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We describe a new method, Tag-seq, which employs ultra high-throughput sequencing of 21 base pair cDNA tags for
sensitive and cost-effective gene expression profiling. We compared Tag-seq data to LongSAGE data and observed im-
proved representation of several classes of rare transcripts, including transcription factors, antisense transcripts, and
intronic sequences, the latter possibly representing novel exons or genes. We observed increases in the diversity, abun-
dance, and dynamic range of such rare transcripts and took advantage of the greater dynamic range of expression to
identify, in cancers and normal libraries, altered expression ratios of alternative transcript isoforms. The strand-specific
information of Tag-seq reads further allowed us to detect altered expression ratios of sense and antisense (S-AS) transcripts
between cancer and normal libraries. S-AS transcripts were enriched in known cancer genes, while transcript isoforms were
enriched in miRNA targeting sites. We found that transcript abundance had a stronger GC-bias in LongSAGE than Tag-
seq, such that AT-rich tags were less abundant than GC-rich tags in LongSAGE. Tag-seq also performed better in gene
discovery, identifying >98% of genes detected by LongSAGE and profiling a distinct subset of the transcriptome char-
acterized by AT-rich genes, which was expressed at levels below those detectable by LongSAGE. Overall, Tag-seq is
sensitive to rare transcripts, has less sequence composition bias relative to LongSAGE, and allows differential expression
analysis for a greater range of transcripts, including transcripts encoding important regulatory molecules.

[Supplemental material is available online at http://www.genome.org.]

A key first step in understanding cellular processes is a quantitative

representation of gene expression profiles, including those rele-

vant to cancer. As part of the Cancer Genome Anatomy Project

(CGAP), gene expression profiles of a wide variety of cancer tissues

and cells were measured using LongSAGE libraries, created and

sequenced using conventional Sanger sequencing methods (Lal

et al. 1999). Prior to completion of the project, the advent of new

massively parallel sequencing technologies made feasible an im-

provement in the efficiency and sensitivity with which tag-based

gene expression can be measured. We thus sought to develop and

apply a next-generation sequencing approach for tag-based gene

expression profiling to complete the CGAP database.

Several recently developed sequencing technologies, such as

the 454 Life Sciences (Roche) pyrosequencing platform (Margulies

et al. 2005), the Illumina Genome Analyzer (Bentley 2006), and

Applied Biosystems SOLiD platform (http://solid.appliedbiosystems.

com), offer massively parallel production of short reads. Using

these technologies, thousands to millions of isolated and amplified

DNA molecules can be attached to a solid surface (such as a flowcell

or microbeads), and sequenced by synthesis in parallel. Such

technologies offer up to two orders of magnitude increase in

per base cost efficiency compared to capillary sequencing (von

Bubnoff 2008). These platforms have made feasible previously

cost-prohibitive projects such as genome resequencing (Green

et al. 2006; Bentley et al. 2008; Ley et al. 2008; Wang et al. 2008b)

and deep transcriptome and noncoding RNA sequencing (Nielsen

et al. 2006; Weber et al. 2007; Marioni et al. 2008; Morin et al. 2008;

Rosenkranz et al. 2008), as well as genome-wide protein binding-

site surveys (ChIP-seq) (Jothi et al. 2008; Wederell et al. 2008).

The high-throughput methods preceding the massively par-

allel sequencing approaches mentioned above are diverse but can

generally be classified either as sequence-based or hybridization-

based. The former are often termed ‘‘digital’’ because they reflect

the number of individual observations of a transcript, while the

latter, typically in the form of microarrays, are termed ‘‘analog’’ as

they provide a surrogate hybridization-based measure of in-

dividual transcript abundance. Digital gene expression profiling

using expressed sequence tags (ESTs) (Adams et al. 1991; Hillier

et al. 1996) was cost-restrictive, and more cost-efficient tag-based

techniques such as serial analysis of gene expression (SAGE) were

developed (Velculescu et al. 1995). Despite increases in cost effi-

ciency compared to EST profiling, the expense and specialized

facilities required for high-throughput capillary sequencing pre-

vented SAGE from becoming as widespread as its microarray

counterparts.

Our goal was to implement a tag sequencing protocol on the

Illumina platform, analogous to LongSAGE (Saha et al. 2002), and

to use this protocol to measure transcript abundance in human

cancers. The Illumina (Bentley et al. 2008) sequence-by-synthesis

technology currently offers ;80 million reads (10 million reads per

lane; eight-lane flow cell) from a single run of the instrument. This

makes possible gene expression profiling experiments with much

improved dynamic range and considerable cost savings compared

to capillary sequencing of LongSAGE. Our approach, called Tag-

seq, generates 21–base pair (bp) tags, generally from the 39 ends of

transcripts. The method is similar to the LongSAGE approach

(Saha et al. 2002) but forgoes the need for ditag production, con-

catenation, and cloning. Deep sequencing of tags is achieved using

only a single lane of a flow cell, and typical yields are in the range of

5–10 million sequences.

Compared to conventional microarrays, Tag-seq has no cross-

hybridization of related sequences and in principle offers dynamic
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range limited only by sequencing depth. Compared to RNA-seq,

Tag-seq performs comparably in terms of gene discovery and dy-

namic range. While Tag-seq does not provide information re-

garding the internal structure of transcripts, it can distinguish

between transcripts originating from both DNA strands. There

are advantages in using a strand-specific gene expression platform,

for example to measure the prevalent antisense transcription in

the human genomes (Katayama et al. 2005). Here, we conduct

an analysis of Tag-seq data from the CGAP collection to illustrate

the utility of the method in addressing questions of relevance to

cancer biology.

