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Comparative genomics of protoploid Saccharomycetaceae
The Génolevures Consortium1

Our knowledge of yeast genomes remains largely dominated by the extensive studies on Saccharomyces cerevisiae and the
consequences of its ancestral duplication, leaving the evolution of the entire class of hemiascomycetes only partly ex-
plored. We concentrate here on five species of Saccharomycetaceae, a large subdivision of hemiascomycetes, that we call
‘‘protoploid’’ because they diverged from the S. cerevisiae lineage prior to its genome duplication. We determined the
complete genome sequences of three of these species: Kluyveromyces (Lachancea) thermotolerans and Saccharomyces (Lachancea)
kluyveri (two members of the newly described Lachancea clade), and Zygosaccharomyces rouxii. We included in our comparisons
the previously available sequences of Kluyveromyces lactis and Ashbya (Eremothecium) gossypii. Despite their broad evolutionary
range and significant individual variations in each lineage, the five protoploid Saccharomycetaceae share a core repertoire of
approximately 3300 protein families and a high degree of conserved synteny. Synteny blocks were used to define gene
orthology and to infer ancestors. Far from representing minimal genomes without redundancy, the five protoploid yeasts
contain numerous copies of paralogous genes, either dispersed or in tandem arrays, that, altogether, constitute a third of
each genome. Ancient, conserved paralogs as well as novel, lineage-specific paralogs were identified.

[Supplemental material is available online at http://www.genome.org and at http://www.genolevures.org/. The sequence
data for Zygosaccharomyces rouxii and Kluyveromyces thermotolerans have been submitted to EMBL-Bank (http://www.ebi.ac.uk/
embl/) under accession nos. CU928173–CU928176, CU928178, CU928179, CU928181 and CU928165–CU928171, and CU928180,
respectively. Saccharomyces kluyveri sequences were deposited to GenBank under accession no. AACE03000000.]

Yeasts have played a critical role in our understanding of molecular

function and evolution in eukaryotes. Their small, compact

genomes, their importance in a variety of fermentation processes,

and the facility of manipulating them in the laboratory have led to

the determination and analysis of the genome sequences of several

yeast species (for review, see Dujon 2005, 2006; Kurtzman and

Piskur 2006; Scannell et al. 2007a). Molecular phylogenies suggest

that unicellular yeasts arose from ancestral fungal lineages several

times independently, from Basidiomycota leading, for example, to

the Cryptococcus and Malassezia species (Loftus et al. 2005; Xu et al.

2007), and from Ascomycota leading to the well-studied Schizo-

saccharomyces species, on one hand (Wood et al. 2002; Aslett and

Wood 2006), and to the large, homogeneous class known as

hemiascomycetes, or budding yeasts, on the other hand. The

hemiascomycetes have enjoyed most of the attention of genomic

studies, owing in part to their large number of species (more than

a thousand are described [Kurtzman and Fell 2006] and many more

likely exist [Boekhout 2005]), but mostly because they include

Saccharomyces cerevisiae, the first eukaryote sequenced (Goffeau

et al. 1996), and a favored experimental model for functional ge-

nomics (Hofmann et al. 2003; Ooi et al. 2006).

An exploration of 13 hemiascomycete genomes revealed their

broad evolutionary range (Souciet et al. 2000), and several internal

subdivisions exist, three of which have been characterized by

complete sequencing of the genomes of a number of species

(Dietrich et al. 2004; Dujon et al. 2004; Jones et al. 2004; Kellis et al.

