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Elementary modes represent a valuable concept in the analysis of metabolic reaction networks. However, they can only be
computed in medium-size systems, preventing application to genome-scale metabolic models. In consequence, the analysis
is usually constrained to a specific part of the known metabolism, and the remaining system is modeled using abstractions
like exchange fluxes and external species. As we show by the analysis of a model of the central metabolism of Escherichia coli
that has been previously analyzed using elementary modes, the choice of these abstractions heavily impacts the pathways
that are detected, and the results are biased by the knowledge of the metabolic capabilities of the network by the user. In
order to circumvent these problems, we introduce the concept of elementary flux patterns, which explicitly takes into
account possible steady-state fluxes through a genome-scale metabolic network when analyzing pathways through a sub-
system. By being similar to elementary mode analysis, our concept now allows for the application of many elementary-
mode-based tools to genome-scale metabolic networks. We present an algorithm to compute elementary flux patterns and
analyze a model of the tricarboxylic acid cycle and adjacent reactions in E. coli. Thus, we detect several pathways that can be
used as alternative routes to some central metabolic pathways. Finally, we give an outlook on further applications like the
computation of minimal media, the development of knockout strategies, and the analysis of combined genome-scale
networks.

[Supplemental material is available online at http://www.genome.org. All data and an application to compute elementary
flux patterns are available online from http://hades.bioinf.uni-jena.de/;m3kach/EFPA/.]

In functional genomics and metabolic engineering, metabolic

pathway analysis has proved to be a very useful methodology

(Carlson et al. 2002; Schwender et al. 2004; Feist and Palsson 2008;

Trinh et al. 2009). Elementary modes (Schuster et al. 2000) are a

central concept in this field. An elementary mode represents a

minimal set of reactions that can operate at steady state with all

reactions proceeding in their appropriate direction (Schuster et al.

2000) and, hence, can be considered as a formal definition of a

metabolic pathway. Elementary modes have been used in many areas

of biotechnology, such as assessing network flexibility (Stelling

et al. 2002), finding pathways with optimal yields for certain met-

abolic species (Schuster et al. 2002a; Krömer et al. 2006), finding

possible targets for the engineering of metabolic networks (Klamt

2006), and analyzing the effect of such an engineering (Carlson

et al. 2002; Schwender et al. 2004). Due to the growing availability

of genome-scale metabolic networks (Duarte et al. 2004, 2007;

Borodina and Nielsen 2005; Thiele et al. 2005; Feist et al. 2006,

2007; Jamshidi and Palsson 2007; Oh et al. 2007) and the com-

prehensive analysis conducted on them (for review, see Feist and

Palsson 2008), it becomes desirable to apply elementary mode

analysis in such networks.

However, the principal problem encountered when trying to

compute elementary modes in larger metabolic networks is that

their number is growing exponentially with network size (Klamt

and Stelling 2002; Schuster et al. 2002b; Acuña et al. 2009). Thus,

they become difficult to analyze or even impossible to enumerate

because of constraints in memory or computation time. Although

there have been recent efforts to port the algorithms for the com-

putation of elementary modes to larger networks by means of

parallelization (Klamt et al. 2005) or improvements of the existing

algorithms (von Kamp and Schuster 2006; Terzer and Stelling

2008), none of these algorithms permits the analysis of elementary

modes in genome-scale metabolic networks.

In consequence, elementary mode analysis is applied to smaller

networks containing reactions of interest rather than the entire

known system. The remainder of the system is modeled using

abstractions like exchange fluxes and external metabolites. Ex-

change fluxes correspond to the production or consumption of a

species by a large set of reactions of the remaining model. External

species, in contrast, are considered to be buffered by reactions of

the complete system. Hence, they are excluded from the steady-

state condition. However, as we show in this study, there are three

important drawbacks involved in the introduction of such ab-

stractions (cf. Liebermeister et al. 2005).

First, the approach is usually biased by the modeler’s knowledge

of the network. For instance, glycolysis and pentose phosphate

pathways are usually considered the principal routes for the supply

of metabolites from glucose in the growth media to the tricar-

boxylic acid (TCA) cycle. Thus, the Entner–Doudoroff pathway—

which represents an alternative route for the production of

pyruvate in several bacteria—is often ignored even though it is of

importance in some conditions (Fischer and Sauer 2003; Li et al.

2006). In consequence, some of the possible pathways of a large

network through a subnetwork are not found by elementary mode
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analysis (Fig. 1A). Second, the aforementioned abstractions might

not be able to take into account the dependencies between the

production and consumption of metabolites that constitute the

interface of the subnetwork to the remaining system. This can

give rise to elementary modes that obey the steady-state condition

within the subnetwork but are not part of any steady-state flux

through the entire network (Fig. 1B,C). Third, by only focusing on

a small part of the known network, the integration of a pathway

through this subnetwork into a pathway on the scale of the entire

system is not straightforward, and the interdependencies between

the pathways of several subsystems cannot be analyzed (Fig. 1D).

The concept of ‘‘elementary flux patterns’’ that we introduce

in this study circumvents these problems by taking into account

the possible fluxes through the entire network, when analyzing

the steady-state fluxes through a subnetwork. An elementary flux

pattern is defined as a set of reactions within a subsystem of a larger

network that represents the basic routes of each steady-state flux of

the larger network through the subnetwork. Thus, flux modes in

a subsystem can be determined that are feasible in the context

of the entire genome-scale system. Through their definition, ele-

mentary flux patterns allow a consistent application of concepts

from elementary mode analysis to genome-scale metabolic net-

works without the drawbacks that arise by the definition of ex-

ternal species or exchange fluxes. Furthermore, each elementary

flux pattern can be mapped to at least one elementary mode in the

complete system, even allowing the user to analyze pathways on

the genome scale.

This article is sectioned into three main parts. First, we will

introduce elementary flux patterns and an algorithm to compute

them. Subsequently, we apply this concept to a genome-scale

metabolic network of Escherichia coli. Then we discuss our results

and give an outlook on further applications of elementary flux

patterns.

