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Current genome-wide surveys of common diseases and complex traits fundamentally aim to detect indirect associations
where the single nucleotide polymorphisms (SNPs) carrying the association signals are not biologically active but are in
linkage disequilibrium (LD) with some unknown functional polymorphisms. Reproducing any novel discoveries from
these genome-wide scans in independent studies is now a prerequisite for the putative findings to be accepted. Significant
differences in patterns of LD between populations can affect the portability of phenotypic associations when the repli-
cation effort or meta-analyses are attempted in populations that are distinct from the original population in which the
genome-wide study is performed. Here, we introduce a novel method for genome-wide analyses of LD variations between
populations that allow the identification of candidate regions with different patterns of LD. The evidence of LD variation
provided by the introduced method correlated with the degree of differences in the frequencies of the most common
haplotype across the populations. Identified regions also resulted in greater variation in the success of replication attempts
compared with random regions in the genome. A separate permutation strategy introduced for assessing LD variation in
the absence of genome-wide data also correctly identified the expected variation in LD patterns in two well-established
regions undergoing strong population-specific evolutionary pressure. Importantly, this method addresses whether
a failure to reproduce a disease association in a disparate population is due to underlying differences in LD structure with
an unknown functional polymorphism, which is vital in the current climate of replicating and fine-mapping established
findings from genome-wide association studies.

[Supplemental material is available online at http://www.genome.org.]

The completion of the second phase of the International HapMap

Project generated genetic data for over 3 million single nucleotide

polymorphisms (SNPs) in samples with African, Asian, and Euro-

pean ancestries, offering maps of common genetic variations

found across these populations (The International HapMap Con-

sortium 2007). At a practical level, these maps have aided the de-

sign of efficient genotyping arrays for genome-wide studies of

common diseases and complex traits, by identifying variants that

capture the information from surrounding loci using genetic cor-

relation or linkage disequilibrium (LD) (de Bakker et al. 2006a).

Powerful analytical tools have also utilized the comprehensive

information from these databases to increase genomic coverage

and fine-map association signals through statistical imputation of

untyped genetic variants that exist in the databases (Marchini et al.

2007; Servin and Stephens 2007). Central to the selection of tag

SNPs and the use of HapMap populations as reference panels in

imputation is the assumption that patterns of LD are similar be-

tween the target and HapMap populations (Clark and Li 2007;

Marchini et al. 2007). Population differences in LD structure be-

tween an untyped functional polymorphism and surrounding

assayed markers can compromise the effectiveness of pooling ge-

netic data in meta-analyses, as failures to replicate genuine find-

ings may happen when a marker is in substantial LD with the

functional polymorphism in one population but not in other

populations (Teo et al. 2009).

In order to assess the extent of differences in the patterns of

LD between populations on a genome-wide scale, a new method,

variation in LD (varLD), was developed. Our method builds upon

analytical approaches developed for comparing regional patterns

of correlations (Krzanowski 1993) that have been previously

implemented for contrasting LD between cases and controls in

association mapping (Zaykin et al. 2006). The genome-wide anal-

ysis investigates the extent of LD differences in each genomic re-

gion relative to the rest of the genome, identifying regions that are

found in the right tail of the distribution of varLD scores across the

genome when comparing between two populations. This identi-

fies genomic regions where the extent of LD variation between two

populations is greater than the rest of the genome. In situations

where genome-wide data are unavailable, we introduced a permu-

tation strategy that allows the comparison of a localized region,

yielding a statistical significance for testing the null hypothesis of

no differences in patterns of LD between two populations.

We apply our method to compare the patterns of LD across all

possible population pairs with the three HapMap populations,

consisting of: (1) individuals in Utah with European ancestry

(CEU); (2) Yoruba people sampled from the Ibadan region in

Nigeria (YRI); and (3) a combined group of Han Chinese from

Beijing and Japanese from Tokyo (CHB+JPT). We also compare the

YRI to another African population, which consists of the Jola

people from the Gambia (Jallow et al. 2009), as well as between two

populations of European descent given by the CEU and subjects

from the British Isles (WTCCC) (The Wellcome Trust Case Control

Consortium 2007; see Supplemental material). In addition, we

surveyed across 300 random regions identified to be in the top fifth

percentile in our comparisons between CEU and CHB+JPT, where
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for each region we identified the most common haplotype in CEU

and compared the frequency of this haplotype in the CEU and

CHB+JPT samples. We also assessed the portability of an identified

association in each of these regions across the two populations. We

observed that the evidence of LD variation for these regions cor-

related significantly with the degree of difference in haplotype

frequencies, and there were greater disparities in the portability

of the association signals in these regions. Regions undergoing

population-specific positive natural selection are more likely to

contain diverse patterns of LD between populations, and we cross-

referenced the varLD signals against the established regions

carrying signatures of positive selection, showing significant con-

cordance. The use of the permutation strategy to quantify regional

LD variations in the absence of genome-wide data also correctly

characterized the expected variations at two loci experiencing

strong evolutionary pressure, which is expected to introduce

haplotypic variations.

Methods

Data sets

We used the genotype data for autosomal chromosomes from

Phase 2 of the International HapMap Project in our analyses,

which consisted of 3,790,590 SNPs for the 60 unrelated parent

individuals from the CEU panel, 3,733,291 SNPs for the 60 un-

related parent individuals from the YRI panel, and 3,821,888 SNPs

for the 90 unrelated individuals from the CHB and JPT panels.

Only SNPs from the HapMap samples with <20% missingness and

with minor allele frequencies >5% were used. To avoid the effects

of sample size differences in the calculation of LD, 60 control

samples were chosen from each of two separate case-control

studies carried out in the Gambia by the MalariaGEN Consortium

(Jallow et al. 2009) and in Great Britain (The Wellcome Trust Case

Control Consortium 2007). The samples from the Gambia consist

of 60 individuals who reported their ethnic group as Jola, and for

which their ethnic memberships were subsequently genetically

verified, out of a total of 1382 control subjects; the samples from

Great Britain consisted of 60 randomly chosen subjects from the

possible set of 1481 controls for the 1958 British Birth Cohort that

formed part of the control samples used in The Wellcome Trust

Case Control Consortium (2007). Data from the MalariaGEN and

the Wellcome Trust Case-Control Consortium were downloaded

from the European Genome-phenome Archive with permission

from the respective Data Access Committee. These two sets of

samples have been genotyped on the Affymetrix GeneChip 500K

set, yielding 490,032 SNPs on the autosomal chromosomes. The

genotypes for these data have been called using the CHIAMO al-

gorithm (The Wellcome Trust Case Control Consortium 2007),

and only SNPs with <5% missingness across all the control samples

in each study and with minor allele frequencies >5% have been

included in our analysis.