2004). Yarrowia lipolytica, with a GC-rich genome roughly twice as

large as that of other hemiascomycetous yeasts, is the representative

species of the first subdivision. It contains more protein-coding

genes and more introns than other yeasts and has a larger variety of

transposable elements. It also has several peculiarities, such as

multiple subtelomeric rDNA loci and dispersed 5S RNA coding

genes, half of which are transcriptionally fused to tRNA genes

(Acker et al. 2008). A second subdivision of hemiascomycetes

consists of species that translate CTG codons as serine rather than

leucine, a reassignment believed to have occurred more than 170

million years ago (Miranda et al. 2006). This subdivision has been

intensely studied because it contains the pathogenic yeast Candida

albicans ( Jones et al. 2004; Noble and Johnson 2007) and related

Candida species (Magee et al. 2008). It also contains Debaryomyces

hansenii, whose genome shows numerous tandem gene arrays

(TGAs) that contribute to gene family expansion (Dujon et al.

2004). A third subdivision consists of yeasts of the ‘‘Saccharomyces

complex’’ or Saccharomycetaceae, the subdivision of hemiascomycetes

with the most genome sequences available. This subdivision

contains a large variety of species that, although sharing a number

of common physiological and genomic properties, represent a

broad phylogenetic range. They were recently classified into 14

distinct clades (Kurtzman 2003; Kurtzman and Robnett 2003)

whose genomes remain unequally explored.

The importance of S. cerevisiae as a model system (for review,

see Barnett 2007; Replansky et al. 2008) has resulted in most ge-

nomic studies focusing on closely related species leaving other

clades of Saccharomycetaceae relatively unexplored, with only few

exceptions (Dietrich et al. 2004; Dujon et al. 2004; Kellis et al.

2004). Today, genome sequences are available (at various cover-

ages) for Saccharomyces paradoxus, Saccharomyces mikatae, Saccha-

romyces kudriavzevi, Saccharomyces bayanus, Saccharomyces exiguus,

Saccharomyces servazii, and Saccharomyces castellii (Bon et al.

2000a,b; Casaregola et al. 2000; Cliften et al. 2003, 2006; Kellis

et al. 2003), and several strains of S. cerevisiae have been entirely

sequenced (Wei et al. 2007; Borneman et al. 2008; http://www.

broad.mit.edu/annotation/genome/saccharomyces_cerevisiae/).
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This offers a unique view on the population structure and

reproductive preferences of a group of yeasts playing an impor-

tant role in fermentation processes, and a powerful tool for

quantitative trait analyses (Demogines et al. 2008). Recently, wild

populations of S. cerevisiae and S. paradoxus have also been char-

acterized by hybridization to genome tiling oligonucleotide

arrays and by partial genome sequencing (Liti et al. 2009;

Schacherer and Kruglyak 2009).

The recognition of a whole-genome duplication in the an-

cestry of S. cerevisiae (Wolfe and Shields 1997) prompted many

studies on the evolutionary and functional consequences of such

events in yeasts (Wong et al. 2002; Byrnes et al. 2006) and in other

eukaryotes such as plants (Arabidopsis Genome Initiative 2000; Yu

et al. 2005; Jaillon et al. 2007), fishes ( Jaillon et al. 2004), or ciliates

(Aury et al. 2006). The subsequent loss of redundant gene copies,

which may lead to speciation bursts (Scannell et al. 2006), destroys

original gene neighborhood relationships and reshapes the ge-

netic maps of post-duplication species, leaving typical dual synteny

patterns (Dietrich et al. 2004; Jaillon et al. 2004; Kellis et al. 2004).

Inference of the original gene order has been attempted by ana-

lyzing duplicated genomes (Byrne and Wolfe 2005; Byrnes et al.

2006; Scannell et al. 2007b; Conant and Wolfe 2008), but an au-

thentic image of the original genome organization of this impor-

tant group of yeasts is desirable.

