoderms [81] and protochordates [82] encode the
proteins to diversify receptors, a signature event of the adaptive immune systems of jawed
vertebrates. The presence in snail plasma of the Ig superfamily FREP proteins and of the related
FReM protein [71] is not predictive of resistance. Despite the variable Ig domains in FREPs,
evidence that they trigger effective immune-type responses remains elusive. One might
conjecture that their function is to scavenge excretory-secretory products (ESPs) from
developing parasites. Do they (like Ig antibody receptors on lymphocytes) occur, even
ephemerally, as integral membrane receptors? It will be intriguing to discover the proximate
stimuli for their hypersynthesis (might this be akin to antigen-antibody binding?) and to learn
if their ligands include or are related to the polymorphic schistosome mucins reported by others
[68] or to other components of trematode ESPs.

On contacting the soft (Latin ‘mollis’ means soft) body surface of a snail, a miracidium (a ~200
μm long, ciliated larva of ~ 200-300 cells; Fig 2) uses the contents of its penetration glands,
along with muscular squirming, to penetrate the body wall. Within minutes of arriving in the
body cavity, it sheds its ciliated surface ‘plates’ and exudes new cytoplasm and membrane
lipids from cells in its interior. This exudate spreads over the surface, forming a tegument: the
miracidium has metamorphosed into a sporocyst [64,83] within which germinal cells begin to
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develop into a generation of daughter sporocysts, a process that takes weeks. The body cavity
of the snail where these events occur is an open circulatory system in which blood (hemolymph)
containing numerous plasma proteins [43] and ameboid leukocytes (called hemocytes) is
continually circulated. Parasites that have penetrated have nowhere to hide.

How, then, might a schistosome entering the hemocoel of a snail avoid eliciting an attack? One
suggestion for which there is increasing evidence is that compatible parasites avoid the wrath
of the host snail by mimicking the snail’s own self markers. The case for this has been reasoned
[40,84], and recent evidence is supportive [85]. In a nutshell, it must be the case that any and
all immunocompetent organisms have means to avoid inflicting unintentional damage on self.
The means to achieve this is probably ancient though it was first described within gnathostome
vertebrates (mice and humans): receptors (on immune cells) that recognize self determinants
effectively shut off signaling pathways that otherwise elicit aggressive responses. This is how
our own natural killer cells are normally prevented from attacking our tissues [reviewed in
86]. Since mammals injected with schistosome antigens produce antibodies that recognize host
snail antigens, and those injected with snail antigens produce antibodies that recognize
schistosome antigens, we can not escape the inference that schistosomes mimic snail (host)
epitopes [84,87]. It is also clear that sporocysts quickly coat themselves with host plasma
proteins, and display these over the long term [43]. Why would parasites both mimic and
acquire-display host determinants unless there were functions for the epitopes? We conjecture
that these epitopes are recognized by negative-signaling ‘self’ receptors on snail hemocytes.
These putative receptors would be functional analogs of those on natural killer cells that express
the immunoreceptor tyrosine-based inhibitory motifs [ITIMs, 86] with the ability to counteract
kinase-based activation pathways. Parasites such as blood flukes which develop without access
to immunologically privileged sites (they live in the blood streams of both molluscan and
mammalian hosts) are especially likely to derive protection from mechanisms such as this.
Though the idea remains speculative, reports that sporocysts and their products interfere with
ERK signaling in snail (Lymnaea stagnalis) hemocytes from susceptible but not resistant snails
[84], and that glycopeptides in trematode (echinostome) ESPs interfere with defenses of
susceptible strain hemocytes, and not resistant hemocytes [85], underscore its merit. Also the
sharing of specific carbohydrate structure by B. glabrata and S. mansoni [87] provides the
chemical basis of the observed mimicry. It will be valuable to characterize the responsible
receptor(s) upstream of ERK in snail hemocytes and to assess the possibility that it/they
recognize trematode mucins and reduce phosphorylation of ERK.