Quantification of LD

The r 2 is a popular measure in population genetics for assessing the

strength of the genetic correlation between the alleles of two SNPs.

Here, we consider the signed r 2 to quantify the extent of LD be-

tween two SNPs since this measure additionally reflects the di-

rection of the correlation between the two SNPs, and has thus been

shown to be more appropriate in comparing LD (Teo et al. 2009).

For two biallelic SNPs with alleles (A, a) and (B, b), respectively, the

signed r 2 is defined as

pAB � pApBð Þ2

pApa pBpb

�1ð ÞIð pAB < pApBÞ;

where pAB denotes the frequency of haplotype AB; pA, pa, pB, and

pb denotes the respective allele frequencies; and I(pAB < pA pB) de-

notes an indicator function taking a value of one when pAB < pA pB,

and zero otherwise.

Eigen-analysis of regional LD between two populations

Let G1 and G2 denote the genotype data for a common set of S SNPs

across two populations. For each population, we divide the set of S

SNPs into (S � L + 1) overlapping windows of L SNPs, where each

consecutive window is obtained by shifting the existing window in

the direction of the forward strand by one SNP. For a particular

window of L SNPs, let M1 and M2 denote the two L 3 L symmetric

matrices for the two populations, respectively, such that the (i, j)

entry in each matrix represents the signed r 2 between SNP i and

SNP j. Thus, each of these matrices effectively represents a corre-

lation matrix between the L SNPs in the respective population. It

has been shown that testing for equality between the elements of

two correlation matrices can be achieved by comparing the extent

of departures between the ranked eigenvalues of the two matrices

(Krzanowski 1993; Zaykin et al. 2006). We perform an eigen-

decomposition on each of the two LD matrices such that for

population k we obtain Mk =Gk Dk Gk
T, with columns of Gk de-

noting the eigenvectors of Mk, and Dk is a diagonal matrix with

entries comprising the sorted eigenvalues of Mk in descending or-

der. We define the raw varLD score as the trace of |D1� D2|, and the

magnitude of this score provides a measure for the extent of dis-

similarity between the correlation matrices M1 and M2 that we

subsequently use to quantify the extent of regional LD differences

between the two populations. We ran an initial analysis on the

effects of varying the window size L in our comparison between

the HapMap CEU and the WTCCC 58C populations, with L as 25,

50, 100, and 200. As varying L has been observed to yield consis-

tent results (see Results), we have chosen a window size L of 50 in

all subsequent analyses. We did not choose to define the sizes of

the windows by the genetic or physical distance spanned, as such

definitions will result in windows encapsulating a different num-

ber of SNPs, which does not allow for genome-wide comparison

across different windows.

Computation of Monte Carlo statistical significance

We can use permutational procedures to obtain a Monte Carlo

statistical significance for each window of L SNPs in order to

evaluate the strength of the evidence against the null hypothesis of

no differences in regional LD structure between two populations

(Krzanowski 1993). For each window of L SNPs at any two pop-

ulations with n1 and n2 samples, respectively, we can calculate the

raw varLD score and define this as the empirical test statistic Temp.

Under the null hypothesis of no differences in the LD structure in

this region of L SNPs, we can merge the data from both populations.

By resampling n1 and n2 samples from this combined data with re-

placement to yield two ’’populations’’ of sample sizes identical as

previously observed, we can calculate the corresponding varLD

score, which is effectively a random draw from the null distribution

of no differences in regional LD. The Monte Carlo significance is

thus defined as (M + 1) / (Niter + 1), where M denotes the number of

varLD score obtained from the resampling scheme that is larger

than the empirical test statistic Temp, and Niter denotes the total
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number of permutations. Significance values reported in the paper

for the LCT and DARC genes are calculated with Niter of 10,000.

Genome-wide quantification of varLD scores

It can be computationally expensive to calculate Monte Carlo

significance when assessing genome-wide data. In such situations,

we do not define the statistical significance of the score for each

window but instead make use of the relative rank of the score as

a surrogate measure of the extent of LD differences in that region

relative to the rest of the genome. While an empirical significance

may be approximated for each observed score as the proportion of

scores larger than itself, this is misleading and does not provide

any conventional interpretation of statistical significance, as such

a statistic (1) can be affected by the density of the SNPs both within

and outside of the considered region, since a densely genotyped

region with real LD differences will yield more occurrences of high

varLD scores compared with a region that is sparsely assayed, and

(2) is not drawn from the true distribution under the null hy-

pothesis of no differences. Instead, we flag a region if the associated

score si is greater than or equal to the score at the 95th percentile,

and consider this as a candidate region containing LD differences.

While this strategy is also affected by SNP density, we avoid any

reference to the term ‘‘statistical significance’’ and thus any sub-

sequent interpretations that are associated with it. As the magni-

tude of the raw varLD scores is affected by the size of the windows

L and the populations being compared, we prefer to use the stan-

dardized score si9 = si � EðsÞð Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

varðsÞ
p

, where E(s) and var(s) denote

the empirical mean and variance of the collection of scores across

the genome. We reiterate, however, that this serves only to cen-

ter the distribution of the scores around a mean of zero and a stan-

dard deviation of one, and the standardized scores are in no way

related to the quantiles of a standard normal distribution (Sup-

plemental Fig. 1).

Comparison of haplotype frequencies

To assess whether there are different dominant haplotypes in

a region identified by our approach between two populations, we

randomly selected 300 regions in the top fifth percentile from our

comparison between the HapMap CEU and HapMap CHB+JPT

samples. In each of these regions, we identified the most common

haplotype form seen in the 120 chromosomes for the CEU samples

and compared the frequency of this haplotype between the CEU

and CHB+JPT chromosomes. As a control, we also selected 300

regions randomly across the genome where each of these regions

spans a physical distance that is matched to one of the 300 regions

identified by varLD. In order to assess the relationship between the

evidence of LD variation and the difference in haplotype fre-

quencies across these 600 regions, we perform a linear regression of

the absolute difference in haplotype frequencies with the stan-

dardized varLD score and assess the correlation using the Pearson’s

correlation coefficient.