We report the complete sequence and manual annotation

of the genomes of three novel yeast species, Zygosaccharomyces

rouxii, a member of the Zygosaccharomyces clade, Saccharomyces

(Lanchancea) kluyveri, and Kluyveromyces (Lachancea) thermotolerans,

two members of the Lachancea clade. We have compared these

genomes with those of Kluyveromyces lactis and Ashbya (Eremothe-

cium) gossypii (Dietrich et al. 2004; Dujon et al. 2004), provid-

ing a multispecies comparison among nonduplicated Saccha-

romycetaceae. We discovered that, far from being minimal genomes,

these species contain many paralogous genes, which are often

highly diverged in sequence and represent approximately a third

of their total genes. We also found that, despite sharing signifi-

cant conservation of synteny and a common protein repertoire

of approximately 3300 families, these species span a large evo-

lutionary range as evidenced from their important sequence

divergence.

Results

General sequencing strategy and brief
description of the genome sequences

Rationale of species selection

Our goal was to characterize and compare

gene content and genome organization

of the Saccharomycetaceae (as defined by

Kurtzman and Robnett 2003) that did not

experience the ancestral whole-genome

duplication that sculpted the genomes of

S. cerevisiae and its closest relatives. To

this end, we determined the complete

DNA sequence of three novel yeast ge-

nomes, Z. rouxii, K. thermotolerans, and

S. kluyveri (see Table 1), and included in

our analyses the previously published

sequences of K. lactis (Dujon et al. 2004)

and A. gossypii (Dietrich et al. 2004).

These five yeast species represent four distinct clades of Saccha-

romycetaceae, respectively, designated as Zygosaccharomyces, Lachan-

cea, Kluyveromyces, and Eremothecium (Fig. 1A). Given their complex

phylogenetic relationship within the Saccharomycetacea, we desig-

nate them collectively as ‘‘protoploid’’ solely to distinguish them

from the ‘‘duplicated’’ yeasts (clades 1–6) (Kurtzman 2003). Other

protoploid genomes, such as Kluyveromyces waltii (Kellis et al. 2004)

and Kluyveromyces marxianus (Llorente et al. 2000a), were not con-

sidered since our comparisons required complete genome sequences

with a single contig per chromosome.

The five yeast species studied here show diverse biological and

metabolic properties. Z. rouxii is an osmo- and halotolerant species

used in some fermentation processes (Solieri and Giudici 2007). It

is able to grow on high concentrations of salt and/or sugar ( Jansen

et al. 2003) and is often considered as a food-spoiling agent. The

type strain (CBS732) is haploid, but some wild isolates of Z. rouxii

are diploid (Solieri et al. 2008). K. thermotolerans is usually associ-

ated with fruits or with insects feeding on plants, but one isolate

was recently obtained from a wine re-fermentation process (Vilela-

Moura et al. 2008). S. kluyveri is often used in protein production

because it wastes less glucose by aerobic fermentation than does

S. cerevisiae, and hence is better at biomass production (Møller

et al. 2002, 2004). It has been developed as a model organism to

study a variety of biological processes such as pyrimidine degra-

dation (Beck et al. 2008), metabolic flux (Blank et al. 2005), or fatty

acid desaturases (Oura and Kajiwara 2008). S. kluyveri appears

widespread in the environment, with strains isolated from insect

guts, soil, or trees in North America, Europe, and India. K. lactis and

A. gossypii, are respectively, a haploid, lactose-utilizing yeast

(Dujon et al. 2004), and a haploid phytopathogen able to form

filaments (Dietrich et al. 2004).

Overall genome anatomy, composition, and duplications

We annotated the three novel yeast genomes sequenced here and

the previously sequenced genome of K. lactis (see Methods and

http://www.genolevures.org/). Annotations of A. gossypii were taken

from AGD (http://agd.vital-it.ch/index.html). Table 2 lists major

features and properties of these five genomes. For comparison, the

genomes of S. cerevisiae (Goffeau et al. 1996) and Candida glabrata

Table 1. Sequencing and assembly of new yeast genomes

Species Strain
No. of

chromosomes
Genome
ploidy

Shotgun
coverage

No. of final
contigs

Final assembly
size (nuc.)