Results

Data generation and filtering

The Tag-seq protocol is similar to the LongSAGE approach (Saha

et al. 2002), in which a restriction endonuclease (NlaIII) cleaves

each individual transcript in a sample, and a type II restriction

endonuclease (MmeI) is used to generate a 21-bp tag from the

39-most NlaIII site. In LongSAGE, tags from individual transcripts

are ligated together to form ditags that are concatenated, cloned,

and sequenced using capillary sequencing. The Tag-seq method, in

contrast, forgoes ditag production and concatenation, and allows

the direct sequencing of tags using massively parallel sequencing

on the Illumina Genome Analyzer (see Methods; Fig. 1). Typically,

a Tag-seq library is sequenced to a depth of 10 million tags, which

represents an increase of two orders of magnitude over the se-

quencing depth of a typical LongSAGE library. Our expectation

was that the added depth of the Tag-seq method would improve

representation of important low-abundance transcripts at the

limits of or beyond LongSAGE sensitivity.

We used the Tag-seq platform to complete the CGAP digital

gene expression profiling project, by generating 35 libraries from

cancer and normal tissue samples. To assess the similarities be-

tween the new Tag-seq data and the existing LongSAGE data,

we compared the data from these 35 libraries to that from 77

LongSAGE libraries. In total, we produced two metalibraries, one

containing 6.9 million LongSAGE tags from the 77 libraries (1.1

million distinct tag sequences), and one containing 170 million

Tag-seq tags from the 35 quality filtered libraries (four million

distinct tag sequences). These libraries are publicly available as part

of the CGAP collection (Supplemental Table S1; Lal et al. 1999).

The CGAP libraries also included two libraries, one Tag-seq library

and one LongSAGE library, which were created from the same

human embryonic stem cell (hESC) RNA source.

To ensure that we analyzed high quality data in the Tag-seq

libraries, we removed potentially erroneous tags using a novel fil-

tering algorithm (Supplemental Methods). Briefly, tags were re-

moved if they occurred once (singletons), or if they differed by one

base pair from more highly expressed tags (one-offs) unless they

mapped to the genome or transcriptome. On average, 22.1% of

filtered tags could be mapped to Ensembl transcripts, while only

1.2% of tags removed by the filter could be mapped to transcripts.

While filtered tag sequences comprised an average of 7.5% of all

tag sequences, their abundance corresponded to an average of

56.0% of the total library size, and they identified >97.5% of the

total number of genes detected by all tags.

Effect of depth on tag sequence diversity and abundance

By comparing the Tag-seq and LongSAGE metalibraries, we sought

to first determine whether differences in Tag-seq and LongSAGE

protocols resulted in any significant bias in tag or gene represen-

tation. As expected, we found a significant overlap between these

metalibraries, with >300,000 unique tag sequences detected using

both methods. On average, these commonly detected tag se-

quences were expressed in a larger proportion of Tag-seq libraries

than LongSAGE libraries, and had 17-fold higher expression in

Tag-seq libraries (Table 1). A large number of tag sequences were

detected by only one method; in general, these were expressed at

lower levels than those tag sequences found by both methods,

and in fewer libraries. The three million tag sequences detected

only by Tag-seq were on average 1/16 the abundance of the tags

detected in common by both methods (absolute counts, Table 1)

Figure 1. Outline of Tag-seq library generation. Each mRNA (brown)
underwent double-stranded cDNA synthesis using oligo(dT) beads, to
capture polyadenylated RNA. cDNA (gold) is digested with the NlaIII
anchoring restriction enzyme (vertical red arrows), leaving a 4-bp over-
hang (GTAC). Only cDNA fragments anchored to oligo(dT) beads are
retained. Adapter A (green) is ligated to the overhang and adds a recog-
nition site for the TypeIIS tagging enzyme MmeI. Following MmeI di-
gestion (red vertical arrow), a second adapter is ligated (Adapter B, blue)
to the resulting 2-bp overhang. PCR primers (horizontal red arrows)
annealing to adapters A and B are used to enrich tags. Cluster generation
and sequencing (horizontal brown arrow) is performed on the Illumina
cluster station and analyzer. The resulting image files are processed to
extract the read sequences, and 21-bp SAGE tags are further extracted
from the reads. Tags consist of the 4-bp NlaIII recognition sites and 17 bp
of unique sequence, and constitute a total of 21 bases that can be
mapped back to the original mRNA (brown).
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and, therefore, were likely undetectable in the LongSAGE libraries

due to their comparatively shallow sequencing depth. Thousands

of Tag-seq tag sequences did not map to any unique or repetitive

sites in the genome or the transcriptome. These may indicate the

presence of either novel transcripts or novel isoforms of annotated

genes that lead to the creation of novel tag sequences spanning

splice sites (80,875 Tag-seq tag sequences and 63,166 LongSAGE

tag sequences expressed over counts of 10; Supplemental Fig. S1).

Nearly a third of the tags detected in both metalibraries

mapped to 21,638 genes. A small proportion of tag sequences

found solely in LongSAGE (8.1%) or Tag-seq (3.5%) mapped to

Ensembl genes (Table 1). Although in general the tag sequences

found only by Tag-seq had expression levels below those detect-

able by LongSAGE, the 741 genes found only in Tag-seq had an

average expression level higher than that for the genes found in

common. They are therefore likely to be genes specific to tissues

not profiled by LongSAGE. With the exception of the hESC repli-

cate, all LongSAGE and Tag-seq libraries represented diverse tis-

sues, although the greater number of LongSAGE libraries doubled

the diversity of tissues profiled by LongSAGE. The 430 genes found

only by LongSAGE were on average less frequently expressed than

genes detected by both methods, and may represent genes specific

to tissues profiled using LongSAGE.