Simulation of replication across CEU and CHB+JPT

In each of the 300 selected regions identified by our approach in

the genome-wide comparison of LD variation between CEU and

CHB+JPT, we selected a focal SNP that is typed in both the CEU and

CHB+JPT samples and was located nearest to the center of the re-

gion. We simulated an effect size corresponding to a multiplicative

risk of 1.3 for the minor allele (defined in CEU) at this focal SNP in

both CEU and CHB+JPT, assuming a baseline penetrance of 20%

for the genotype homozygous for the major allele. We simulated

2000 cases and 2000 controls, where each subject is sampled by

drawing two chromosomes randomly from the phased haplotypes

from the relevant HapMap population, and the phenotype status

assigned as a binomial draw with probability given by the pene-

trance associated with the genotype at the focal SNP. This method

of simulating cases and controls maintains the empirical LD

structure observed in the actual HapMap samples. We subse-

quently mask the focal SNP and identify the SNP in CEU that

carries the strongest association signal that was also typed in the

CHB+JPT samples. Consequently, we compared the statistical evi-

dence of this ‘‘indirect-associated’’ SNP across the CEU and

CHB+JPT samples.

Web resources

Information on established structural variants was obtained from

the Database of Genomic Variants (http://projects.tcag.ca/variation/

tableview.asp?table=DGV_Content_Summary.txt) maintained by

the Center for Applied Genomics, Department of Genetics and

Genomic Biology, MaRS Center, Toronto, Canada. The database in

Build 35 (hg17) coordinates was used.

Results
We first investigated whether the size of the window used affects

the outcome of the genome-wide comparison, by considering four

separate genome-wide comparisons between the HapMap CEU

and WTCCC 58C samples with the window size L set at 25, 50, 100,

and 200 SNPs, respectively. We observed that the size of the win-

dow can affect the resolution of the boundaries of the regions, and

the sensitivity toward identifying smaller regions. In particular,

signals near the 95th quantile that correspond to smaller regions

are more sensitive to window sizes. However, the top regions that

are identified are consistent across the window sizes (Fig. 1). The

robustness of the top signals to the variation in the window sizes is

reassuring, and we chose a window size of L = 50 for all subsequent

analyses.

Our analysis identifies regions where the extent of variation

in LD between two populations is greater than in the rest of the

genome. Owing to the use of consecutive windows in our ap-

proach for comparing regional LD, we observed that the sharpness

of the varLD signals depends on the SNP density in each region.

Comparisons between the HapMap populations, which genotyped

in excess of 3 million polymorphisms, therefore yielded sharper

and narrower regions of differences in comparison to analysis in-

volving the Gambian and WTCCC samples, which assayed only

half a million polymorphisms.

Haplotype frequency and varLD

One of the consequences for the presence of different dominant

haplotypes between populations is the possibility that patterns of

LD will differ between these populations. Here, we define a domi-

nant haplotype in a population as the most common haplotype

that is seen in this population. We undertook a survey of the dif-

ferences in haplotype frequencies in 300 randomly selected re-

gions that have been identified to be in the top fifth percentile in

our comparison between the HapMap CEU and HapMap CHB+JPT

samples. For each of these regions, we also randomly selected

a region across the genome that spans the same physical distance

and evaluated the haplotype frequencies observed in CEU and

Genome-wide comparisons of LD
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CHB+JPT. The dominant haplotype in CEU in each of these regions

is identified, and the absolute difference in the frequencies of this

haplotype in CEU and CHB+JPT is calculated. Comparing against

the evidence from varLD in each region, we observed a significant

correlation between the standardized varLD scores and the abso-

lute difference in haplotype frequencies (Pearson’s correlation

coefficient = 0.25, P = 5.1 3 10�10), where every unit increase in

the standardized varLD score results in an expected increase of

0.018 (95% CI: 0.013 � 0.024) in the difference of the haplotype

frequencies. This indicates that, for the most common haplotype

seen in CEU, there is a greater disparity in the frequency of this

haplotype between CEU and CHB+JPT in regions with stronger

evidence of LD variation.

An example where identified regions

of LD variation corresponded with estab-

lished literature of haplotypic differences

is in the region encapsulating the NRG1

gene. This region was identified in com-

parisons between the HapMap pop-

ulations, but not in comparisons between

the Gambian and YRI, or between CEU

and WTCCC 58C (Fig. 2; Supplemental

Fig. 2). A specific haplotype in the NRG1

gene was implicated in schizophrenia

in haplotype-based and fine-mapping

studies conducted in Icelandic and

Scottish populations (Stefansson et al.

2002, 2003). This association, however,

was not replicated in the Han Chinese

(Zhao et al. 2004), and separate studies

with both microsatellite markers and SNPs

in the NRG1 gene identified different

haplotypes to be associated instead (Li

et al. 2004; Zhao et al. 2004). A detailed

survey of the genetic variation in this gene

across 39 populations revealed allelic and

haplotypic frequency differences that

correlate with geographical regions, par-

ticularly in SNPs located in an intron of

the gene (Gardner et al. 2006). A survey of

the haplotype diversity across this region with the data from the

Human Genome Diversity Panel similarly indicated significant

heterogeneity in the distribution of haplotypes in this region, par-

ticularly between the East Asian and European samples (Supple-

mental Fig. 3; Pickrell et al. 2009). This concurs with our observation

of significant LD variation in this region between the broad conti-

nental areas but not between populations with similar ancestries.

Simulating the portability of association signals

The most important application of a method for assessing LD var-

iation between populations is in addressing the portability of any

signals of phenotypic association across these populations. In the

Figure 1. Comparisons across different window sizes L. Comparisons of the standardized scores for regions identified in our analysis of LD differences
between HapMap CEU vs. WTCCC 58C with different numbers of SNPs in each window. Four separate analyses were run with L = 25, 50, 100, and 200
SNPs, respectively, where comparisons were made against the regions identified with L = 50. For each of the regions identified for L = 50, we noted the
maximum standardized varLD scores in this region in the analyses with L = 25 (A), 100 (B), and 200 (C ). Each point in the figures represents a region
identified in the original analysis with L = 50. The size and shade of each point indicates the relative size of the region, with larger circles and darker shades
of gray indicating larger regions. (Black shading) Regions with sizes >500 kb.