The parasite - host interplay is, of course, dynamic. Much may be determined by constitutive
components of the two partners, including the parasite’s abilities to appear not much different
from the host and to mop up potentially destructive host molecules. But to these first lines of
defense, the parasite may add others as the infection progresses to its chronic phase [7].

The ciliated plates shed after miracidial penetration of a snail are anucleate and are quickly
phagocytosed by hemocytes. Further, the capacity of sporocysts to prevent recognition is a
property that they loose the moment that they die (unpublished observations). The work of
staying alive in an immunologically hostile environment appears to require housekeeping that
communicates identity and health, but how this is done and why the signals decay quickly
remain mysterious.

The host’s capacity to kill and the means a schistosome may use to resist it
If, when a miracidium enters a snail, it fails to avoid being recognized, it faces an ugly
predicament. The body cavity of a gastropod provides no places in which to hide: without
exception, hemocytes will locate the metamorphosing miracidium-sporocyst. The hemocytes
are circulating, phagocytic leukocytes. They are capable of chemotaxis, can extend long
pseudopods, and will avidly engulf or encapsulate (‘frustrated phagocytosis’) foreign objects
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that are too large to be phagocytosed – with the exception of compatible parasites. The
hemocytes contain lysosomes with proteolytic enzymes, and upon appropriate stimulation will
degranulate these, releasing their contents both extracellularly and into phagosomes. Receptor-
mediated signaling appears to conform to some degree with pathways documented in other
species [44-46,84]. They also are armed with the biochemical machinery to produce reactive
oxygen (ROS) and reactive nitrogen species (RNS), and do so when appropriately stimulated
[91-94]. Hemocytes discover parasites within minutes and can inflict significant damage within
a few hours [11,94]. The capacity to generate ROS, known also by the term ‘leukocyte
respiratory burst’ due to its rapid consumption of O2, is central to the cytotoxic capacities of
leukocytes in organisms across the evolutionary spectrum. Once generated, the first ROS of
the burst (superoxide, O2

-) can be metabolized through alternative pathways, some leading to
other toxic ROS while others detoxify the products (Fig. 4).

The inference that the respiratory burst is likely to be an important component of molluscan
cellular defences led us to target the burst using an in vitro model of schistosome sporocyst
encapsulation by snail hemocytes [91-93] (Fig 3). These experiments revealed that the capacity
of hemocytes to kill sporocysts was compromised by inhibitors of enzymes in the respiratory
burst pathway and by molecules that scavenge ROS. In addition, the knowledge that nitric
oxide can react with O2

- to yield peroxynitrite (Fig. 4), possibly enhancing the overall cytotoxic
potential, led us to ask if an inhibitor of nitric oxide synthase would alter the killing of
sporocysts in our in vitro model; it did [93].

This potential of ROS and RNS to inflict damage in the B. glabrata – S. mansoni parasitism
implicates enzymes at all stages of the respiratory burst. As H2O2 is pivotal to the effector
pathways of the burst, we measured its production by hemocytes from a strain that is more
resistant (R) and another that is more susceptible (S) to our strain of S. mansoni. Consistent
with a role in determining the S/R phenotype, S hemocytes produced less H2O2 than did
hemocytes more able to kill sporocysts [95].

The generation of H2O2 is accelerated by the enzyme superoxide dismutase (SOD). So we
asked if the activity levels of SOD differ in S and R hemocytes, and found that R hemocytes
had about twice the activity seen in S hemocytes [96]. This difference was found to be due to
the intracellular Cu/Zn SOD and not to a Mn SOD which is characteristically located in
mitochondria.