We next investigated the effect of depth on gene representa-

tion by comparing the Tag-seq and LongSAGE replicate libraries

created from the same hESC RNA sample. The Tag-seq replicate

(library id ‘‘hs0238’’) had a total of 293,179 tag sequences (error

tags removed; Supplemental Methods), of which 40,149 (13.7%)

mapped to Ensembl genes, either in introns, exons, or on the op-

posite strand. The LongSAGE replicate (library id ‘‘1313’’ in Sup-

plemental Table S1) had a total of 19,998 tag sequences, of which

13,983 (69.9%) mapped to Ensembl genes. The LongSAGE tag

sequences mapped to 7,055 genes and the Tag-seq tag sequences

mapped to 11,165 genes, which included 93.5% of the genes found

by LongSAGE. Thus, added depth improved gene detection in this

tissue 1.6-fold. Since each tag sequence mapping to a gene can

represent an individual transcript isoform (Siddiqui et al. 2005), we

analyzed the average expression of all transcript isoforms. The

transcripts of the 6.5% of genes only found by LongSAGE were

expressed at low levels (average of 4.0 counts) and may be un-

derrepresented in the Tag-seq library due to variability in the rep-

licate library creation. The detection of transcription factors (TFs)

was 1.8-fold greater, with 429 TFs detected by LongSAGE, and 799

TFs detected by Tag-seq. The average expression of the 393 TFs

detected in common was higher (69.8 in the Tag-seq replicate, 6.8

in the LongSAGE replicate) than that of the 36 TFs detected only in

LongSAGE (5.9) and the 406 TFs detected only by Tag-seq (26.7).

To determine whether these additional genes found by Tag-

seq were functionally different than those found by both methods,

we conducted an assessment of Gene Ontology (GO) categories

overrepresented in the Tag-seq versus the LongSAGE replicate

(Ashburner et al. 2000). The most significantly overrepresented

terms in this tissue were found by both methods. Thus, increased

sequencing depth resulted in identification of thousands of addi-

tional genes that belonged to the same functional categories as

moderately and highly abundant genes detected by LongSAGE

tags.

We next asked whether a Tag-seq library unambiguously

identified a larger number of genes on average than a standard

LongSAGE library. We performed a sampling simulation to esti-

mate the number of genes represented by different ‘‘depths’’ of

sequencing in each Tag-seq and LongSAGE library. Sampling up to

300,000 tags from individual LongSAGE libraries resulted in de-

tection of up to 10,000 genes (Fig. 2A). Quality filtered Tag-seq li-

braries sampled at depths of up to 10 million tags detected up to

13,000 genes. This suggested that the added depth provided by the

Tag-seq approach results in a more comprehensive interrogation of

gene expression profiles, with 48.3% and 36.3% of expressed genes

detectable at depths greater than those of a typical (100,000 tags)

or large (200,000 tags) LongSAGE library, respectively. At every

sampling depth level greater than one million tags in Tag-seq, the

rate of gene detection was reduced (Fig. 2B).

Differences in gene abundance between Tag-seq and other gene
expression platforms

Having established that the measured sampling depth of Tag-seq

improved gene discovery, we evaluated the concordance of tag

abundance between the two methods, by reanalyzing the Tag-seq

and LongSAGE replicate hESC libraries. The LongSAGE replicate

had a total of 272,465 tags, while the Tag-seq replicate had a total of

3,636,083 quality filtered tags. Tags expressed in common between

these libraries had a Pearson coefficient of 0.60 (Supplemental Fig.

S2). We analyzed another set of replicate Tag-seq and LongSAGE

libraries created from the same mouse RNA (Supplemental Meth-

ods), and found they had a Pearson correlation of 0.64. This was

comparable to the correlation between the LongSAGE library and

a technical replicate generated with the SAGELite protocol (0.64).

SAGELite is a variant of LongSAGE used to create libraries from

samples that are too small to yield sufficient amounts of mRNA for

standard LongSAGE library construction (Peters et al. 1999). We

observed a lower Pearson coefficient between the Tag-seq technical

replicate and the SAGELite replicate (0.43), indicating these

methods have different biases relative to LongSAGE.

Table 1. Average expression values are shown for tag sequences detected in LongSAGE libraries, in Tag-seq libraries, or in both

Common Tags

LongSAGE LongSAGE Tag-seq Tag-seq

Tag sequences 822,988 318,400 318,400 3,705,783
Average no. of libraries 6 SD 1.3 6 1.3 4.9 6 9.6 7.4 6 9.1 1.7 6 1.8
Average expression level 6 SD 1.1 6 1.8 3.7 6 20.9 62.1 6 1115.2 3.8 6 71.9
Tag sequences mapping to Ensembl genes 543 98,717 98,717 1,026
Ensembl genes detected 432 21,638 21,638 741
Average no. of libraries 6 SD 1.6 6 1.5 5.1 6 10.5 5.7 6 8.5 2.9 6 4.0
Average expression level 6 SD 2.5 6 7.9 3.9 6 21.9 65.8 6 1116.0 73.8 6 584.0

The average number of LongSAGE or Tag-seq libraries in which a given tag is expressed (and SD) is also shown.

Gene expression profiling using Tag-seq
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We generated Pearson correlations between three non-CGAP

Tag-seq libraries and their respective technical replicates analyzed

on Affymetrix exon arrays. Correlations were calculated for

expressed tags which represented known transcripts and mapped

uniquely or not at all to the genome, and their corresponding

Affymetrix probes. Pearson coefficients for the three technical

replicates were very similar to each other (0.59, 0.60, and 0.61),

and to that of Tag-seq and LongSAGE replicates (Supplemental Fig.

S2). An analysis of dynamic range between the Tag-seq and Affy-

metrix data showed that genes detected in common had a 13-fold

greater dynamic range in Tag-seq versus Affymetrix (see Supple-

mental Results; Supplemental Fig. S3; and a twofold greater dy-

namic range when considering log-transformed expression values,

Supplemental Table S2).