Figure 2. LD variation at the NRG1 gene on chromosome 8. (Upper panel) Standardized varLD scores
across the region encapsulating the NRG1 gene. (Red points) LD comparisons between HapMap
Europeans (CEU) and HapMap Asians (CHB and JPT); (purple points) LD comparisons between HapMap
Europeans (CEU) and HapMap Africans (YRI); (cyan points) LD comparisons between HapMap Africans
(YRI) and HapMap Asians (CHB and JPT). (Dotted lines) Values of the corresponding thresholds. (Middle
panel) Fine-scale recombination rates in the region from the combined HapMap samples. Positions of
genes in the region shown in the bottom panel were obtained from Ensembl. All coordinates shown are
in NCBI Build 35 (dbSNP build 125).
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above simulations with the HapMap CEU- and CHB+JPT-phased

haplotypes, we modified the procedure to artificially introduce

a disease effect at a focal SNP that we subsequently masked from

the association analysis (see Methods). We can thus additionally

investigate whether the neighboring SNP that carries the strongest

association signal in the CEU samples will similarly exhibit a sig-

nificant association signal in the CHB+JPT samples. This simula-

tion exercise is akin to the popular approach where the phenotype-

associated SNPs that emerged from a genome-wide scan performed

in a European population are typed in other populations around

the world to assess the replicability of the initial findings. Repli-

cating an association across diverse populations fundamentally

relies on the existence of similar patterns of LD between the un-

known causal variants and the genotyped SNPs, and we expect

greater inconsistencies in replication success in genomic regions

where patterns of LD are more dissimilar across populations. In our

assessment of the same 300 regions identified by varLD in the

comparison between CEU and CHB+JPT, we noticed that there was

considerably greater variability in the statistical evidence observed

at the same SNP across the two populations (Fig. 3A), compared

with the 300 matched regions randomly selected across the ge-

nome where there was less variation in the association signal at the

same SNP in the two populations (Fig. 3B).

An example where patterns of LD differ between the causal

variant and the surrounding markers across populations can be

found at the hemoglobin beta (HBB) gene region, which encapsu-

lates the locus (rs334) that causes sickle cell anemia and confers

protection against malaria. This region forms a useful case study for

investigating the effects of interpopulation LD variation on the

portability of association signals since the underlying causal variant

is actually known. In a recent genome-wide survey on the genetic

etiology of severe malaria in the Gambia, the SNP on the Affymetrix

500K array carrying the strongest association signal in the HBB re-

gion is most correlated with rs334 with an LD of r2 = 0.32. This SNP,

however, has negligible LD in the HapMap YRI samples (r2 = 0.009)

(Jallow et al. 2009), and any attempts to reproduce the association in

Yoruba samples by typing this identified SNP will not result in

a successful replication experiment. Conversely, the SNP with the

strongest LD with rs334 in the Yoruba samples (r2 = 0.35) failed to

exhibit any indication of malaria association, since the LD with the

causal variant in the Gambian samples was only r2 = 0.005. This

illustrates the consequence that variation in patterns of LD between

populations can have on replication studies that are executed across

different populations. In our comparison of LD between samples

from the Gambia and the HapMap African data, the HBB region

surrounding rs334 was identified to contain significant LD differ-

ences in the top fifth percentile of the genome-wide distribution,

indicating a greater degree of variation compared with the rest of

the genome. In particular, the LD in this region was also identified to

be considerably different when comparing the HapMap Yoruba

samples to the HapMap East Asian and European populations (see

Fig. 5, below).

Top signals of LD variation

Genome-wide exploration across multi-

ple population pairs identified 88 regions

where signals of significant LD variations

were observed in all five pairs of com-

parisons, of which the majority (75 out of

88) corresponded to regions that encap-

sulate reported copy number variants. In

particular, 16 of the top 20 candidate

regions with the strongest signals of LD

variation contain copy number differ-

ences in multiple populations across

Europe, East Asia, and African Yoruba

(Table 1; Supplemental Fig. 4). Perhaps

not surprisingly, one of these 20 regions

contains the highly polymorphic HLA

gene cluster in class II of the major his-

tocompatibility complex (MHC), while a

region that does not overlap with known

structural variants contained an olfactory

receptor gene cluster (OR10Z1, OR6K2,

OR6K3, OR10K2, OR10T2, OR10X1) on

chromosome 1. We observed that one of

the signals spans the region on chromo-

some 12 reported to be associated with

Type 1 diabetes (The Wellcome Trust Case

Control Consortium 2007) containing

the candidate gene PTPN11 implicated in

myeloid leukemia (Tartaglia et al. 2003;

Bentires-Alj et al. 2004), and insulin and

immune signaling (Mustelin et al. 2005).

In the analyses between the HapMap

populations, we observed a consistent

trend that regions containing structural

Figure 3. Differences in statistical evidence at the associated SNP in CEU and CHB+JPT. Comparison
of the �log10 P-value from a test of association between 2000 simulated cases and 2000 simulated
controls at an associated SNP in each of the HapMap CEU and CHB+JPT populations. For each SNP, the
larger �log10 P-value is set as the baseline and is mapped to zero, and we only plot the difference of the
�log10 P-values. The regions are then ranked from left to right by increasing the degree of the difference
in statistical evidence between CEU and CHB+JPT. (A) Three hundred randomly selected regions that
have been identified by varLD to be in the top fifth percentile of the genome-wide distribution. (B) Three
hundred regions that have been randomly selected across the genome, where each region spans an identical
physical distance to one of the 300 varLD-identified regions from A. (Green circles) Differential statistical
evidence observed in the CEU; (red circles) differential statistical evidence observed in the CHB+JPT.
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variations in the top 20 signals for each comparison carry copy

number differences in at least one of the two targeted populations

(Supplemental Tables 1–3). Regions identified between CEU and

the HapMap East Asian (CHB+JPT) samples contain the pro-

gesterone receptor (PGR), the G-protein-coupled receptor gene

(GPR74), and the region containing the solute carrier family 24

member 5 (SLC24A5) (Supplemental Table 1). The top signals be-

tween CEU and YRI not containing structural variants include the

breast carcinoma amplified sequence 3 (BCAS3) gene containing

a functional estrogen response element, the X-prolyl aminopep-

tidase (XPNPEP1) gene important in the digestion of resistant di-

etary protein, and a member of the calcium-binding protein

superfamily (NCALD) that has been suggested to be vital in the

regulation of the process of neuronal signal transduction (Sup-

plemental Table 2). For the signals between YRI and the JPT+CHB

not involving structural variants, we identified the mitochondrial

ribosomal protein S18C (MRPS18C) that contains an element

of the mitochrondrial ribosome in the nuclear genome, the

Table 1. Top 20 candidate regions with overlapping signals of LD differences in all five sets of comparison madea

Region
Chr: start–end
(Mb, HG17) Genes in region

CNV
region

Details
(typeb, populationc)

1 chr1: 72.36–73.75 NEGR1 Yes Copy number differences, multiple
global populations (CEPH, Canadian,
French, German, Chinese, Japanese,
Yoruba samples, HapMap samples)

2 chr1: 149.03–149.87 SPRR1A, SPRR1B, SPRR2A,
SPRR2B, SPRR2D, SPRR2E,
SPRR2F, SPRR2G,SPRR3, HRNR

Yes Copy number differences, multiple global
populations (CEPH, Canadian, French,
German, Chinese, Japanese, Yoruba samples,
HapMap samples, 36 diverse human samples)