Methods
Next, we will formally introduce the concepts central to this study.

We start by giving a short introduction to elementary mode anal-

ysis. This is followed by a definition of elementary flux patterns

and the outline of an algorithm to compute them. Subsequently,

we compare our method to other approaches for pathway analysis

in genome-scale metabolic networks.

A metabolic network comprising n reactions and m metabo-

lites is defined by the m 3 n stoichiometric matrix M. An entry Mij

of M is negative if species i is an educt of reaction j and positive if it

is a product. Since elementary flux patterns are defined within

a subsystem of k reactions of the entire system, we assume for

simplicity that the k first columns of M (i.e., the k first reactions)

constitute the subsystem.

Elementary modes

Elementary modes represent minimal sets of reactions that can

operate at steady state with all reactions proceeding in thermo-

dynamically feasible directions (Schuster et al. 2000). They are

minimal in the sense that there is no subset of reactions that could

also operate at steady state.

Formally, an elementary mode is a flux vector v of length n

that assigns a flux to each reaction, such that

M � v = 0: ð1Þ

Furthermore, v has to obey the thermo-

dynamic constraints of the reactions; that

is, if reaction i is irreversible, vi has to be

non-negative. To simplify the analysis,

we adopt the widely used procedure of

splitting reversible reactions into forward

and backward directions. Thus, the irre-

versibility constraint becomes

v $ 0: ð2Þ

A flux mode v is called elementary if there

exists no flux mode v9 that uses a proper

subset of the reactions of v (Schuster et al.

2000).

Through the concept of elementarity,

the set of elementary modes of a reaction

network and their superposition describe

all of the possible steady states of this net-

work. That is, each steady state can be

written as a non-negative linear combi-

nation of elementary modes. As men-

tioned above, the analysis with elementary

modes can be further simplified by the

introduction of external species. External

species are considered to be buffered by

reactions outside of the model. Thus, the

steady-state condition can be relaxed by

removing the rows corresponding to ex-

ternal species from the stoichiometric

matrix M in condition 1. This describes

also the major problem when defining

Figure 1. Examples for problems in elementary mode analysis. (A) Condensed network of glycolysis
(dark reactions) and Entner–Doudoroff pathway (gray reactions). The pentose phosphate pathway has
been omitted for clarity. In most analyses of glycolysis, the Entner–Doudoroff pathway is not considered.
Hence, not all pathways from glucose into the TCA cycle are found, and the wrong conclusion might be
drawn that only the pentose–phosphate pathway (not shown) can be used to bypass the knockout of
one of the enzymes converting G6P to FDP. In vivo the knockout of the corresponding reactions is
partially bypassed by a flux through the Entner–Doudoroff pathway (Fischer and Sauer 2003). (B)
Modeling the Entner–Doudoroff pathway by adding an outflow of G6P and an inflow of G3P and Pyr
only partially resolves the problem (thick arrows). Such an approach is often used in elementary mode
analysis to avoid the consideration of some pathways in detail (e.g., the outflow of succinyl-CoA from
the TCA cycle in Schuster et al. 1999, analyzed in Results). However, this can lead to fluxes like in C,
which are not part of any feasible pathway when the entire network in A is considered. This is because
the coupling of the influx of Pyr with the outflow reactions of G6P and the inflow reaction of G3P are
neglected in B. (D) Elementary mode analysis does not allow one to analyze the dependencies between
the subsystems S1 and S2 unless the reactions connecting them are taken into account. Thus, it is not
possible to deduce that a zero flux from G6P to FDP in S1 would imply that there cannot be a positive flux
from DHAP to G3P in S2. A list of abbreviations can be found in Supplemental material S2.
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external species. Through removing species from M, all information

on the dependencies between their production and consumption

by reactions of the remaining system is lost.

Elementary flux patterns

Flux patterns are defined as sets of reactions in a subsystem of k

reactions of interest in a large metabolic network. They correspond

to all possible routes that a steady-state flux of the entire network

can take through the subsystem. To simplify the analysis, only

elementary routes are considered. Hence, a flux pattern is called

elementary if it cannot be derived as a combination of at least two

other flux patterns. For an example of elementary flux patterns in

a subsystem of the TCA cycle and some adjacent reactions, see

Figure 2.

Formally, a flux pattern s is a set of indices i with 1 # i # k that

fulfills the following conditions (please note that we assume that

the first k reactions in M represent the subsystem):

v $ 0 ð3Þ

M � v = 0 ð4Þ

8i 2s : vi > 0 ð5Þ

8j 2f1::kgns : vj = 0: ð6Þ

Thus, a flux pattern is a set of reactions, or, more precisely, a set of

reaction indices, of the subnetwork that is part of a steady-state

flux v of the entire network. We require that the indices s of v are

nonzero, while the remaining are zero. Given the set of elementary

flux patterns S of a system, that is, a set of sets of reaction indices,

we call a flux pattern s 2 S elementary if

es0il ; . . . ; s0il � Sns :
[

1#k#l

s0ik = s with il; . . . ; il 2f1; . . . ; jSjg: ð7Þ

Thus, we call s elementary if there exists no set of flux patterns

(not including s) whose union is equal to s. Please note that this

definition is less restrictive than that in the concept of elementary

modes, as the elementarity of a flux mode requires that the non-

zero indices of one elementary mode cannot be a subset of the

nonzero indices of another elementary mode. An analogous state-

ment for flux patterns does not hold. More details on this differ-

ence are given in the next section.

In conditions 3 to 6 no statement is made about the re-

lationship between the reactions of the subsystem. Thus, in con-

trast to elementary mode analysis, reactions need not interface

with each other through substrates or products. In consequence, it

is possible to analyze the dependencies between different sub-

systems like in Figure 1D without needing to add all reactions

connecting both to a combined subsystem.

Furthermore, the empty set also fulfills the flux pattern con-

dition. However, the presence of the empty flux pattern indicates

only that the zero flux On is a valid, although trivial, solution of

Equations 1 and 2; hence, it is of no interest here.