We also analyzed a pair of replicate RNA-seq/Tag-seq libraries

created from the same RNA source, and found that, relative to

RNA-seq, Tag-seq performed comparably in gene identification

(see Supplemental Results; Supplemental Table S3) and gene ex-

pression measures (Pearson correlation of gene abundance: 0.54).

Illumina does not currently distinguish between reads derived

from opposing DNA strands, and RNA-seq reads were therefore not

able to discriminate between sense and antisense transcription. For

nearly a third (29.5%) of the genes detected by both methods in

this replicate library set the Tag-seq replicate detected expression

on the antisense strand (Supplemental Table S3). In the case of 613

loci detected by both methods, the Tag-seq reads clearly show that

expression arises solely from the antisense strand. At these loci,

correlations between gene expression levels measured by Tag-seq

versus RNA-seq (0.50) were the same as those at loci with sense

expression in both technologies (0.54).

GC-content bias

We next investigated whether there was any detectable bias in

the sequence composition of tags profiled by the Tag-seq and

LongSAGE platforms. The GC-bias of a platform can be calculated

by comparing the number of standard deviations by which the

observed bias in an individual library deviates from that of the

expected bias (Siddiqui et al. 2006; Supplemental Methods). We

found that Tag-seq libraries were significantly more AT-rich than

LongSAGE libraries (Fig. 3). As previously observed, LongSAGE

libraries had a weak GC-bias (�3.516

8.08), while Tag-seq libraries had a stron-

ger AT-bias (12.99 6 5.39), comparable to

that of the Affymetrix platform (HGU 133

GeneChip; Siddiqui et al. 2006). As ob-

served for Affymetrix, this bias decreased

in parallel with increasing expression

level, such that highly expressed Tag-

seq sequences were significantly less bi-

ased (all filtered tag sequences vs. those

expressed over counts of 500, P=2.13

10�10, t-test). This suggests that, as se-

quencing depth increases in sequencing-

based technologies, a distinct class of

genes with increasing AT-content is de-

tected. We tested whether this was the

case in Tag-seq by comparing the GC-

content of the genes with high versus low

frequency tags, and found that genes that

expressed #100 tag counts were signifi-

cantly more AT-rich than genes expressed

$1,500 tag counts (P=2.8310�4, t-test; Supplemental Fig. S4).

This was true of gene sequences that included introns, but not of

cDNA sequences, indicating that the AT-content of the genomic

regions in which these genes were encoded was correlated to their

expression level. In LongSAGE bias also decreased with increasing

expression level, such that tag sequences expressed over 20 and

over 100 counts become significantly less biased (all tag sequences

vs. those expressed over counts of 100, P=1.9310�3, t-test). This

trend was also correlated to the GC-content level of the genes to

which LongSAGE tags mapped to, indicating that the source for

these observations was also biological in nature rather than

a technical artifact (Supplemental Fig. S4).

Figure 2. Average number (A) and proportion (B) of Ensembl genes unambiguously identified in Tag-
seq and LongSAGE libraries as a function of sampling depth. Error bars represent the SD of the average
number of identified genes in 77 LongSAGE libraries and 35 Tag-seq libraries. The largest LongSAGE
libraries were ;300,000 tags, while the largest Tag-seq libraries were ;10 million tags.

Figure 3. GC-bias of Tag-seq and LongSAGE libraries was calculated in
units of the number of SDs by which the observed bias differed from the
expected bias (see text). Positive units represent libraries with more AT-
rich tag sequences than expected (AT-bias), while negative units repre-
sent libraries with more GC-rich tag sequences than expected (GC-bias).
Calculated bias is shown for all quality filtered Tag-seq and all LongSAGE
tag sequences, at increasing thresholds of tag expression (x-axis).
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Next, we determined the extent to which tag representation

was biased in Tag-seq versus LongSAGE, by reanalyzing the hESC

replicate libraries made from the same RNA source. Tag sequences

detected solely by LongSAGE had a greater GC-content than those

detected solely by Tag-seq (0.50 vs. 0.39); however, both sets of tag

sequences were on average very infrequently expressed (Fig. 4A). In

contrast, the 13,161 tag sequences detected by both methods were

highly expressed and had an intermediate GC-content (0.43) that

was nearly identical to the average GC-content of all Ensembl

transcript tag sequences (0.42). We looked at whether the corre-

lation of expression of these common tag sequences differed as

a function of tag GC-content. We divided the tags into four bins

representing increasing proportions of tag GC-content (bin1: 0%–

25%; bin2: 25%–45%; bin3: 45%–65%; bin4: 65%–100%), and

found that the Pearson correlation changed as a function of GC-

content, with AT-rich tags having the lowest correlation (Fig. 4B).

We investigated the cause of the decreased correlation be-

tween AT-rich tag sequences in the two methods, and found

a relationship between tag abundance and tag GC-content. In

LongSAGE we observed a positive correlation between tag abun-

dance and GC-content for the first three bins (bin1 vs. bin2, P = 1.6

310�3; bin2 vs. bin3, P=1.4310�3; t-test). In contrast, the

abundance of the same tag sequences in the Tag-seq replicate did

not correlate with GC-content, with the exception of the most GC-

rich bin (bin3 vs. bin4, P=9.4310�8; Fig. 5C). This relationship

between GC-content and tag abundance held for all Tag-seq and all

LongSAGE libraries (Supplemental Fig. S5).