Z. rouxii CBS 732a 7 n 11.13 7 9,764,635
K. thermotolerans CBS 6340a 8 2n 12.33 8 10,392,862
S. kluyveri CBS 3082 8 2n 8 11,345,820

All chromosomes were assembled as unique contigs from one end to the other, except for chromosome
E of Z. rouxii and H of K. thermotolerans and S. kluyveri, each assembled as two contigs separated by rDNA
repeats. Two tandem copies of rDNA repeat units, flanked by a series of Ns to constitute a total of 17 kb,
were manually inserted into the final assembly of these chromosomes. Assembled contigs correspond to
entire chromosome sequences with the exception of the telomeric repeats. Sequences of Z. rouxii and
K. thermotolerans were deposited to EMBL (accession nos. CU928173, CU928174, CU928175,
CU928176, CU928178, CU928179, CU928181; and CU928165, CU928166, CU928167, CU928168,
CU928169, CU928170, CU928171, and CU9 28180, respectively). Sequences of S. kluyveri were de-
posited to GenBank under accession no. AACE03000000. Assemblies from diploid strains did not reveal
significant heterozygosity. The assembled sequences of S. kluyveri and K. thermotolerans contain the
MATa sequence on chromosomes C and F, respectively. A MATalpha sequence has been recovered from
the short, unassembled contigs of S. kluyveri (Payen et al. 2009). Other short, unassembled contigs of Z.
rouxii correspond to mtDNA (data not shown) and to the pSR1 plasmid (Araki et al. 1985). MtDNA of K.
thermotolerans was previously published (Talla et al. 2005).
aGenome surveys of the same strains were previously published for Z. rouxii (de Montigny et al. 2000)
and K. thermotolerans (Malpertuy et al. 2000a).
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(Dujon et al. 2004) were included as representative of post-genome

duplication species of Saccharomycetaceae, while the genomes of

Debaryomyces hansenii and Yarrowia lipolytica (Dujon et al. 2004)

served as outgroups. The five protoploid genomes vary in size (from

8.7 Mb to 11.3 Mb) and are smaller than the two post-duplication

genomes and the two outgroup genomes. Genome size reduction in

Z. rouxii and A. gossypii is accompanied by an increased gene density

(76.1% and 79.6% compared to 69.2% to 72.3% for the three other

protoploid yeasts).

Two species, K. thermotolerans and A. gossypii, show a mark-

edly higher GC content than other yeasts, Y. lipolytica excepted

(Table 2). In every species, the nucleotide composition is generally

uniform across the entire genome, despite local fluctuations in

some cases (Supplemental Fig. 1). S. kluyveri represents an aston-

ishing exception to this rule. An ;1-Mb-long region of chromo-

some C displays a GC content 12% higher that the rest of the

genome (25% higher for the third codon position of CDS). The

remaining 250-kb portion of this chromosome is identical in nu-

cleotide composition to the rest of the genome. This heterogeneity

is studied in detail in a separate work (Payen et al. 2009). In brief, it

is found that the GC-rich chromosomal segment shows conserved

synteny with K. thermotolerans, is devoid of transposable elements,

and replicates later than other chromosomes during the S phase.

The protoploid yeast species have six, seven, or eight chro-

mosomes. A single centromere composed of three short elements

(CDEI, CDEII, and CDEIII) was identified for each chromosome of

Z. rouxii, K. thermotolerans, and S. kluyveri (Supplemental Table 1;

Supplemental Fig. 2B). Centromeres of K. lactis and A. gossypii were

previously described (Dietrich et al. 2004; Dujon et al. 2004). In-

terestingly, the AT-rich CDE II spacers vary in length (Supple-

mental Fig. 2A). The correspondence between centromeres of the

five protoploid Saccharomycetaceae genomes could be deduced

from synteny conservation of flanking genes (Supplemental Table

2). In all likelihood, the protoploid ancestor was a species with

eight chromosomes. The eight centromeres of K. thermotolerans

and S. kluyveri show a simple one-to-one congruence. Non-

ambiguous correspondence with the former two species is also

found for the seven centromeres of Z. rouxii and A. gossypii. The

case of K. lactis is more complex with only six chromosomes and

multiple rearrangements around several centromeres.