Through the splitting of reversible reactions into two irre-

versible reactions, spurious cycles of the forward and back direc-

tion of the reversible reaction occur. If required, they can be removed

in a post-processing step.

Comparison of elementary modes and elementary
flux patterns

Elementary flux patterns are tightly coupled to fluxes within the

entire system. As demonstrated in Supplemental material S5.2,

each elementary flux pattern is part of at

least one elementary mode of the com-

plete system. Following a procedure out-

lined in Supplemental material S5.3, this

elementary mode can be obtained. Ad-

ditionally, alternative pathways can be

computed by constraining some of the

reactions of such an elementary mode to

zero. Furthermore, by slightly adapting

the constraints in the formulation of the

integer linear program used for the com-

putation of the k-shortest elementary

modes (de Figueiredo et al. 2009), it is

possible to enumerate all elementary

modes containing a given flux pattern

(data not shown). However, the latter

approach requires optimizing an integer

linear program with as many integer

variables as reactions in the system. This

procedure is computationally very de-

manding.

Besides their definition in subnet-

works of metabolic models, the most ob-

vious difference between elementary modes

and elementary flux patterns is that the

former are defined as a vector and the latter

as a set of indices. An elementary mode

represents a particular flux distribution in

a network, in which flux proportions are

considered (although it is indeterminate

Figure 2. Elementary flux patterns in a condensed model of the TCA cycle and adjacent reactions. (A)
Model of the entire network. The TCA cycle is chosen as a subsystem (dark reactions). (B–D) Elementary
flux patterns of the system are indicated by thick black arrows. The associated pathway through the
entire system is indicated by thick gray arrows. The thickness of the arrows corresponds to the relative
flux through each reaction. (E ) Alternative pathway through the entire system using the same reactions
of the flux pattern depicted in C. While the pathway in C corresponds to the glyoxylate cycle that can be
used for growth on fatty acids, E corresponds to the phosphoenolpyruvate-glyoxylate cycle used as
a catabolic pathway during growth on low glucose concentrations (Fischer and Sauer 2003). A list of
abbreviations can be found in Supplemental material S2.
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with respect to scaling). In contrast, a flux pattern can correspond to

several flux proportions within the genome-scale system. Hence,

only the binary pattern is considered. However, most of the appli-

cations of elementary modes only require the set of nonzero indices

of the elementary modes (Gagneur and Klamt 2004), called the

‘‘activity set’’ in Nuño et al. (1997). Thus, a reduction to mere index

sets does not represent an obstacle in many applications of ele-

mentary modes.

Furthermore, if the subnetwork encompasses the entire net-

work (k = n), each elementary flux pattern corresponds to an ele-

mentary mode of the network (see Supplemental material S5.1 for

a proof).

Another difference with elementary mode analysis can be

found in the splitting of reversible reactions into irreversible for-

ward and backward directions. It has been shown that, besides

spurious cycles consisting of forward and backward steps and the

doubling of entirely reversible elementary modes, the set of ele-

mentary modes does not change by splitting reversible reactions

(Gagneur and Klamt 2004). In principle, this statement also holds

for elementary flux patterns. Replacing the positivity condition

in Equation 5 by a nonzero condition for reversible reactions of

the subsystem would make a splitting unnecessary. However, this

would introduce ambiguities since elementary flux patterns are

defined as sets of reactions, that is, as binary patterns. In conse-

quence, each reversible reaction would also be modeled as a single

index, and it would not be clear which direction of a reversible

reaction is used. Thus, splitting reversible reactions simplifies the

analysis.

Computation of elementary flux patterns

The elementary flux patterns of a subsystem can be computed

by iteratively solving a mixed-integer linear program (MILP) that

returns an elementary flux pattern. By consecutively adding ad-

ditional constraints, it is assured that a new elementary flux pat-

tern is always returned. If all elementary flux patterns have been

found, the MILP becomes infeasible and the iteration is stopped.

For a detailed outline of the procedure, see the Appendix.

Computational complexity

Next, we want to comment on the computational complexity of

the problem of finding elementary flux patterns. As outlined in

Supplemental material S4, the computation time of the algorithm

presented in the Appendix is polynomial in the size of the entire

system and exponential in the size of the subsystem. This effort

pays in that a comprehensive view on the metabolic capabilities

pertaining to the subsystem (embedded in the whole system) is

obtained. The runtime complexity of the computation of elemen-

tary flux patterns is similar to that of fixed-parameter algorithms

(Downey and Fellows 1998), a method by which an NP-hard

problem is tackled by confining the combinatorial explosion

to subproblems such as in weighted cluster editing (Böcker et al.

2008). This result is of central importance since it demonstrates

that the application to larger and larger systems is not the limiting

factor in the computation of elementary flux patterns.

Implementation

The algorithm has been implemented as a command-line version

and a graphical user interface (GUI) in Java. The GUI enables the

selection of reactions for the subnetwork as well as the analysis of

elementary flux patterns. Both programs accept reaction networks

in the widely used Systems Biology Markup Language (Hucka et al.

2003) as well as in a proprietary, more human-readable, format.

The GUI can interface with the Systems Biology Workbench (SBW)

(Sauro et al. 2003). Thus, it can be called from any SBW-compliant

application. This allows an easy integration into a wide variety of

tools such as network design, simulation, and further analysis that

are available for SBW. The linear programs and the mixed-integer

linear programs are solved using the open-source Clp and Cbc

solvers from the COIN-OR project (Lougee-Heimer 2003). Cbc

implements a parallelized MILP solver. Hence, the multi-processor

architecture of current computer systems can be fully exploited.

The running time of the algorithm for a selected list of subsystems

in two genome-scale metabolic networks is given in Table 1.

Comparison to other genome-scale pathway analysis methods

Next, we want to compare the concept of elementary flux patterns

to other methods that allow pathway analysis in genome-scale

metabolic networks.