Improved representation of low abundance LongSAGE
transcripts in Tag-seq libraries

Given the increased depth of Tag-seq libraries, we expected to

observe increased numbers of tags for transcripts at the limit of

detection in LongSAGE (Siddiqui et al. 2005). Two such tag cate-

gories include antisense and intronic tags. Antisense tags originate

from transcripts that are transcribed from the opposite strand

(Supplemental Fig. S6), while intronic tags may represent un-

annotated exons and UTRs within known genes (Saha et al. 2002),

Figure 4. GC-content biases in Tag-seq and LongSAGE technical replicate libraries. (A) Comparison of the GC-content and average count of tag
sequences found either in common or by each of the Tag-seq and LongSAGE replicate libraries. (B) Pearson correlations were calculated for tags binned by
GC-content. Bins are labeled with the range of the observed GC-content, and the number of binned tags (x-axis). (C ) Average expression of tag sequences
in each GC-content bin was calculated for both Tag-seq and LongSAGE, and the log of each average was plotted. An asterisk (*) denotes bins between
which the expression of tag sequences was significantly different (measured using a t-test, P < 0.01).

Gene expression profiling using Tag-seq
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or previously unannotated sequences transcribed from introns,

such as embedded genes (e.g., HA_003240, Hirst et al. 2007) or

miRNA genes (Kim 2005). Another class of generally low abun-

dance transcripts of biological interest consists of transcription

factors (TFs). To investigate the expression levels of TFs in Tag-seq

and LongSAGE libraries, we downloaded the set of 2890

human genes that encoded DNA-binding domains (DBD) (http://

dbd.mrc-lmb.cam.ac.uk/DBD/index.cgi?About), which should in-

clude all TFs, and searched for their presence in the CGAP libraries.

We enumerated tag sequences that mapped in the sense ori-

entation to TF exons, antisense to known genes, and sense to gene

introns, in each library, at increasing thresholds of expression.

Overall, an average Tag-seq library detected 1.7 times as many TF

genes as a LongSAGE library (849 vs. 504), 6.3 times as many genes

with antisense (AS) tags (4999 vs. 795), and 2.8 times more genes

with intronic tags (7651 vs. 2752). The majority of genes found by

Tag-seq were at expression levels below those detectable in existing

LongSAGE libraries (Fig. 5).

We confirmed the relationship between sequencing depth

and the diversity and abundance of intronic and antisense tags by

analyzing the Tag-seq and LongSAGE hESC replicate libraries. To

ensure that the relationship between tag sequence diversity and

tag abundance was due to no other factors except depth, we gen-

erated an in silico library of 272,465 randomly subsampled tags

from the Tag-seq replicate. The in silico library, hereafter referred to

as sub_Tag-seq, theoretically represents a random sample of the

most highly expressed tags in the Tag-seq replicate and should,

therefore, be very similar to the LongSAGE replicate. We found

that sub_Tag-seq was moderately correlated with the LongSAGE

replicate (Pearson correlation of 0.6), with most of the variation

coming from low frequency tags (data not shown). Any differences

in the abundance of intronic and antisense tags in the sub_Tag-seq

library relative to the Tag-seq library would most likely be due to

decreased depth.

A comparison of the Tag-seq replicate, sub_Tag-seq, and the

LongSAGE replicate supports the described increase in the di-

versity of intronic and antisense tags in deeper libraries. We com-

pared the proportion of tag sequences in each library that mapped

either to exons, introns, or to the antisense strand of Ensembl

genes (Fig. 6A). In the Tag-seq replicate, the most abundant cate-

gories of mapped tag sequences were exonic tags (47.8%), closely

followed by antisense tags (32.1%) and intronic tags (20.6%). In

contrast, the LongSAGE replicate was far more likely to detect tags

mapping to exons (73.0%) than antisense (23.4%) or intronic tags

(6.2%). Thus, the Tag-seq replicate is enriched in antisense and

intronic tag sequences; this enrichment is not observable at sam-

pling depths <300,000 tags, since the tags in sub_Tag-seq library

mapped in proportions similar to those of the LongSAGE replicate

(differences were not significant). These observations held when

comparing all Tag-seq to all LongSAGE libraries (Supplemental Fig.

S7), indicating that low-frequency antisense and intronic tags were

present in all the profiled human tissues and were not specific to

hESCs. The altered proportion of antisense, intronic, and exonic

tag sequences was highly significant (t-test between Tag-seq and

LongSAGE tag sequence proportions: antisense P = 6.2 3 10�5,

intronic P = 1.0 3 10�10, exonic P = 1.6 3 10�24).

Interestingly, the abundance of exonic, intronic, and anti-

sense tag sequences was almost identical between methods (Fig.

6B; Supplemental Fig. S7B). This suggests that the large numbers of

low frequency tag sequences detected only in Tag-seq were

expressed in the same relative ratios as higher frequency tag

sequences detected by both methods. Thus, exonic tags were the

most abundantly expressed (;80%), followed by antisense tags

(;20%), and intronic tags (0.1%).

The additional depth in Tag-seq had a dramatic effect on the

dynamic range of expression of moderate to abundantly expressed

tags, which could be detected by both methods. On average, ex-

onic tag sequences were detected at frequencies 12.7-fold higher in

the Tag-seq versus the LongSAGE replicate, and antisense and

Figure 5. The proportion of the average number of genes detected by
tags in LongSAGE and Tag-seq libraries is shown at a series of expression
thresholds (tags per million). Bars represent the proportion of the average
number of genes with intronic tags (A), antisense tags (B), and DNA-
binding domains (transcription factors) (C ) in Tag-seq and LongSAGE li-
braries.
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intronic tag sequences were detected at levels 13.4- and 14.4-fold

higher (Fig. 6C; Supplemental Fig. S7C). The range of expression

was an order of magnitude higher in Tag-seq versus LongSAGE,

indicating a significantly greater dynamic range of expression.

Sense–antisense transcripts in cancer libraries

Having assessed the technical differences between the LongSAGE

and Tag-seq protocols, we undertook a biological analysis of the

CGAP library collection. We first analyzed the AS tags with a focus

on their differential expression in libraries representing cancerous

and normal tissue samples. Previous studies have shown that the

ratio of sense to antisense transcripts changes between normal and

malignant tissue samples (Chen et al. 2005), and that antisense

transcripts can be implicated in disease processes (Tufarelli et al.