The early work of identifying and characterizing these enzymes at the levels of DNA, RNA
and protein has resulted in the first association of a functionally relevant gene with the R
(resistant)/S (susceptible) phenotype of a snail to a trematode parasite. The cytoplasmic Cu/
Zn SOD of B. glabrata (SOD1) is encoded in our lab populations by three or more alleles, A,
B and C (DQ239577, DQ239578 and DQ239579). In a strain of B. glabrata that is variable in
S/R phenotype, one of the alleles has been found to be significantly associated with resistance
[97]. This association of a functionally relevant locus with the S/R phenotype in B. glabrata
is unprecedented. It begs the question, is the R-associated SOD1 allele also associated with
higher numbers of transcripts? Quantification of allele-specific mRNAs in individuals revealed
that snails carrying the allele in question had significantly higher levels of SOD1 transcript
than individuals without this allele [98]. Using data on the average percent R of each genotype,
we asked if this correlated with the mean level of SOD1 expression of each of the six genotypes
(AA, AB, AC, BB, BC, CC): there is indeed a significant correlation, consistent with the view
that SOD1 expression is directly involved in R/S to S. mansoni [98].

It would be premature to conclude that oxygen and/or nitrogen radicals directly kill S.
mansoni; ROS are also responsible for intracellular signaling, so peroxide may not be the
effector but rather an upstream mediator of parasite damage. However, underscoring the
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relevance of oxidative stress genes to the S/R phenotype in this model, peroxiredoxins (Prx)
also appear to be involved. These enzymes have two known functions: one is to scavenge
H2O2 while the other involves immune-relevant intracellular signaling [99]. There appear to
be at least four Prx loci in B. glabrata [Knight et al, unpublished data]. In lab populations, we
see 3 allelic variants for one of these – the apparent ortholog of vertebrate Prx4. We have found
(unpublished observations) that Prx4 transcript abundance is a highly variable trait, but the
locus appears to be transcriptionally activated in snails as a result of infection, with more rapid
activation in a resistant strain than a susceptible one [Knight et al., unpublished data].

As we mentioned with the canvass analogy, there are as yet just limited areas where the image
is clear. We posit, however, that variation in the expression or activity of any hemocyte factor
contributing to the production or to the consumption of H2O2 is likely to influence the potency
of resistance to S. mansoni in B. glabrata.

The targeting of loci involved in the generation of ROS and NO is a rational approach that is
validated by data coming from more global approaches. Among genes that differentiate
susceptible and resistant strains of snail, oxidative stress genes appear repeatedly [see Table
1]. Furthermore, SOD is the most highly expressed gene in the outermost layer (tegument) of
larval and adult schistosomes [100].

Fruits of the more global approaches for discovery of genes and proteins that influence the
outcomes of trematode parasite-snail host encounters

There are undoubtedly additional (ROS- and RNS-independent) means, both humoral and cell-
mediated, used by snails to injure and kill schistosomes. Just as in the world of human affairs,
reciprocal antagonists evolve supplementary mechanisms for attack, counter-attack and for
self-defense. The wide variety of snail genes that are transcriptionally altered in response to
parasitism include many whose products have functions that are not known to be related to
oxidative stress (see Table 1). Many others code for proteins of unknown identity. Some are
likely responsive to offensive signals from the trematodes, serving to protect the host even if
not harming the parasite, while others (especially those with rapid – hours – increases in
expression) may contribute to either cell-mediated or humoral aggression against the sporocyst.