3 chr1: 155.12–155.44 SPTA1, CD1A, CD1B, CD1C, CD1E,
OR10Z1, OR6K2, OR6K3, OR10K2,
OR10T2, OR10X1

No —

4 chr2: 40.79–41.73 — Yes Copy number differences, multiple global
populations (French, German, HapMap
samples, 36 diverse human samples,
HapMap-CEU)

5 chr2: 44.41–44.92 SLC3A1, PPM1B, PREPL No —
6 chr2: 56.36–57.42 CCDC85A Yes Copy number differences, multiple global

populations (Canadian, German, Chinese,
Japanese, Yoruba samples, HapMap samples,
HapMap-CEU)

7 chr2: 72.72–75.24 TACR1 Yes Copy number differences, multiple global
populations (CEPH, German, Chinese,
Japanese, Yoruba samples, HapMap
samples, HapMap-CEU)

8 chr2: 98.28–99.44 TXNDC9, REV1, MRPL30 Yes Copy number differences, multiple global
populations (Canadian, German, HapMap
samples, HapMap-CEU)

9 chr2: 116.84–117.52 — Yes Copy number differences, HapMap and
German samples

10 chr3: 95.74–97.51 — Yes Deletions, HapMap and 36 diverse
human samples

11 chr4: 73.15–73.95 — Yes Deletions, HapMap samples
12 chr5: 101.93–102.72 SLCO6A1 No —
13 chr5: 129.79–131.61 PDLIM4, P4HA2, SLC22A4 Yes Deletions, HapMap samples
14 chr6: 32.41–32.99 HLA-DMA, HLA-DMB, PSMB9, BRD2,

BTNL2, TAP1, PSMB8, TAP2,
HLA-DOA, HLA-DOB,M38056

Yes Copy number differences, HapMap and
French samples

15 chr6: 109.53–110.75 SESN1, DDO, CDC40, Yes Deletions, multiple global populations
(French, HapMap, and 36 diverse
human samples)

16 chr8: 50.47–51.43 SNTG1 Yes Copy number differences, multiple global
populations (CEPH, German, Chinese,
HapMap samples, HapMap-CEU)

17 chr10: 23.81–24.23 OTUD1 No —
18 chr10: 58.22–58.68 — Yes Copy number differences, multiple global

populations (German, Chinese, HapMap
samples, HapMap-CEU)

19 chr12: 108.96–111.37 ANKRD13, PTPN11, RPL6,
GIT2, CDV1, IFT81

Yes Copy number differences, multiple global
populations (CEPH, HapMap, and 36 diverse
human samples)

20 chr14: 58.69–60.63 DAAM1, SLC38A6 Yes Deletions, multiple global populations
(German, Yoruba samples, HapMap samples)

aCEU–CHB+JPT; CEU–YRI; CHB+JPT–YRI; CEU–WTCCC 58C; Gambian Jola–YRI.
bCopy number differences refer to the occurrence of both insertions and deletions.
cCEPH/Chinese/Japanese/Yoruba samples: Kidd et al. (2008); German: Pinto et al. (2007); HapMap samples: Conrad et al. (2006), McCarroll et al. (2006),
Redon et al. (2006), Pinto et al. (2007); French: de Smith et al. (2007); Canadian Ontario controls: Zogopoulos et al. (2007); HapMap-CEU: Wang et al.
(2008); 36 diverse human samples: Mills et al. (2006).
CNV, copy number variation.
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BRCA-associated ring domain 1 (BARD1) associated with tumor

suppression activities, and the ATP-binding cassette subfamily A

member 12 (ABCA12) gene implicated in epidermal conditions

(Supplemental Table 3).

Four gene clusters were observed in the top 20 signals com-

paring between the Gambian Jola samples and the HapMap Yoruba

individuals (Supplemental Table 4). These include the late cor-

nified envelope (LCE) gene cluster in the epidermal differentiation

complex on chromosome 1, the histone 1 gene family on chro-

mosome 6, the HLA cluster, and the olfactory receptor 4 (OR4)

superfamily cluster on chromosome 11. The strongest signal in this

comparison was observed in the methylthioadenosine phosphor-

ylase (MTAP) gene that has a major function in the metabolism of

polyamine and is implicated in lymphoblastic leukemia. Eleven of

these 20 regions have been reported to carry copy number variants

in at least the Yoruba samples, consistent with the earlier obser-

vations that population-specific copy number variations concur

with signals of interpopulation LD differences. Similarly, 12 of the

top 20 signals in the comparison between the two sets of samples

with European ancestries (HapMap CEU and WTCCC 58C) are

found in regions containing copy number differences that have

been reported in European populations (Supplemental Table 5).

The signals that do not overlap with known copy number variants

include regions that encompass the olfactory receptor cluster on

chromosome 1 discussed above; the solute carrier family 3 member

1 (SLC3A1), whose protein products have been shown to be in-

volved in cystine, dibasic, and neutral amino acid transport; and

the glutamate receptor metabotropic 3 (GRM3) gene involved in

presynaptic inhibition of glutamate release.

LD variation and positive natural selection

Genomic regions experiencing strong forces of positive selection

can yield haplotypic backgrounds that are substantially different

across diverse populations (Sabeti et al. 2007), as the haplotype on

which the selected allele sits on is expected to dominate. One

possible implication of such haplotypic differences between pop-

ulations is the existence of significant variations in the patterns of

LD in these regions. We thus expect regions where selection pres-

sure exists in one particular population but not the others to

present strong evidence of LD differences. Two well-known regions

that have undergone strong evolutionary pressure in specific

populations are the LCT and DARC genes, which serve as useful

examples to illustrate where the conventional reliance on visual

tools like heatmaps (The International HapMap Consortium 2007;

The Wellcome Trust Case Control Consortium 2007) for qualifying

the extent of variation between LD patterns between two pop-

ulations can be subjective (Fig. 4). Our analysis with the described

Figure 4. Heatmap representations of LD in two genomic regions between pairs of populations in HapMap. The upper left and lower right triangles of
each plot correspond to the LD in a region for each of two populations, respectively, as measured by the pairwise r 2 metric, with the plots in the first column
comparing HapMap Europeans with HapMap Asians, the second column comparing HapMap Europeans with HapMap Africans, and the last column
comparing HapMap Africans with HapMap Asians. The plots in the first row depict the same genomic region on chromosome 2 of 136.26 Mb–136.38 Mb
spanning the LCT gene, while the plots in the second row depict the genomic region on chromosome 1 of 155.9 Mb–156.0 Mb spanning the DARC gene.
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permutation strategy (see Methods) cor-

rectly indicated the regional LD of SNPs

in the LCT gene to be significantly dif-

ferent between Europeans and Asians

(P < 0.0001), and between Europeans

and Africans (P < 0.0001), but less so

between Asians and Africans (P = 0.145).