2003; Reis et al. 2004). Our goal was to highlight the potential of

the Tag-seq approach to identify known and novel antisense

transcripts whose expression ratios changed significantly with re-

spect to the sense gene, between normal and diseased states, be-

tween different stages of disease progression, or between cancer

subtypes.

To achieve this, libraries were first grouped by tissue into 15

groups (Supplemental Table S1; Supplemental Methods). Libraries

belonging to each tissue were segregated into groups representing

normal and cancerous samples and, when possible, were further

segregated into cancer stages (precancerous samples vs. malignant

for instance; Supplemental Table S4). The ratio of sense to anti-

sense transcription between each of the tissue groups was assessed

at every relevant locus; either using pairs of sense tags mapping to

known sense–antisense (S-AS) gene pairs, or using sense tags

mapping to single genes with a corresponding novel tag mapping

antisense to the same gene (abbreviated Single-AS; Supplemental

Fig. S6).

Altered expression ratios between 389 S-AS gene pairs and

between 2195 Single-AS pairs were found in the 15 tissue groups.

Random assignment of tags to genes showed that real S-AS genes

were, on average, 55 times more likely to have ratio changes than

would be expected by chance, while Single-AS were 17.5 times

more likely than expected by chance, suggesting a higher rate of

false positives in these pairs. We developed a normalization pro-

tocol to identify pairs with large expression ratio changes (Sup-

plemental Methods), and to ensure higher ranking of highly

expressed gene pairs and of those pairs with lower variance in their

ratios. Overall, tissues comprised solely of Tag-seq or LongSAGE

libraries had equivalent numbers of gene pairs with ratio changes.

Since the tissues profiled by the different methods were distinct,

we could make no a priori predictions regarding the number of

gene pairs with different ratios found by Tag-seq or LongSAGE. By

definition, the genes targeted by this analysis are moderately to

highly expressed, and could be found by both methods. Thus, in

the absence of Tag-seq and LongSAGE replicates for a whole tissue,

we conclude that both methods are capable of finding gene pairs

whose abundance ratios change between cancerous and normal

samples, and which therefore may be differentially regulated in

cancer versus normal tissues.

To determine whether there was an enrichment of biological

categories in these genes, we conducted a functional annotation

clustering analysis (Dennis et al. 2003; Huang et al. 2007). In this

analysis, annotations (such as GO terms; Ashburner et al. 2000)

that share common genes are more likely to be grouped together.

We found that genes with extreme ratio changes (in the top 10%)

were highly enriched in GO terms relating to the regulation of

developmental processes, to the regulation of cell death, and to cell

proliferation (Supplemental Table S5), terms which are relevant to

cancer biology.

To further evaluate the biological relevance of these pairs, we

enumerated the number of Cancer Gene Census genes in the data

set (Futreal et al. 2004). This is a catalog of genes with mutations

that have been causally implicated in multiple cancers. Of the total

312 cancer census genes, expression was detected in the CGAP

data set for 300. Interestingly, over one quarter of these genes (72

Single-AS and six S-AS) were also found to have significant ratio

changes between normal and cancerous libraries in the studied

Figure 6. Detection of exonic, intronic, and antisense tags in the Tag-
seq and LongSAGE hESC replicates. Tag sequences from the Tag-seq
technical replicate, the in silico derived sub_Tag-seq, and the LongSAGE
replicate were mapped to the introns, exons, and antisense strands of
Ensembl genes. The proportions of distinct tag sequences (A) and tag
abundance (B) are reported relative to all mapped quality-filtered tags.
Average tag counts (6SD) are reported for all tag sequences found in
common between the three libraries (C ).
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tissues (Table 2; Supplemental Table S6). The pairs with ratio dif-

ferences in the top 10% of the range of differences were identified,

revealing a total of 30 of the cancer census genes remaining in this

shortlist (27 Single-AS, three S-AS). Thus, 38% of the cancer genes

were in the top 10% of differentially expressed genes with extreme

ratio changes between cancer and normal tissues, which is a sig-

nificant enrichment (P < 7.0 3 10�4, x2 test).

Transcript isoforms in cancer libraries

Differential expression of transcript isoforms was analyzed in 4237

genes with multiple expressed tags, since these tags potentially

represent alternative 39 polyadenylation sites (Siddiqui et al. 2005).

A total of 1957 of these genes had tag pairs whose ratio of ex-

pression changed between libraries grouped by disease state (e.g.,

cancerous vs. normal). For 1304 (66.6%) of these genes, the se-

quence bounded by the two tags harbored predicted miRNA tar-

geting sites (Grimson et al. 2007), suggesting that miRNAs may

regulate isoform expression in one of the two states (Hirst et al.

2007). The proportion of miRNA-targeted genes in this list was

nearly three times greater than the proportion of miRNA-targeted

genes in the human genome (22.0%, P < 2.2 3 10�16, x2 test; Table

3). Of the 772 genes with transcript pairs that had the 10% most

extreme expression ratio changes, we found an additional en-

richment of transcripts harboring miRNA targeting sites (72.5%;

Table 3). For 33.1% of these genes, the longer isoform was con-

sistently more abundant in cancers; for 41.0% of these genes, the

shorter isoform was consistently more

abundant in cancer; for the remaining

26.9% of genes, either isoform was more

abundant in cancer in some sample.

We found 93 miRNA targeting sites

with enriched frequencies in the set of

genes with the top 10% most extreme

expression isoform ratio changes (versus

the frequencies in the set of all genes with

isoform ratio changes, P < 0.05, hyper-

geometric distribution test; Supplemental

Table S7). A closer look at the most

enriched sites showed that these miRNAs

have been previously observed to have

altered expression in cancers (e.g., miR-

124 in glioblastoma multiforme [Silber

et al. 2008]; miR-181 and miR-15/16

in B-cell chronic lymphocytic leukemia

[Calin et al. 2002; Pekarsky et al. 2006];

miR-224 in thyroid tumors and in hepa-

tocellular carcinoma [Nikiforova et al.