As anticipated from their phylogenetic position among the

Saccharomycetaceae, the five yeast species studied here do not show

traces of the whole-genome duplication that occurred in the an-

cestry of clades 1–6 (Kurtzman and Robnett 2003). Similarly, we can

rule out the possible occurrence of another genome duplication in

either of the four clades studied here since we could not find evi-

dence of dual synteny in all pairwise map comparisons between our

five species. Taking advantage of this fact, we have examined the

possible presence of segmental duplications in these genomes

(Supplemental Table 3). If one ignores known transposable ele-

ments and subtelomeric regions, only a few cases of segmental

duplication are found in the genomes of K. thermotolerans, S. kluy-

veri, and K. lactis, and none in Z. rouxii or A. gossypii. Such a paucity

of segmental duplications is surprising in view of the high fre-

quency (10�7 per mitosis) of their spontaneous formation in S.

cerevisiae (Payen et al. 2008), and contrasts with their abundance

Figure 1. Phylogeny and protein-coding repertoire of Saccharomycetaceae and outgroups. (A) The phylogenetic tree results from the alignment of 180
proteins (66,709 amino acids), selected from all universal one-member families having a homolog in S. pombe, using the MAFFT algorithm (Katoh et al.
2005), cleaned with Gblocks (Castresana 2000) before concatenation. Only families for which the ratio between the cleaned blocks and the initial
alignment was higher than 75% were considered. The tree was constructed by maximum likelihood using PhyML (Guindon and Gascuel 2003) with a JTT
substitution model corrected for heterogeneity among sites by a gamma-law distribution using four different categories of evolution rates. The proportion
of invariable sites and the alpha-parameter of the gamma-law distribution were optimized according to the data. Branch length is indicated above or next
to each branch, and bootstrap values (in bold) next to each node. S. pombe was used as an anchoring outgroup. Clades number and designation for
Saccharomycetaceae are according to Kurtzman (2003) and Kurtzman and Robnett (2003). Protoploid species are highlighted (bold blue names). (B)
Figures represent the total number of protein families in each species or node (pan-proteome, defined as the sum of all families present in all species
posterior to the node). Pie charts indicate the proportion of families classified as ‘‘ubiquitous’’ (core-proteome, common to all species posterior to the
node), ‘‘species-specific’’ (present in only one of the species posterior to the node), or other combinations. In orange, the proportion of families shared by
all five protoploid species. Note the similar pie charts for the Saccharomycetaceae species, compared to the different pie charts of the outgroup.
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in mammalian genomes (for review, see Samonte and Eichler 2002)

(see Discussion).

Genome content: Protein-coding genes and spliceosomal introns

Protein-coding genes were identified as described in Methods. The

protoploid genomes contain from 4715 (A. gossypii) to 5320 (S.

kluyveri) protein-coding genes (Table 2). This is 8%–18% less than

S. cerevisiae, which, itself, contains ;10% less genes than the two

species used here as outgroups, D. hansenii and Y. lipolytica. With

approximately 5000 protein-coding genes on average, protoploid

yeasts have the smallest known gene set among hemiascomycetes.

Protein size distributions and global amino acid compositions are

similar for the nine yeasts considered here (mean: 492 6 14 amino

acids; median: 410 6 11 amino acids). Spliceosomal introns are

rare (3%–6% of protein-coding genes are interrupted by introns) in

these five yeasts, and very few genes contain two introns (four in

Z. rouxii, 11 in S. kluyveri). Splice sites and branch-point sequence

motifs are similar to those or S. cerevisiae, and intron lengths are

shorter, except for K. lactis. Additional information on yeast spli-

ceosomal introns can be found at http://genome.jouy.inra.fr/

genosplicing/.