Flux balance analysis

Flux balance analysis (FBA) consists of the search for a flux distri-

bution in a reaction network that optimizes a given objective

function and obeys certain constraints on reaction fluxes (Varma

and Palsson 1994). A variant of FBA is called flux minimization

(Holzhütter 2004). FBA has been extensively used to study meta-

bolic networks (for review, see Raman and Chandra 2009) and has

seen many extensions to take into account additional information

like regulatory rules (Covert et al. 2001; Shlomi et al. 2007) and

reaction kinetics (Covert et al. 2008). Like elementary flux pattern

analysis, FBA can be readily used to find a pathway producing

a certain metabolite. However, our method is better suited for the

exhaustive enumeration of pathways in a subsystem. Furthermore,

FBA meets the problem that usually most of the reactions of

a computed flux are used for balancing of cofactors like ATP,

Table 1. List of subsystems of two genome-scale networks for which elementary flux patterns (EFPs) have been computed

Model Subsystema
No. of

reactions
No. of
EFPs

Computation
time (sec)b

E. coli (Feist et al. 2007) Purine and pyrimidine biosynthesis 33 22 113
1972 species, 3559 reactions Glycolysis and gluconeogenesis 27 33 96

Central metabolism (Schuster et al. 1999) 33 83 2042

S. cerevisiae (Duarte et al. 2004) Tyrosine, tryptophan, and phenylalanine metabolism 34 30 29
1177 species, 1939 reactions Glycolysis and gluconeogenesis 30 80 312

aThe function of the subsystem as annotated in the corresponding model.
bComputation time was measured on an Intel Core 2 Quad Q9300 machine with 4096 MB RAM running Linux Kernel 2.6.25 and Java Hotspot VM version
1.6.0. COIN-OR Cbc version 2.0 has been used to solve the mixed-integer linear programs.
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NADH, or NADPH, and, hence, it is not straightforward to extract

the underlying pathway used for the conversion of a source species

into a target species. In elementary flux pattern analysis, this does

not occur unless cofactor balancing reactions are explicitly con-

sidered in the subsystem.

Furthermore, the determination of a global pathway using the

reactions of a flux pattern in a subsystem uses a linear programming

method similar to FBA. Thus, elementary flux pattern analysis is, in

a sense, a combination of elementary mode analysis and FBA.

Flux variability analysis

Flux variability analysis extends flux balance analysis by allowing

one to determine the individual minimal and maximal fluxes of

reactions given that the optimal value of an objective function is

maintained (Mahadevan and Schilling 2003). Thus, it is possible to

identify which reactions might be used by an optimal flux. How-

ever, it is not possible to obtain a comprehensive overview on all

possible pathways but only on a subset of all reactions that can be

used to achieve an optimal value of the objective function

(Mahadevan and Schilling 2003).

Flux coupling analysis

Flux coupling analysis (Burgard et al. 2004) extends the concept of

enzyme subsets (Pfeiffer et al. 1999). It allows one to detect global

dependencies in the use of reactions at steady state by determining

how fluxes through pairs of reactions are coupled to each other.

As outlined in Supplemental material S7, the application of flux

coupling analysis can be seen as a special case of elementary flux

pattern analysis in all subsystems containing only two reactions.

In consequence, results from flux coupling analysis can similarly

be obtained by using elementary flux pattern analysis. Our method

can be seen as a generalization of flux coupling analysis since it not

only examines the dependencies between pairs of reactions, but

also between any subset of reactions within a subsystem.

Results
We analyzed a model of the tricarboxylic acid cycle (TCA cycle),

the glyoxylate shunt, and associated reactions in E. coli that has

been previously analyzed using elementary modes (Schuster et al.

1999). We started from the genome-scale metabolic model of E. coli

from Feist et al. (2007) and defined the subsystem as the set of

reactions that were used for the elementary mode analysis by

Schuster et al. (1999). We modified the genome-scale model by

adding an inflow for glucose and other basic compounds that are

necessary for the production of biomass (see Supplemental mate-

rial S1 for a complete list). The subsystem is depicted in Figure 3.

The final network contains 1972 species and 3559 reactions.

In the first step, we did not incorporate into the subsystem the

output fluxes used in the elementary mode analysis. Elementary

mode analysis requires these fluxes to guarantee a steady-state flux

corresponding to the production of a certain species. Such fluxes

correspond to the assumption that a certain species can be con-

sumed by reactions outside of the subnetwork without using any

further flux through the subnetwork. Since elementary flux pat-

tern analysis takes into account the entire network, we do not need

to add such abstract reactions.

Elementary modes of the system

In a first step, we analyzed the elementary modes that have been

found by Schuster et al. (1999) using the method outlined in

Supplemental material S5.4. Thus, we checked for each elementary

mode whether it could be part of a steady-state flux through the

entire system. Ten out of the 16 elementary modes given in

Schuster et al. (1999) are part of such a steady-state flux, while all

six elementary modes producing the external species succinyl-

CoA are not. Even though there are four reactions in the complete

network consuming succinyl-CoA, all of them need additional

species that can only be produced at a positive rate using inter-

mediates of the TCA cycle. Since the TCA cycle is part of the sub-

system, each elementary mode producing succinyl-CoA needs an

additional flux through the subsystem in order to metabolize

succinyl-CoA. This is confirmed by an overview of the reactions

consuming succinyl-CoA, given in Table 2.

As an example, succinyl-CoA is consumed in lysine synthesis,

in which oxaloacetate is also used. Later in that pathway, succinate

is released. The subsystem model used by Schuster et al. (1999)

cannot properly take into account the coupling between the fluxes

of succinyl-CoA consumption, oxaloacetate consumption, and

succinate regeneration on that route. Most interestingly, entry

number 3 in Table 2 does not require any additional substrate be-

sides succinyl-CoA. However, if succinyl-CoA is consumed during

propionate utilization, additionally, oxaloacetate is converted into

pyruvate. Oxaloacetate cannot be reconverted into pyruvate un-

less the reactions of the subsystem are used. Thus, even in the case

of propionate utilization, the degradation of succinyl-CoA requires

an additional flux through the subsystem.