This concurred with the evidence that the

LCT gene underwent positive natural se-

lection in European populations where

dairy products form an integral compo-

nent of the diet, conferring the ability to

metabolize lactose to persist into adult-

hood (Bersaglieri et al. 2004; Sabeti et al.

2006). Appropriately, at the DARC gene

containing the Duffy antigen that swept

to fixation in the African continent

(Hamblin and Di Rienzo 2000; Hamblin

et al. 2002), significant LD differences

were observed when comparing the Yor-

uba samples against either the Europeans

(P < 0.0001) or the Asians (P < 0.0001), but

not between the Europeans and Asians

(P = 0.528).

In addition to the analyses above, we

also illustrated the use of our genome-

wide approach in four well-known re-

gions that contain significant haplotype

diversity or are subjected to strong evo-

lutionary pressure. These regions are: (1)

the LCT gene introduced above and (2)

the SLC24A5 gene that has been selected

in the European population for skin

pigmentation (Lamason et al. 2005), in

both of which, we expect LD variations

between Europeans (CEU) and non-

Europeans (CHB+JPT and YRI; Fig. 5A,B);

(3) the HBB region where evolutionary

pressure on the sickle-cell mutation re-

sulted in the rising of different haplotypic

backgrounds in the Gambia (the Senegal

haplotype) and Nigeria (the Benin haplo-

type) (Hanchard et al. 2007; Daily and

Sabeti 2008); thus, we expect LD varia-

tions between the two African popu-

lations and between YRI and the non-

African HapMap populations (Fig. 5C);

and (4) the highly polymorphic MHC

region (de Bakker et al. 2006b), where we

expect LD variations to be present in

all our pairwise population comparisons

(Fig. 5D). These regions appropriately ex-

hibit strong evidence of LD variations

between the relevant population pairs

considered. In addition to the four estab-

lished regions of positive natural selection,

we also cross-referenced the genomic regions identified by our

approach with the 20 top candidates for positive selection in the

HapMap populations (Sabeti et al. 2007). Of these regions, 17

contained varLD signals in the top fifth percentile, of which eight

are located in the top percentile of the distribution (Table 2; Sup-

plemental Fig. 5). Four of these regions were located in the top 0.1

percentile of the distribution, including the region encapsulating

SLC24A5. Our findings for some of these regions experiencing

selection pressure in two populations appropriately indicated that

regional LD was not significantly differentiated in both selected

populations but was dissimilar against the third population,

suggesting the same selection forces may have acted on both

Figure 5. Standardized varLD scores across different population pairs in established regions un-
dergoing positive natural selection or containing high haplotype diversity. The standardized varLD
signals for each population pair are shown, and only scores above their respective 95th quantiles are
illustrated in a nongray color. (Red points) LD comparisons between HapMap Europeans (CEU) and
HapMap Asians (CHB and JPT); (purple points) LD comparisons between HapMap Europeans (CEU) and
HapMap Africans (YRI); (cyan points) LD comparisons between HapMap Africans (YRI) and HapMap
Asians (CHB and JPT); (green points) LD comparisons between two European populations (HapMap
CEU vs. WTCCC 58C); (blue points) LD comparisons between two African populations (HapMap YRI vs.
the Gambian Jola). The four regions considered contain the LCT gene in chromosome 2 undergoing
selection in European populations (A), the SLC24A5 gene in chromosome 15 reported for association
with skin pigmentation in Europeans (B), the HBB gene in chromosome 11 with well-documented
haplotypic differences between the two populations considered (C ), and the highly polymorphic MHC
region in chromosome 6 (D). (Dotted lines) Approximate start and end positions of the gene/region in
each panel.
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populations (for example, 22.55 Mb–22.85 Mb on chromosome

10). The agreement between fundamentally different approaches

to assess genomic diversity is reassuring, as this provides indepen-

dent evidence that these regions may be functionally significant.

Discussion
We have introduced a novel method for performing genome-wide

comparisons of LD between populations, and have applied the

method to the HapMap populations and two other populations

with African and European ancestries, respectively. Using our ap-

proach, we observe a significant correlation in the evidence of

LD variation with the degree of disparity in the frequencies of the

common haplotypes between two populations. Regions identified

in our analyses to contain variation in regional patterns of LD also

exhibited greater differences in the replication signal when at-

tempting to reproduce the primary association in a different

population. In the absence of genome-wide data for comparisons,

we have introduced a permutation scheme that quantitatively

assesses the degree of LD variation between two populations. This

produces a statistical significance for testing the null hypothesis

that the LD patterns in the region are identical between the two

populations. We have illustrated the use of this permutation

scheme in two well-established genomic regions with diverse

haplotypic structure between global populations.

To minimize false-positive associations identified in genome-

wide disease studies, it is necessary to replicate the findings in an

independent cohort within the same population or in other pop-

ulations (Chanock et al. 2007). A number of possible explanations

exist when phenotype–genotype associations identified in one

population fail to replicate in another population. Assuming that

the initial association was not a false-positive result and the same

functional variant exists across populations, the inability to re-

produce the finding across other populations is most likely due to:

(1) lower frequencies of the functional allele in the different pop-

ulations; (2) underlying differences in environmental influences

underpinning a complex gene–environmental effect; (3) varia-

tions in patterns of LD between the functional variants and the

assayed polymorphisms. The third explanation can even con-

found replication candidate gene studies with large sample sizes

leading to low statistical power, as the associated polymorphism is

simply not in sufficiently strong LD with the functional poly-

morphism in a different population to present any evidence of

replicated association (Teo et al. 2009). Knowledge of the extent of

LD differences around the functional polymorphisms can thus be

valuable when attempting to replicate disease associations across

populations. As varLD utilizes regional patterns of LD to identify

variations across populations, it does not require the functional

polymorphism to be assayed when calculating varLD scores, as

long as the extent of LD with surrounding markers is sufficiently

long relative to the density of the genotyped SNPs. Given the

popularity of genome-wide strategies in disease studies, we foresee

that the assessment of LD variation between disparate populations

will become increasingly common when confronted with con-

flicting evidence of disease association.

One important consequence of disparities in patterns of LD

between two populations is the effect on imputation strategies that

use the haplotypic framework from a reference population to infer

probabilistically the genotypes of the unobserved SNPs in a target

population (Marchini et al. 2007; Servin and Stephens 2007).