tRNA-coding genes

The variety of tRNA species (identified by their anticodon), num-

ber of genes, and corresponding codon usage are given in Sup-

plemental Table 4. The five protoploid yeasts follow the tRNA

sparing rules previously described for other hemiascomycetes,

enabling them to interpret the entire genetic code with only 43 or

44 tRNA species instead of the complete eukaryotic set of 46

(Marck et al. 2006). As expected for yeasts, a significant proportion

(25%–35%) of tDNAs harbor an intron, all of which are short

(except for the tDNA-Leu [CAG], where introns are 288, 150, and

134 nucleotides [nt] long for K. lactis, A. gossypii, and S. kluyveri,

respectively).

In each yeast, most species of tRNA molecules are encoded by

more than one gene (up to 17 copies), and the different paralogous

gene copies are identical, or almost identical, in sequence, that is,

there exists only one tRNA species for each anticodon. Two

exceptions are notable here: (1) in Z. rouxii, the two copies of

tDNA-Val (TAC) differ from each other at 26 positions; (2) in S.

kluyveri, one of the three copies of tDNA-Glu (CTC) differs by 17 nt

changes from the two other copies of tDNA-Glu (CTC). In-

terestingly, this tDNA, which is located on the GC-rich left arm of

chromosome C, results from a silent T-to-C mutation in the anti-

codon but is otherwise identical in sequence to the 13 tDNA-Glus

(TTC).

As in other yeasts, tDNAs are dispersed throughout the

genomes. Distances between two successive tDNAs along chro-

mosomes vary from a few hundred base pairs to >300 kb (median

values 20–30 kb). Clusters of tDNAs are rare in yeasts and tandem

arrays of identical tDNAs even rarer. Thus, it is worth mentioning

the array of five tandemly repeated tDNA-Glus (CTC), each sepa-

rated by ;1 kb, that lies on chromosome B of K. thermotolerans. As

previously described for other hemiascomycetes (Marck et al. 2006;

Acker et al. 2008), probable di-cistronic tDNA pairs are also found

in the yeast genomes we analyzed (Supplemental Table 5). In all

cases, the intervals between the two successive tDNAs, that are

always co-oriented, are very short and lack Pol III terminators.

Some pairs, such as Arg (TCT)–Asp (GTC) or His (GTG)–Val (AAC),

are common to several yeast species and probably result from an-

cestral fusions. Others appear specific to individual lineages.

Genes for other noncoding RNA molecules

A single rDNA locus is found in each protoploid species (Table 2). It

is located within a chromosome arm, as in S. cerevisiae, not in

a subtelomeric position as in some other yeasts. In each case,

a gene encoding the 5S RNA molecule is part of the rDNA repeat, in

opposite orientation of the 35S transcript (precursor of 18S, 5.8S,

and 26S RNAs).

Genes for other major noncoding RNA molecules were anno-

tated as described in Methods (Supplemental Table 6). The five

spliceosomal RNAs (U1, U2, U4, U5, U6 snRNAs) are conserved in

structure and size, and each is encoded by a single gene in the five

yeast species. The same holds true for the U3 snoRNA, except for an

interchromosomal duplication that created two identical genes in

Z. rouxii. Similarly, the RNA moieties of the RNase P and SRP com-

plexes are each encoded by a single gene in all yeast species, but their

sequences and sizes differ owing to insertions of variable lengths

around the conserved structural core. C/D snoRNA genes are highly

Table 2. Summary of annotated features in yeast genomes of interest

Species Strain
No. of

chromosomes

Genome
size

(Mb)

Average
G+C

content
(%)

Total
no.

of CDS

Genome
coding

coverage
(%)

Gene
density
(no. of

CDS per
10 kb)

Average
G+C in

CDS
(%)

Average
CDS size
(codons)