Elementary flux patterns of the system

In a next step, we computed the elementary flux patterns of the

subsystem. To be able to analyze the production and consumption

Figure 3. Scheme of part of the central metabolism of E. coli, which is
here studied as a subnetwork of a genome-scale network. A list of
abbreviations can be found in Supplemental materials S2 and S3.

Table 2. List of reactions consuming succinyl-CoA in the network
of Feist et al. (2007)

Number Reaction
Functional
assignment

1 Arg + SuccCoA ! CoA + Sucarg Arginine degradation
2 Hom + SuccCoA ! CoA + Suchms Methionine synthesis
3 SuccCoA ! MmCoA Propionate utilization
4 H2O + SuccCoA + Thdp! CoA +

Sl2a6o
Lysine synthesis

A list of abbreviations can be found in Supplemental materials S2 and S3.
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of amino acids as it has been done by Schuster et al. (1999), the

outflow reactions for the biomass forms of alanine, aspartate, and

glutamate present in the genome-scale network were added to the

subsystem. As mentioned above, there is no such outflow reaction

for succinyl-CoA, since this species can only be further metabo-

lized using additional fluxes from the subsystem. Additionally, we

added a reaction allowing the transport of alanine from the cytosol

to the periplasmic space. In the model of Feist et al. (2007), species

are drained from the model only in their extracellular forms. Since

the model did not contain any mechanism transporting alanine

to the extracellular space, such a reaction needed to be added. This

system gives rise to 83 elementary flux patterns, of which eight

produce one of the amino acids. In contrast, Schuster et al. (1999)

found only 16 elementary modes. This shows the arbitrariness in-

volved in the definition of exchange reactions with the remaining

system necessary for elementary mode analysis. As we will outline

in the following, there are several additional intermediates of the

subsystem besides 2-phosphoglycerate that can be produced from

glucose. Additionally, there are several pathways bypassing some

of the reactions in the subsystem. This leads to many additional

pathways through the subsystem in comparison to those detected

by Schuster et al. (1999).

Sometimes elementary flux patterns are cryptic when con-

sidering only the reactions of the subsystem they contain. In such

a case, an analysis of the genome-scale elementary modes associ-

ated to each elementary flux pattern is necessary. This can be ac-

companied by constraining the fluxes of some reactions to zero to

investigate alternative elementary modes to which an elementary

flux pattern corresponds. One example is the reaction of malate

to oxaloacetate. There are two enzymes catalyzing this reaction,

malate dehydrogenase (Mdh) and malate:quinone oxidoreductase

(Mqo). Since we only took into account the reactions used in

Schuster et al. (1999), we added only the reaction of Mdh to the

subsystem. However, elementary modes can also use Mqo not

present in the subsystem. Indeed, we find many elementary flux

patterns producing malate and consuming oxaloacetate without

the intermediate action of Mdh.

Entry points into the TCA cycle

Even though we considered glycolysis as the principal pathway for

producing TCA cycle intermediates, we found many pairs of ele-

mentary flux patterns that differ only in the routes producing

these intermediates. In each such pair, one elementary flux pattern

uses 2-phosphoglycerate as the entry point, while the other uses

pyruvate. There are several pathways capable of producing pyru-

vate from glucose without the use of glycolysis. One is the Entner–

Doudoroff pathway (Fig. 4B), which is used by some bacteria as an

alternative pathway to glycolysis, even though it has a lower ATP

yield. In E. coli, it was found that a knockout of the glycolysis en-

zyme phosphoglucose isomerase resulted in an up-regulation of

the Entner–Doudoroff pathway when grown on glucose (Fischer

and Sauer 2003). In consequence, 30% of the glucose was metabo-

lized through the Entner–Doudoroff pathway.

The principal pathway connecting glycolysis to the TCA cycle

proceeds via the conversion of pyruvate to acetyl-CoA and carbon

dioxide. However, the consumption of acetyl-CoA does not allow

a positive production rate of any of the species of the TCA cycle

(Weinman et al. 1957; Schuster and Fell 2007). Thus, TCA cycle

intermediates need to be replenished using an additional inflow

from, for example, glycolysis or malate from the glyoxylate bypass.

In this context, we found an elementary flux pattern that is ca-

pable of producing phosphoenolpyruvate from acetyl-CoA via the

glyoxylate bypass. This is an interesting case since the network is

supplied with glucose as carbon source. However, a pathway dif-

ferent from glycolysis is used to produce acetyl-CoA from glucose.

An example for such a pathway is the production of pyruvate

by the Entner–Doudoroff pathway and the subsequent reaction of

pyruvate and coenzyme A to formate and acetyl-CoA catalyzed

by the pyruvate formate lyase. Within the subsystem, acetyl-CoA

is subsequently converted into phosphoenolpyruvate using the

glyoxylate shunt.

The fourth entry point necessitates the production of acetyl-

CoA and glyoxylate by sources outside of the subsystem. More

details about this pathway are given in the next section.

An alternative source for glyoxylate

While isocitrate lyase is used in the glyoxylate bypass to produce

glyoxylate, we found several elementary flux patterns that use

up glyoxylate, which is produced without isocitrate lyase present.

Most interestingly whenever we encountered such a case, aspartate

aminotransferase was operative. Constraining the flux of this re-

action to zero prevented glyoxylate production through the al-

ternative pathway. Aspartate aminotransferase produces aspartate

and oxoglutarate from glutamate and oxaloacetate. Oxoglutarate

can be aminated into glutamate, counterbalancing the consump-

tion of glutamate by this reaction. Aspartate is essential for a reac-

tion in the synthesis of the purine base inosine. Using several

reactions, this compound is subsequently converted into glyoxylate

via the intermediate of inosine-monophosphate and urate. Some

central reactions of this pathway are depicted in Figure 4A.