While these strategies can yield improved power in disease

association studies, they generally rely on the assumption that the

structure of genetic correlation and recombination is similar across

the two populations. For regions where the LD structure in the

reference panel does not reflect that in the target population, im-

putation may not produce a set of confident genotypes. We ex-

plored the relationship between the evidence from varLD and the

diagnostics generated from a well-calibrated imputation algorithm

Table 2. Distribution of varLD scores for the 20 autosomal candidate regions with strongest signals for natural selection in the HapMap
populations

Region
Chr: start–enda

(Mb, HG17)
Reported selected

population
Comparison
population

Genes in or
near regiona

Top percentile for
varLD score

1 chr1: 165.8–166.2 CHB+JPT CEU, YRI BLZF1, SLC19A2 10.70, 6.78
2 chr2: 72.2–73.0 CHB+JPT CEU, YRI — 4.30, 6.93
3 chr2: 108.2–109.2 CHB+JPT CEU, YRI EDAR 0.98, 2.56
4 chr2: 134.9–137.3 CEU CHB+JPT, YRI RAB3GAP1, R3HDM1, LCT 0.71, 0.65
5 chr2: 177.3–178.5 CEU CHB+JPT, YRI PDE11A 0.04, 1.21
6 chr4: 33.05–34.75 CEU CHB+JPT, YRI

—
1.19, 0.13

CHB+JPT YRI 0.02
YRI — —

7 chr4: 41.85–42.15 CHB+JPT CEU, YRI — 4.96, 8.61
8 chr4: 158.85–159.15 CHB+JPT CEU, YRI — 3.27, 3.67
9 chr10: 2.85–3.15 CEU CHB+JPT, YRI — 1.55, 0.80
10 chr10: 22.55–22.85 CEU CHB+JPT, YRI

—
37.11, 0.18

CHB+JPT YRI 0.82
11 chr10: 55.5–55.9 CHP+JPT CEU, YRI PCDH15 5.15, 0.45
12 chr12: 77.9–78.7 YRI CEU, CHB+JPT — 1.21, 6.32
13 chr15: 46.1–46.7 CEU CHB+JPT, YRI SLC24A5 <0.01, 0.04
14 chr15: 61.7–61.9 CHB+JPT CEU, YRI HERC1 0.32, 2.68
15 chr16: 64.1–64.5 CHB+JPT CEU, YRI — 3.47, 3.77
16 chr16: 74.0–74.6 CHB+JPT, YRI CEU CHST5, ADAT1, KARS 4.42, 12.03
17 chr17: 53.2–53.4 CHB+JPT CEU, YRI — 17.18, 18.35
18 chr17: 56.2–56.6 CEU CHB+JPT, YRI BCAS3 7.16, <0.01
19 chr19: 43.35–43.65 YRI CEU, CHB+JPT — 17.99, 37.28
20 chr22: 32.3–32.7 YRI CEU, CHB+JPT LARGE 24.53, 3.78

aApproximate coordinates and gene information as reported in Sabeti et al. (2007).
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IMPUTE (Marchini et al. 2007) by using the HapMap African data

(YRI) as a reference panel to impute the data from the Gambia (see

Supplemental material). We observed that, across the genome,

regions identified with substantial LD differences relative to the

genome concurred with greater imputation uncertainty as implied

by lower imputation accuracy, information, and posterior proba-

bilities in assigning genotype calls (Fig. 6). This reinforces the

understanding that the diagnostics of IMPUTE are well-calibrated

and appropriately downweighs the confidence of the genotype

inference in regions with substantial disparities in the patterns of

LD between the reference and target populations. In the absence of

an established strategy for comparing LD, imputation diagnostics

serve as useful surrogates for validating the efficacy of varLD, just

as candidate regions undergoing population-specific positive nat-

ural selection provide empirical regions with putatively different

LD patterns across populations for assessing concordance with the

varLD signals.

The inability to accurately impute and fine-map disease as-

sociation signals using a reference panel that has dissimilar re-

gional haplotype structure to the target population was also clearly

demonstrated in the HBB gene region: The use of HapMap YRI as

the reference to impute the sickle-cell anemia mutation (rs334) in

a case-control study of malaria in the Gambia did not yield any

association, whereas the use of sequence data from the Gambia as

a reference panel correctly imputed and fine-mapped the associa-

tion signal to rs334 directly ( Jallow et al. 2009). Although this is

attributed to the well-known fact that different haplotypic struc-

ture exists in the HBB region between different African populations

(Hanchard et al. 2007), it is unclear how prevalent such in-

terpopulation differences will be across the genome. As imputation

strategies are increasingly being proposed as a tool for fine-mapping,

particularly with the availability of whole genome sequence data

from the 1000 Genomes Project (http://www.1000genomes.org),

it is important to acknowledge that LD differences between the

reference panel and the target population can potentially confuse

the process of localizing the causal variant. While it was recently

established that incorporating reference samples from a mixture

of two or more HapMap populations can improve imputation

performance in non-African populations (Huang et al. 2009), it

was also observed that for African populations there was no sig-

nificant boost in performance beyond that accorded by the use of

just the HapMap YRI as reference. This is not unexpected given

that (1) the HapMap YRI samples consist of 30 trios sampled from

a considerably homogeneous group in Nigeria, which is unlikely

to be representative of the genetic diversity in Africa, and (2) LD is

observed to span a shorter distance in YRI compared with European

and Asian populations. The ability to quantify the extent of LD

variations between populations will undoubtedly be useful in the

context of genome-wide association studies conducted in African

populations, especially since these studies have been postulated

to provide greater success in localizing the functional variants.

As preliminary data from targeted-sequencing studies become

available, it is increasingly evident that the presence of long-range

and high LD that was advantageous for genome-wide association

studies in European populations is instead an impediment for the

localization of the causal variants. The approach of sequencing

a specific region carrying a veritable association signal aims to fine-

map the functional variant by assaying every genetic position in

that region, and subsequently testing each polymorphic position

for correlation with the phenotype. Ideally, the functional variant

will present the strongest association signal, conspicuously over-

shadowing the evidence from neighboring markers. However, in

a population with long-range LD in the implicated region, multi-

ple nearby markers may be in perfect LD with the causal variant,

which results in a plateau of signals of similar magnitude that does

not allow the functional polymorphism to be easily distinguish-

able. Knowledge of which populations contain significantly di-

verse patterns of LD in this region becomes useful, since the

integration of haplotype data and signals from genome-wide scans

across these populations can refine the boundaries within which

the causal variant is expected to lie, and potentially elucidate the

causal SNP from surrogate markers in high LD should the haplo-

type structure across different populations be sufficiently diverse

(Y Teo and E Tai, in prep.). This approach relies on identifying

populations with diverse haplotypes and containing signifi-

cant variations in patterns of LD, which is conceptually distinct

but complementary to the use of imputation strategies for fine-

mapping the causal variant.