Table 1 illustrates the extent of efforts that have been expended to discover genes and proteins
which may account for the phenotypes in the B. glabrata – S. mansoni and the B. glabrata -
Echinostoma spp parasitisms. The predictable rewards have been lists of genes and proteins
that differentiate susceptible from resistant hosts, and infective/compatible from non-infective/
incompatible parasites. Some are constitutively different while others are diagnostic of host or
parasite responses to encounter with their partner. The majority of these papers include
exhortations to conduct functional studies aimed at clarifying the roles of named genes in the
host-parasite interaction [e.g. 21]. However, the large numbers of genes implicated impose a
need to decide which leads are worthy of further experimentation, and what approaches are
likely to best reward our efforts. While all such deliberations must be speculative, reasonable
cases can be made for the roles of certain molecules in the causation of phenotypes. For
example, there is an hypothetical framework (see earlier) that is consistent with roles for cell
receptors, and another consistent with roles of oxidative stress enzymes, so that SOD, ROS
scavengers, G3PDH, oxidases, peroxidasin and other products ‘fit’ a model, and suggestions
as to functionality can be considered reasonable. Similarly, there are precedents for speculating
that proteases, protease inhibitors, cell adhesion factors, coagulation factors, stress proteins,
signal transduction proteins, enzymes involved in both the biosynthesis and the degradation
of glycans, lectins and a variety of other genes and proteins in the lists play roles that contribute
to the outcomes of parasite-host encounters. Many of the papers cited in Table 1 (see, for
example, refs. 11,14,16) present well reasoned scenarios as to how the discovered molecules
may contribute. Actually demonstrating the role(s) of each presents significant challenges, as
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is well illustrated by the evolving FREPs story [79]. Further, it is surely the case that, among
the numerous unidentified genes and unknown proteins in the discovery studies, there are more
that influence outcomes. The involvement of each may be made evident by gene knock-down
approaches [54], but discovering specific mechanisms and actions of each will take time.
However, if the development of fully protective vaccines remains insurmountable, and other
methods of controlling schistosomiasis continue to fall short, the goal of breaking transmission
should sustain these efforts to understand the basis for trematode propagation in their
intermediate hosts.

Some further considerations
The speed of new technologies and their enormous capacities to discover genomic features that
distinguish compared phenotypes have made them appealing. But their positive attributes come
at a cost that is not obvious: minor differences in sequence can be missed (for example in
microarray hybridizations), yet may have real phenotypic consequences (e.g. enzyme kinetics).
Even when not missed, distinct alleles can influence phenotypes in subtle yet consequential
ways such as the quantities of protein in the cell, and the efficiencies with which receptors and
enzymes execute their functions.

While knowledge of Biomphalaria glabrata and Schistosoma mansoni genomes and
transcriptomes has been increasing, related data have been accumulating for many additional
species. Given the universality of many pathways in the biosphere, comparative approaches
that draw on the broad datasets are increasingly rewarding as we seek to formulate and test
new hypotheses.
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Figure 1.
The life cycle of a schistosome that parasitizes humans and is responsible for schistosomiasis
(blood fluke).
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Figure 2.
Left: a miracidium of Schistosoma mansoni photographed under phase contrast microscopy.
The surface cilia, with which the larva swims, are evident as a fuzzy surface.
Right: an artist’s reconstruction of the internal anatomy of a miracidium, based on electron
micrographs (from Pan CT, 1980 [64]).
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Figure 3.
A sporocyst of S. mansoni encapsulated by B. glabrata hemocytes, with additional migrating
hemocytes. This in vitro model replicates events that occur in vivo each time a schistosome
enters a snail. When (in vivo) the snail is resistant to the parasite and when (in vitro) the
hemocytes are from such a snail, the consequence of encapsulation is death of the sporocyst
[94]. The kinetics of events in vivo and in vitro are the same. In the process of killing the
parasite, hemocytes produce H2O2 and a product of arginine metabolism, possibly nitric oxide
[91-93].
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Figure 4.
A simplified schematic of the pathways that generate ROS and RNS in phagocytic cells.
NADPH oxidase converts molecular oxygen (O2) into superoxide (O2

-). The dismutation of
O2

- to hydrogen peroxide (H2O2) is catalyzed by superoxide dismutase (SOD). In the presence
of chloride ion, H2O2 can be converted to hypochlorous acid (HOCl) by halide peroxidases.
H2O2 reacts with ferrous ions (Fe2+) to yield hydroxyl radical (OH·). The enzyme nitric oxide
synthase (NOS) utilizes O2 and arginine to produce nitric oxide (NO), which can react with
O2

- to form the highly reactive peroxynitrite (ONOO-).
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