The glycerate pathway

Some elementary flux patterns containing isocitrate lyase, the

first enzyme of the glyoxylate bypass, do not contain the malate

synthase catalyzing the formation of malate from glyoxylate and

acetyl-CoA. These elementary flux patterns use the glycerate pathway

Figure 4. Alternative pathways in the central metabolism of E. coli.
Dashed arrows represent condensed reactions. (A) Alternative glyoxylate
producing pathway; (B) Entner–Doudoroff pathway; (C ) glycerate path-
way; (D) GABA-shunt. The lower pathway represents the standard route
from oxoglutarate to succinate in the TCA cycle, and the upper pathway
depicts the GABA shunt. A list of abbreviations can be found in Supple-
mental materials S2 and S3.
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(Hansen and Hayashi 1962) that condenses two glyoxylates to

2-hydroxy-3-oxopropanoate and produces either 2-phosphoglycerate

or 3-phosphoglycerate (Fig. 4C). An interesting aspect of this pathway

is that it needs only three steps to produce 3-phosphoglycerate from

glyoxylate. Thus, it might be of importance during gluconeogen-

esis from acetyl-CoA since the common glucogenic route via

malate needs five reactions for the same conversion.

The GABA shunt

In some elementary flux patterns that contain most of the reac-

tions of the TCA cycle, the reactions from oxoglutarate to succinyl-

CoA and further to succinate are missing, while oxoglutarate is

produced and succinate is consumed from sources outside the

subsystem. In these cases, reactions belonging to a pathway known

in plants as the gamma-aminobutyric acid shunt (GABA shunt) are

used. This pathway produces succinate from oxoglutarate via the

intermediate of succinic semialdehyde (Fig. 4D). While GABA has

been primarily considered in the context of acid resistance in E. coli

(Richard and Foster 2003), a recent study suggested a role beyond

stress response in plants and proposed the GABA shunt to be an

integral part of the TCA cycle (Fait et al. 2008). Thus, this pathway

might also be of importance as a bypass for a part of the TCA cycle

in E. coli. However, its role as such a bypass has, to our knowledge,

not yet been investigated in detail.

Amino-acid-producing elementary flux patterns

We found eight elementary flux patterns producing amino acids

(Fig. 5). A single elementary flux pattern produces alanine (Fig. 5A),

while aspartate is produced by three elementary flux patterns (Fig.

5B–D) and glutamate by four elementary flux patterns (Fig. 5E–H).

The elementary flux pattern producing alanine contains only

two reactions, the production of alanine from pyruvate and glu-

tamate as well as the outflow of extracellular alanine. Hence, the

substrates of the reaction producing alanine can be replenished

from sources outside the subsystem. This is corroborated by our

previous finding that pyruvate, which is aminated into alanine,

can be produced without using glycolysis. Furthermore, glutamate

can be produced from oxoglutarate using one of several trans-

aminase reactions not included in the subsystem.

The number of elementary flux patterns producing glutamate

are due to the possible entry points of species into the subsystem.

These are acetyl-CoA alone or in conjunction with either 2-phos-

phoglycerate, pyruvate, or glyoxylate (via the alternative glyoxylate-

producing pathway). The route via glyoxylate involves the alterna-

tive pathway of glyoxylate production depicted in Figure 4A. Thus

the action of the aspartate aminotransferase is also necessary.

For aspartate, only three of the entry points are used by the

elementary flux patterns. Producing aspartate, using acetyl-CoA,

and the glyoxylate bypass is a flux pattern, but does not fulfill the

elementarity condition. An explanation is in order.

Each pathway drawing species from the TCA cycle with acetyl-

CoA alone entering the cycle needs to include the glyoxylate by-

pass. This pathway requires the malate synthase and the fumarase

to replenish oxaloacetate. Additionally, the aspartate transaminase

is necessary to produce aspartate from oxaloacetate. The pathway

using glyoxylate (from the alternative glyoxylate producing

pathway) and acetyl-CoA as substrates also requires the malate

synthase and the fumarase. As depicted in Figure 6, the fumarase is

needed in order to reconvert fumarate consumed by the alternative

glyoxylate-producing pathway in Figure 4A into aspartate. Any

flux pattern producing aspartate using acetyl-CoA as entry point

into the subsystem would be a union of two elementary flux

patterns. The first is the elementary flux pattern containing

the reactions of the subsystem corresponding to the alternative

glyoxylate-producing pathway; and the second, the aspartate-

producing elementary flux pattern in Figure 6.

Figure 5. Amino acid producing elementary flux patterns. (A) Alanine; (B–D) aspartate; (E–H) glutamate. Black reactions belong to the elementary flux
pattern; gray reactions are the remaining reactions of the subsystem. A list of abbreviations can be found in Supplemental materials S2 and S3.
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Another interesting aspect arises from the observation that,

only for glutamate, no reaction from the subsystem producing this

amino acid is necessary. However, the production of oxoglutarate

appears in any flux pattern producing glutamate. Thus, while the

reactions of the subsystem are necessary to produce oxoglutarate,

the conversion into glutamate can also be performed by reactions

outside the subsystem.

Discussion
Here we have introduced elementary flux pattern analysis as a new

concept for the investigation of pathways in genome-scale metabolic

networks. In contrast to elementary modes, which represent an im-

portant tool for the analysis of metabolic networks, they more ac-

curately depict the metabolic capabilities of a subsystem integrated

into a genome-scale model and offer several important advantages.

First, the modeling of the interaction of the subsystem with the

entire model is not biased by the knowledge of pathways into and

out of the subsystem by the modeler, which might be limited to

pathways seen under standard conditions. Thus, instead of 16

pathways through the TCA cycle and some adjacent reactions

found with elementary mode analysis in Schuster et al. (1999), we

detected 83 possible routes. We started with 2-phosphoglycerate as

the principal species produced from glucose that served as input to

the subsystem. However, our analysis found four possible input

points, including a previously unknown pathway producing glyox-

ylate from glucose-6-phosphate without the intermediate action of

one of the essential enzymes of the glyoxylate bypass. Moreover, we

identified a pathway that is similar to the GABA shunt in plants and

may serve to bypass some of the reactions in the TCA cycle.