2008; Wang et al. 2008a]).

Discussion
To complete the CGAP digital gene ex-

pression profiling project, we developed

Tag-seq as an efficient and cost-effective

alternative to LongSAGE. Tag-seq library

construction is similar to the LongSAGE

protocol, but sequencing employs Illu-

mina’s massively parallel sequencing by

synthesis protocol in place of conven-

tional Sanger sequencing. Every read in

a sequenced Tag-seq library represents

a 17-bp sequence tag adjacent to the 39 most NlaIII site of an in-

dividual transcript and, therefore, represents a digital count of that

transcript.

Relative to another Illumina-based transcript profiling tech-

nology, RNA-seq (Marioni et al. 2008; Rosenkranz et al. 2008), Tag-

seq performs comparably in terms of gene discovery and measured

dynamic range. For gene expression profiling experiments where

accurate profiling of transcripts from both strands of the genome

is required, Tag-seq data are superior since, unlike RNA-seq, it

allows discrimination of sense and antisense transcripts. Sense and

antisense genes are encoded on the opposite strands of the same

genomic locus and yield transcripts that have sequence comple-

mentarity. Their genomic arrangement and sequence comple-

mentarity increase the likelihood that their regulation is affected

by common factors (such as chromatin state) and their relative

expression (such as transcriptional interference), at both the

transcriptional and post-transcriptional level (Vanhee-Brossollet

and Vaquero 1998; Dahary et al. 2005). To date, antisense tran-

scripts have been observed for up to 75% of the mammalian

transcriptome in data sets generated by both sequence-based and

hybridization-based methods (Katayama et al. 2005). Given the

high prevalence of antisense transcription in the mammalian ge-

nome, and the link between antisense transcripts and disease

(Tufarelli et al. 2003; Reis et al. 2004), Tag-seq was well suited to

the study of cancer-relevant gene expression in the context of

the CGAP project. We found known and novel S-AS gene pairs

for which the ratio of expression changed significantly between

Table 2. The proportion of S-AS and Single-AS genes that were differentially expressed and
belonged to the cancer census gene set

(A) Genes subcategorized into those with expression ratio scores in the top 20% and top 10%

No. of genes Cancer census genes Proportion

S-AS 389 6 0.015
Top 20% of differential expression 264 5 0.019
Top 10% of differential expression 193 3 0.016

Single-AS 2195 72 0.033
Top 20% of differential expression 1337 39 0.029
Top 10% of differential expression 935 27 0.029

(B) The proportion of genes in the cancer census gene set (of 300 observed in CGAP) that were
differentially expressed, as well as the proportion of those genes with expression ratios in the top
20% and top 10% of all ratios

No. of cancer census genes Proportion (of 300)

Differential expression 78 0.26
Top 20% of differential expression 44 0.56
Top 10% of differential expression 30 0.38

Table 3. Genes with isoforms that were differentially expressed between two disease states
were enriched in miRNA targeting sites relative to all genes

No. of
genes

Genes with miRNA
targeting sites Proportion

All Ensembl genes 33,761 7442 0.22
Genes with differentially expressed isoforms 1957 1304 0.67
Top 20% of differential expression 1156 806 0.70
Top 10% of differential expression 772 560 0.73

The enrichment of miRNA targeting sites increased further for those genes with differential expression
values in the top 20% and even further for those in the top 10%.
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cancer subtypes or between cancer and normal states. These were

enriched in known cancer-related genes, supporting a role for

antisense transcription in cancer biology. For instance, we found

evidence for antisense transcription at the BCL6 locus, which

encodes a repressor of transcription known to be involved in

lymphomas. Antisense ESTs have previously been observed at this

locus, lending support to our observations of antisense transcrip-

tion (Supplemental Fig. S8). The ratio between the sense and an-

tisense tags at this locus was significantly up-regulated in the

subset of libraries from grade II carcinoma epithelium and associ-

ated myofibroblast samples, leading to reduced sense-to-antisense

ratio in those samples. These libraries represented cell types sam-

pled from one breast cancer patient, implicating the relationship

between BCL6 and its antisense transcript in the biology of this

individual breast cancer. While carcinoma-associated myofibro-

blasts are not necessarily cancer cells per se, they have epigenetic

alterations similar to those seen in malignant carcinoma epithe-

lium, and are globally hypomethylated (Jiang et al. 2008). One

plausible explanation for the increase in antisense expression at

this locus is increased hypomethylation at CpG islands down-

stream from the BCL6 gene (Supplemental Fig. S8).

While Tag-seq is able to distinguish transcript strand of origin,

it only provides limited information regarding transcript structure.

Thus, to gather data on expressed transcript isoforms, exon arrays

or RNA-seq would be the more suitable technologies. However,

Tag-seq is still informative on the expression of the subset of gene

isoforms that lead to a different 39 NlaIII tag sequence as a conse-

quence of alternative 39 end formation. We were able to analyze

>4200 genes with such transcript isoforms and expression in

CGAP, and to find differential expression of isoforms between

cancer and normal states. Intriguingly, we found an enrichment of

transcripts harboring miRNA targeting sites in the sequence

unique to one of two differentially expressed isoforms (Hirst et al.

2007; Ghosh et al. 2008), implicating their regulation in cancer

biology.

Compared to Affymetrix microarrays, Tag-seq is capable of de

novo gene discovery without the requirement of genome-wide

probe design, does not suffer from cross-hybridization of related

sequences, and achieves essentially unlimited dynamic range

simply by increasing sequencing depth. At the current level of

sampling (;10 million tags), genes detected by Tag-seq had a 13-

fold greater measurable fold change than the same genes detected

by Affymetrix.