The concurrence between top signals of LD differences and

population-specific copy number variants suggests that conven-

tional quantification of LD may be biased and potentially errone-

ous in regions containing these structural variants, particularly

when we observe the same pattern of concurrence with the

HapMap samples. This insight is important in the evaluation of

and the reliance on LD in population genetics and disease scans,

since regions of apparent low LD may be attributed to the presence

of structural variants like insertions and deletions that confound

LD assessment by introducing an overrepresentation of homo-

zygous genotypes. This is certainly true in our observation that

structural variants that concur with signals of LD differences are

almost entirely composed of insertions and/or deletions. Large-

scale genotyping on commercial arrays currently rely on the use of

Figure 6. Imputation diagnostics and standardized varLD scores.
Comparison of the standardized varLD score against imputation diag-
nostics generated by IMPUTE when the HapMap YRI is used as a reference
panel against Gambian Jola data. The imputation algorithm calculates
a measure of information and a confidence score based on the average
maximum posterior probability, which we used as surrogates of impu-
tation accuracy. A composite measure of imputation accuracy as mea-
sured by the product of call rate and genotype concordance is calculated
for the 10 deciles of varLD scores found in the top 20th percentile of the
genome-wide distribution of varLD scores. As concordance is measured as
the proportion of agreement between the imputed and observed geno-
types for the Gambian Jola samples, we only consider autosomal SNPs on
the Affymetrix array that are found in the regions identified by varLD.
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automated and unsupervised calling algorithms to assign geno-

types based on the extent of fluorescence produced by allelic hy-

bridization (Teo et al. 2007; The Wellcome Trust Case Control

Consortium 2007). These algorithms are typically trained to search

for genotype groups with two allelic copies and do not account for

SNPs with variable allelic copy numbers. In regions containing

insertions and deletions, deviation in allelic copy number from the

expected two copies can result in hybridization profiles that either

generates greater missingness or more homozygous genotypes

(Fig. 7). Calculating the LD involving these SNPs will likely bias

the LD statistic.

One practical concern in our implementation of varLD on

comparing patterns of LD between populations is thus the effects

of genotyping errors or data fidelity on the identification of ge-

nomic regions with apparent LD variations, particularly when the

genotype data for one population is of a higher quality (e.g.,

HapMap data) compared with the second population (e.g., from

genome-wide studies using commercial genotyping technologies).

The presence of a SNP affected by genotyping error serves to break

down LD between itself and surrounding markers, which can in-

troduce artificial signals of LD differences. In a simulation study to

investigate the effects of genotyping errors on the sensitivity of

varLD (see Supplemental material), we found that the presence of

SNPs with confounded genotyping can introduce artificial signals

of LD differences, particularly when genotyping problems affect

contiguous stretches in the genome (Supplemental Table 6). While

genotyping errors at a SNP have minimal effect in yielding large

varLD signals, a conservative approach of quality checking the

genotype data prior to analysis is strongly recommended. When

data sets of multiple populations are available, observing over-

lapping signals from multiple comparisons across different pop-

ulations also serve to minimize the possibility of artifacts due to

genotyping issues.

While genotyping errors stemming from the presence of

common copy number polymorphisms can explain the varLD

signals that are consistently present in comparisons between

multiple pairs of populations, genomic regions undergoing strong

evolutionary pressure of adaptation and selection may also con-

tain population-specific haplotype structure that results in diverse

patterns of LD variations between different groups. The identifi-

cation of the HLA-gene cluster in the MHC region is reassuring,

since in the absence of any established methods for addressing

LD variation, established genomic regions containing significant

haplotype diversity across populations or undergoing population-

specific positive natural selection provide useful surrogates for

validating the method. Conversely, this may also suggest that

the consistent identification of a particular genomic region across

multiple comparisons may indicate substantial evolutionary pres-

sure acting differentially across the populations considered. For

example, the olfactory receptor gene cluster on chromosome 1 may

potentially be attributed to different adaptive pressure to discrimi-

nate odors encountered in different diets and environments.

Our method for performing genome-wide comparisons of LD

prioritizes the regions that are located at the tail end of the distri-

bution of varLD scores, which is similar to the approach adopted by

popular techniques for detecting signatures of natural selection

(Sabeti et al. 2006, 2007; Voight et al. 2006). It is important to rec-

ognize that such a strategy identifies regions that are more differ-

entiated relative to the rest of the genome, but does not necessarily

imply the existence of LD variations that are biologically significant.

It is therefore advisable to interpret these genomic regions as

candidate regions of LD variations, similar to the candidate in-

terpretation of positive selection signals with the use of the in-

tegrated haplotype score (iHS) (Voight et al. 2006) or the extended

haplotype homozygosity (EHH) metric (Sabeti et al. 2006, 2007).

Our analysis has investigated the differences in LD patterns

between the HapMap populations and two other populations with

around half a million polymorphisms. While significant differ-

ences in LD are expected to be less prevalent between European

populations, comparisons between populations with longer evo-

lutionary history (for example, in the African continent) continue

to be an area of great interest, particularly in the use of African

cohorts for fine-mapping candidate regions with disease associa-

tions. Analytical strategies that localized regional differences in LD

across populations will benefit disease

studies when extrapolating findings to

other populations, especially as more

genome-wide data, together with the data

from the third phase of the HapMap, be-

come publicly available. Meta-analyses of

genome scans for the same diseases across

different cohorts, in particular across dif-

ferent ethnic populations, will be greatly

enhanced by first understanding the ex-

tent of LD differences in candidate regions

between these cohorts, since true associa-

tion signals can be weakened in the pres-

ence of significant variations in regional

LD when the underlying causal variants

exist on different haplotypic backgrounds.

The next phase of genetic studies will

aim to progress beyond identifying asso-

ciations to establishing the causal mech-

anisms of a disease. This is where the

ability to quantify LD variation between

populations will be particularly relevant

when amalgamating findings from mul-

tiple genome-wide scans of the same

disease.

Figure 7. Genotype assignment and hybridization intensity profiles of a SNP in a region containing
deletions. The two axes represent the fluorescence intensities that indicate the extent of hybridization
to the two possible alleles of a biallelic SNP, which have been generically defined as alleles A and B. Solid
circles in red, green, blue, and gray indicate samples whose genotypes have been assigned as AA, AB, BB,
and NULL (missing), respectively. (Dashed ellipses) Intensity profiles that correspond to homozygous
deletion (gray), hemizygous A deletion (light green), hemizygous B deletion (purple), genotype AA
(red), genotype AB (dark green), and genotype BB (blue). The figure illustrates that samples with
hemizygous deletions have been erroneously assigned to homozygous genotypes, while samples with
homozygous deletions have been classified as missing.
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