Second, constraints imposed by the stoichiometric structure

of the entire network upon possible fluxes in the subsystem are

properly taken into account. In a network analyzed in Schuster

et al. (1999), we found that such constraints lead to the problem

that six of the 16 reported elementary modes were not part of any

steady-state flux through the entire system. Generally, referring

to the questions posed in the title of this article, when metabolic

subsystems are combined to larger networks, usually some of the

combinations of elementary modes and, thus, pathways drop

out. This is because of some metabolites that were external in the

subsystems and now have to fulfill the steady-state condition since

they became internal. This example shows that the set of pathways

in the whole metabolic network is smaller than the ‘‘sum’’ of the

pathway sets on the local scale.

Third, the possibility to analyze the interaction between dif-

ferent subsystems of a metabolic network represents a promising

avenue of further research in order to gain a better understanding

of the intricate structure of metabolism.

Fourth, most of the tools building on elementary mode

analysis only necessitate the sets of reactions of the elementary

modes. Hence, these methods can also use elementary flux pat-

terns as a base, now allowing their application to genome-scale

metabolic networks. These applications include the development

of gene-knockout strategies for strain improvement and the anal-

ysis of the robustness of metabolic networks, as outlined next.

In order to prove the utility of elementary flux patterns, we

chose the detection of unconventional metabolic pathways in the

central metabolism of E. coli as the main focus of our work. The

Figure 6. Elementary flux pattern belonging to an aspartate-producing
pathway. (Bold arrows) The reactions of the elementary flux pattern (i.e.,
they belong to the subsystem). The species entering the subsystem are
acetyl-CoA and glyoxylate via the alternate glyoxylate-producing path-
way presented in Figure 4A. (Dashed lines) Condensed reaction. Selected
fluxes are given. A list of abbreviations can be found in Supplemental
materials S2 and S3.

Figure 7. Determining minimal media for the production of amino acids. (A) Network under consideration for computation of elementary flux patterns.
Dark reactions belong to the subsystem. (B) Elementary flux patterns of the subsystem. The inflow reaction that is used and the amino acid that can be
produced from this input medium are indicated. Examples of minimal and nonminimal media are provided by the synthesis of histidine, which can be
produced from glutamate alone as well as from ammonia and glutamate, respectively. The latter elementary flux pattern is more efficient in terms of
glutamate consumed. A list of abbreviations can be found in Supplemental material S2.
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knowledge of such pathways is not only of theoretical interest but

also of importance in many fields of biotechnology, for instance,

in the analysis of gene knockout experiments and metabolic

flux analysis (Wittmann 2007). In the analysis of gene knockout

experiments, our method can help to identify alternative path-

ways that might be used to bypass a knockout. In metabolic flux

analysis, our method can help to improve the stoichiometric

models used for the calculation of intra-cellular reaction fluxes

from labeling experiments. These models usually only include

a specific part of the entire metabolism. Hence, they face the same

problem as elementary mode analysis, by potentially not taking

into account all of the possible routes into and out of the sub-

system. In consequence, refining the subsystem after studying

its connection to the entire known metabolism using elementary

flux patterns can help to improve the calculated fluxes. This can be

of special importance if the cell is subject to extreme conditions

resulting in a redirection of fluxes from pathways seen under

standard conditions to alternative pathways (Fischer and Sauer

2003; Wittmann et al. 2007).

Finally, we want to outline some further applications of ele-

mentary flux patterns.

Determining minimal media

Elementary flux patterns can be used to compute the composition

of minimal media, that is, the set of metabolites minimally re-

quired for the production of a desired product (Fig. 7). Note that

some (but not necessarily all) elementary flux patterns correspond

to minimal media (Fig. 7). This is of special interest for the de-

termination of growth media required for the synthesis of complex

metabolites like antibiotics (Tollnick et al. 2004). One focus could

be the analysis of the different proposed growth media with re-

spect to efficiency of the production of the antibiotic and the cost

for the production of the metabolites used in the medium. Fur-

thermore, if the network contains a reaction that indicates which

metabolites are essential for the growth of the cell, it is possible to

compute all minimal growth media.

Computing minimal cut sets

Minimal cut sets correspond to minimal sets of reactions that need

to be removed from a system in order to suppress any steady-state

flux performing a certain function (Klamt 2006). Such a function

can be, for instance, the production of a side-metabolite by a target

Figure 8. Scenario for the application of minimal cut sets. (A) Reaction network under consideration, which is supplied with acetate and glutamate. It is
assumed that the production of histidine should be prevented. Histidine is produced from the central metabolism intermediate ribose-5 phosphate
(Umbarger 1978). Assuming that it is not possible to entirely knock out the reactions r17 and r18 that directly produce ribose-5 phosphate, the reactions
r10–r15 are defined as alternative targets (black reactions). (B) In order to determine minimal cut sets, r10–r15 are added to the subsystem containing the
outflow reaction of histidine. From the elementary flux patterns, the minimal cut sets can be obtained. (C ) Minimal sets of reactions that need to be
knocked out to suppress the production of histidine: (black crosses) MCS1; (dark gray crosses) MCS2; (light gray crosses) MCS3. Subsequently, the
minimal cut sets can be ranked according to different criteria, like side effects or required effort to knock out the corresponding genes, to determine the
optimal knockout strategy. A list of abbreviations can be found in Supplemental material S2.
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reaction in order to increase the yield of a desired product. A sce-

nario for the application of elementary flux patterns in this con-

text is outlined in Figure 8. Due to the size of the system in

which elementary flux patterns can be computed, they now al-

low computing minimal cut sets even in genome-scale metabolic

networks.

Determining the robustness of metabolic networks

In a previous study, we used elementary modes to define a general

measure for the susceptibility of reaction networks to knockouts

(Behre et al. 2008). However, this approach builds on elementary

modes, and, thus, the robustness is only determined for elemen-

tary modes of a subnetwork that might not reflect all the potential

pathways as detected by elementary flux pattern analysis. Hence,

elementary flux patterns allow for a more realistic assessment of

the robustness.