Relative to LongSAGE, the additional depth of sampling

provided by Tag-seq led to a greater number of genes identified in

a given tissue, and improved the measurable dynamic range of

those genes. One other report has thus far shown that Tag-seq

surpasses LongSAGE in sequencing depth (Hanriot et al. 2008). We

extend these findings by reporting for the first time that, with in-

creasing depth, Tag-seq also allowed detection of a distinct subset

of transcriptome space, enriched in AT-rich genes, intronic tags,

antisense tags, and novel intergenic tags. The enhanced detection

of low-frequency AT-rich tag sequences in Tag-seq was similar to

previous observations made in Affymetrix arrays (Siddiqui et al.

2006), although the detection of AT-rich sequences was in that case

interpreted as a technological bias. These new results suggest that

this AT-rich class of tag sequences do not represent technical bias

in either method, but rather a biological difference in the types of

transcripts present at lower frequencies, which is detectable using

both sequencing-based and hybridization-based technologies. The

depth of sampling achieved by LongSAGE is not large enough

to detect this subset of the transcriptome. Furthermore, we found

that Tag-seq has less GC-bias, leading to a more accurate in-

terpretation of the abundance of tags spanning the range of GC-

content.

Overall, Tag-seq identifies more genes than LongSAGE,

detects a greater dynamic range of expression, and thus allows

differential expression analysis for a greater range of transcripts.

Tag-seq libraries provide an excellent resource for the discovery of

known and novel transcripts with expression changes relevant to

disease processes, and highlight the applicability of next-generation

tag sequencing to gene expression profiling.

Methods

Tag-seq library construction
All libraries were constructed using one of two protocols: Tag-seq or
Tag-seqLite. Tag-seq is a variant of LongSAGE as described (Siddiqui
et al. 2005; Khattra et al. 2007), with modifications forgoing the
requisite production of ditags and concatemers and allowing direct
sequencing on the Illumina Genome Analyzer (Fig. 1). Typically
500–2000 ng of DNase I-treated total RNA was used in library
construction. Briefly, after double-stranded cDNA synthesis using
oligo(dT) beads (Invitrogen) the cDNA was digested with an an-
choring restriction enzyme (NlaIII) and ligated to Illumina specific
adapter, Adapter A, containing a recognition site for the TypeIIS
tagging enzyme MmeI (New England Biolabs). Following MmeI
digestion, dephosphorylation with shrimp alkaline phosphatase
(USB Corp), and purification, a second Illumina adapter, Adapter B,
containing a 2-bp degenerate 39 overhang was ligated (Fig. 1). Tags
flanked by both adapters were enriched by PCR using Phusion
DNA polymerase (Finnzymes) and Gex PCR primers 1 and 2
(Illumina) following the manufacturer’s instructions. Separate 15
and 17 cycle reactions were run using the following program: 98°C
for 30 sec, followed by 15–17 cycles of 98°C for 10 sec, 60°C for 30
sec and 72°C for 15 sec, and then 72°C for 5 min. The PCR products
were run on a 12% PAGE gel and the ;85-bp DNA band was ex-
cised and purified using Spin-X filter column (Costar) followed by
ethanol precipitation. The DNA quality was assessed and quanti-
fied using an Agilent DNA 1000 series II assay (Agilent) and
Nanodrop 7500 spectrophotometer (Nanodrop), and the DNA
sample was diluted to 10 nM. Cluster generation and sequencing
was performed on the Illumina cluster station and analyzer (Illu-
mina) following the manufacturer’s instructions. Raw sequences
were extracted from the resulting image files using the open source
Firecrest and Bustard applications (Illumina) on a 32 CPU cluster
running Red Hat Enterprise Linux 4 (Red Hat) and Sun Grid Engine
6 (Sun Microsystems). For samples with RNA amount ranging 4–50
ng, Tag-seqLite was applied. Briefly, first strand cDNA was syn-
thesized with Superscript II Reverse Transcriptase (Invitrogen) and
was amplified by a 20-cycle PCR according to the SAGE-Lite
method. SAGE-Lite biochemistry is based upon the SMART
(switching mechanism at the 59 end of RNA transcripts) cDNA
synthesis strategy (Clontech) for the generation of full-length
cDNA. Following the amplification, 500 ng of cDNA was processed
according to the standard Tag-seq protocol as described above,
except that the final PCR amplification was 13–15 cycles.

Tag extraction

Sequencing of a Tag-seq amplicon starts at the first base following
the Adapter A sequence. Thus, the first 17 to 18 bases of a read
are the transcript-derived tag sequence, and the remaining bases
are the Adapter B sequence. As expected, 99% of adapters found
in a Tag-seq library occur in positions 18 and 19 of the read. The
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‘‘Raw’’ Tag-seq library is then constructed by truncating all reads at
length 17.

All statistical analyses and methods used for tag analysis are as
previously described for LongSAGE (Siddiqui et al. 2005).

Ensembl data

Full gene sequences (including introns), cDNA sequences, and
gene boundary coordinates were downloaded from the Ensembl
version 47 release (Birney et al. 2004), based on the NCBI human
genome build 36, using the Ensembl API (www.ensembl.org).
Virtual sense and antisense tag sequence databases were generated
for both full gene and cDNA sequences using in-house Perl scripts.
Briefly, all NlaIII sites were identified for each sequence, and the
adjoining 17 bp in the 39 direction were designated the sense tags,
while the 17 bp in the 59 direction were designated the antisense
tags. The human genome sequence was downloaded from NCBI
(ftp://ftp.ncbi.nih.gov), and the complete sequence, including
repeat regions, was used to create virtual sense and antisense tag
databases. Sense and antisense tag sequences mapping to unique
locations in the genome were distinguished from those mapping
in multiple locations.
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