Total
tRNA

genesa

Total
snRNA
genesb

Total
snoRNA
genesb

No. of
rDNA

clustersc

S. cerevisiae S288c 16 12.1 38.3 5769 70.0 4.8 40.3 488 274 6 77 1 (I)
C. glabrata CBS138 13 12.3 38.8 5204 64.2 4.2 41.7 507 207 6 ND 2 (S)
Z. rouxii CBS732 7 9.8 39.1 4992 76.1 5.1 40.2 497 272 5 44 1 (I)
K. thermotolerans CBS6340 8 10.4 47.3 5094 72.3 4.9 49.2 492 229 5 43 1 (I)
S. kluyveri CBS3082 8 11.3 41.5 5320 69.6 4.7 43.1 497 257 5 43 1 (I)
K. lactis CBS2359 6 10.7 38.8 5076 69.2 4.8 40.5 485 163 5 43 1 (I)
A. gossypii ATCC10895 7 8.7 52.0 4715 79.6 5.4 52.0 491 190 5 79 1 (I)
D. hansenii CBS767 7 12.2 36.3 6395 74.2 5.2 38.0 479 200 5 ND 3 (I)
Y. lipolytica CBS7504 6 20.5 49.0 6580 46.0 3.1 53.8 489 510 6 ND 6 (S)

Data from S. cerevisiae were taken from SGD (http://www.yeastgenome.org/); C. glabrata, D. hansenii, and Y.lipolytica from Génolevures (http://
www.genolevures.org/); and A. gossypii from AGD (http://agd.vital-it.ch/index.html). Annotations for Z. rouxii, K. thermotolerans, S. kluyveri, and K. lactis
are part of this work and are available from the Génolevures online database (http://www.genolevures.org/). ND, Not determined.
aSee Supplemental Tables 4 and 5 for details.
bSee Supplemental Table 6 for details.
crDNA clusters may be internal to chromosome arms (I) or in subtelomeric (S) locations.
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conserved. (H/ACA snoRNAs were not systematically investigated

because of their variable size and poor sequence conservation.) The

five polycistronic clusters, which encode 17 snoRNA molecules, are

conserved. Also conserved are the five snoRNA genes embedded in

introns of protein-coding genes. Finally, nearly all of the 21 mon-

ocistronic C/D snoRNA genes were unambiguously identified in

each yeast, including snR52 transcribed by RNA polymerase III. The

three absent cases (snR4 in K. lactis and S. kluyveri, snR50 in K.

thermotolerans, and snR62 in Z. rouxii) were missed, probably owing

to extensive sequence divergence and lack of synteny. We did

not precisely define telomerase RNAs (beside the two previously

annotated ones) (McEachern and Blackburn 1995; Chappell and

Lundblad 2004), owing to their extensive sequence variation.

Transposable elements

Very few transposable elements are present in the five yeast

genomes we analyzed (Supplemental Table 7). Z. rouxii and A.

gossypii have a few degenerate Ty3-like elements and no other class

I elements (retro-elements). K. thermotolerans, S. kluyveri, and K.

lactis have several solo-LTRs of Ty1-like elements, but only S.

kluyveri has intact copies of that retro-element. In K. thermotolerans,

there are only two degenerated Ty1 copies, and both are located in

subtelomeric regions, as previously observed for K. lactis (Fairhead

and Dujon 2006).

Our greatest surprise came from the presence of a novel class

II element in the protoploid yeast genomes. Such elements have

only been found so far in C. albicans (Goodwin et al. 2001, 2007)

and Y. lipolytica (Neuvéglise et al. 2005). Now, we found sequences

similar to the hAT DNA transposon of plants and fungi (Rubin

et al. 2001) in K. thermotolerans, S. kluyveri, K. lactis, and A. gossypii

(Supplemental Table 7). Four full-length elements of this family

(called Rover) were recognized in total. All carry a single CDS (be-

tween 631 and 867 codons), possess Terminal Inverted Repeats

(TIR), and create 8-bp target site duplications. The presence of this

element in four yeasts only, suggests an invasive transfer (possibly

in the common ancestor of clades 10, 11, and 12 of Saccha-

romycetaceae, as the element is not found in Z. rouxii). Judging from

the limited number of Rover sequences or their remnants, this

element had a limited evolutionary success.