Analysis of host–pathogen interactions

The cost for the computation of elementary flux patterns only

scales polynomially with the size of the underlying genome-scale

network. Thus, it is possible to analyze large-scale networks that are

made up of several genome-scale metabolic networks. As such, it is

possible, for instance, to define a subsystem that contains meta-

bolic reactions of a host and vital reactions of a parasite in order to

determine the interplay between the metabolisms of both organ-

isms (Raghunathan et al. 2009). In this context, an interesting

application is to determine which combinations of exchange

reactions with the medium of the parasite in the host can be im-

paired in order to harm the parasite.

In summary, the concept of elementary flux patterns opens

up an entire new avenue for the analysis of genome-scale meta-

bolic networks. It allows for the incorporation of all the in-

formation available in a genome-scale metabolic network when

analyzing a specific subsystem. This is of central importance, since

a comprehensive knowledge about the, for instance, 3359 reac-

tions and 1972 species in the model of the metabolism of E. coli by

Feist et al. (2007) is difficult to achieve.
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Appendix

As in the main text, we assume that the first k columns (i.e.,
reactions) of the stoichiometric matrix M correspond to the reac-
tions of the subsystem. We will outline the algorithm for the
computation of elementary flux patterns by first demonstrating
how a linear program can be formulated that allows to test whether
a set of reactions fulfills the flux pattern condition (conditions 3 to
6). Then we proceed by integrating this linear program into
a mixed-integer linear program that allows us to enumerate all
elementary flux patterns.

Each flux pattern s is part of at least one flux v 2Rn through
the entire system that fulfills two conditions. First, v needs to
balance all species—that is, it needs to be at steady state; and sec-
ond, v needs to obey the irreversibility of some reactions. Since we
split reversible reactions into two irreversible forward and back-
ward steps, this is equivalent to the condition that all fluxes need
to be non-negative. In terms of a linear program with the variables
v, this translates into the constraints:

ðLP 1ÞM � v = 0

ðLP 2Þv $ 0:

Furthermore, we require that v has nonzero entries for the
reactions of the flux pattern s and zero entries for the remaining
reactions of the subsystem. Thus, we add

ðLP 3Þ 8i 2s : vi $ 1

ðLP 4Þ 8j 2f1; . . . ; kgns : vj = 0

as additional constraints. Note that we require that vi $ 1 because it
is not possible to formulate the constraint vi > 0 in a linear pro-
gram. Since the constraints do not impose any upper bounds on v,
the constraint vi > 0 is equal to vi $ 1. To fulfill the flux pattern
condition, we only need to test whether v exists. Thus, we only
need to check the feasibility of the linear program, and no objec-
tive function is required.

In order to find all elementary flux patterns, we need to
combine constraints LP 1 and LP 2 with a mixed-integer linear
program. Doing this, we first need to introduce a mapping from v
to a binary variable b2 {0, 1}k indicating the reactions used by v in
the subsystem. bi = 1 indicates that reaction i of the subsystem is
used, and bi = 0 indicates the contrary. Thus, in addition to (LP 1)
and (LP 2), we add the constraint:

ðMILP 1Þ 8i 2f1; . . . ; kg : bi # vi # c � bi

with a sufficiently large constant c. If bi = 0, the lower and upper
bounds of this constraint are 0, hence vi is constrained to zero. In
the other direction, bi = 1 implies that 1 # vi # c. Hence, vi is larger
than 1 and smaller than c. In consequence, c has to be chosen ei-
ther as the maximal velocity of reaction i or as a general maximal
reaction velocity of the network under consideration. b indicates
the reactions the flux vector v is using in the subsystem and,
hence, corresponds to a flux pattern. Thus, we introduce the
mapping:

QðbÞ= fijbi = 1g

from b to the encoded flux pattern. The idea of the MILP is to
iteratively search for elementary flux patterns until no further flux
pattern can be found. This can be achieved by iteratively solving
the MILP and removing, each time, the set of previously found
elementary flux patterns S from the solution space by adding an
additional constraint. We can exclude previously found elemen-
tary flux patterns by requiring that each new flux pattern cannot
be written as a combination of previously found elementary flux
patterns. In order to implement this constraint in the MILP, we first
need to reformulate it. This can be done by taking a closer look at
the reactions contained in Q(b). If we find that each reaction
r 2Q(b) is also contained in a previously found elementary flux
pattern s9 2S that is a subset of Q(b), this implies that Q(b) is a
combination of elements from S. Since the contrary also holds, we
need to ensure that Q(b) contains at least one r that is not an ele-
ment of any previously found elementary flux pattern that is
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a subset of Q(b). This can be achieved by introducing an additional
set of binary variables h 2{0, 1}k with hi = 1 indicating that reaction
i is an element of Q(b) and not an element of any elementary flux
pattern s9 2S that is a subset of Q(b). In consequence, hi can only
equal 1 if bi does so. Thus, we add the constraint:

ðMILP 2Þ 8i 2f1; . . . ; kg : bi � hi $ 0:

Furthermore, we want for each hi = 1 that reaction i is not an ele-
ment of any s9 that is a subset of Q(b). For each s9, we can count the

number of common elements with Q(b) by the sum +i2s0bi. This

sum is equal to the number of elements js9j in s9 if and only if s9 is
a subset of Q(b). Thus, we add the constraint:

ðMILP 3Þ 8s0 2S : +
i2s0
ðbi + hiÞ # js9j:

In consequence, if s9 is a subset of Q(b), all hi with i 2s9 are
constrained to zero. Conversely, each hr = 1 indicates a reaction r
that is not an element of any elementary flux pattern in S that is
a subset of Q(b). In order to ensure that we find at least one reaction
r 2Q(b) that fulfills this condition, we add

ðMILP 4Þ +
k

i = 1

hi $ 1:

Thus, we ensure that Q(b) is not a combination of previously
found elementary flux patterns. To guarantee that we find only
flux patterns that are elementary, the objective function for the

MILP is the minimization of +k
i=1bi; the number of reactions of the

flux pattern Q(b) [for the proof of elementarity of Q(b), see Sup-
plemental material S6].

In each iteration, the MILP returns a new elementary flux
pattern. Finally, we obtain no further solution if all elementary flux
patterns have been found. For a condensed list of the constraints of
the MILP, see Supplemental material S6.
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