Protein families and functional repertoire

Overall description of protein families and core
protein repertoire

The predicted proteomes of the five pro-

toploid yeast species (see Methods) were

classified into families based on all-to-all

sequence comparisons and consensus clus-

tering, as previously described (Nikolski

and Sherman 2007). Proteomes of S. cer-

evisiae, C. glabrata, D. hansenii, and Y. lipo-

lytica were included in the comparisons,

bringing the total to 48,889 yeast pro-

teins. Among these, 98% could be parti-

tioned into 7927 protein families (Table

3). The remaining 1015 proteins (2%)

could not be unambiguously classified

using our clustering parameters. The list

of protein families and their content

can be found at http://www.genolevures.

org/. A third of the protein families are

common to all nine yeasts. In each species, they are represented ei-

ther by a single gene (1689 families) or by several paralogous genes

(902 families). Another 45% of protein families are species-specific,

and the remaining 22% are represented in various subsets of species.

We examined the distribution of the three classes of families in the

different yeast species and at each evolutionary node according to

the phylogenetic tree (Fig. 1B). As expected, most species-specific

families originate from the two outgroup species. Yet about a quarter

of the 5074 families found in all Saccharomycetaceae is made up of

species-specific proteins. The five protoploid proteomes are quite

homogeneous, with only small proportions of species-specific fami-

lies. They share additional protein families in addition to the ones

common to all nine species, bringing the total of their common

families to 3295. This ‘‘core protein repertoire’’ represents 81%–88%

of the protein families present in each of the five protoploid species.

As expected, most families of this core repertoire are represented in S.

cerevisiae and C. glabrata, making it a characteristic feature of Sac-

charomycetaceae whose functions are worth elucidating.

Functional categorization of the core protein repertoire

Because few functional data are available for yeasts other than S.

cerevisiae, we restricted our analysis of the core repertoire to fami-

lies having, among them, at least one S. cerevisiae representative

with a functional annotation. A total of 4097 distinct S. cerevisiae

proteins with an associated GO-term for biological processes were

retrieved from GO resources at http://www.yeastgenome.org/. For

each of the 32 informative GO-terms recovered, the proportion of

families belonging to the core repertoire was computed (Supple-

mental Fig. 3). Genes involved in ribosome biogenesis, pro-

tein translation or modification, transport, RNA metabolism, or

cellular respiration are highly represented among the core reper-

toire families. In contrast, processes such as sporulation, meiosis,

or conjugation are more frequently based on species- or lineage-

specific genes.

Paralogous genes, genome redundancy, and tandem arrays

Paralogous genes

As noted above, a large number of protein families (1479) are rep-

resented by more than one protein in a given yeast species, re-

vealing paralogs derived from ancestral duplications. Figure 2A

Table 3. Numerical distribution of protein families and corresponding numbers of
protein-coding genes

Families present
in all nine

yeast species

Families present
in a subset of
species (2–8)

Families present
in only

one species Total

Families with #1 gene
per species

1689
15,201

1416a

7640
3343
3343

6448
26,184

Families with >1 gene
per species

902
17,518

362b

3378
215
794

1479
21,960

Total 2591
32,719

1778
11,018

3558
4137

7927
47,874

Protein families were computed from the nine yeast species as explained in Methods, and were clas-
sified according to their presence in all species (column 1), a subset of species (column 2), or only one
species (column 3). In each case, a family may be represented by one (line 1) or by several genes (line
2). For each category, the table indicates the total number of distinct protein families (bold) and the
corresponding number of protein-coding genes. The complete list of families and corresponding genes
can be found at http://www.genolevures.org/.
aIncluding 498 families (1562 genes) absent from S. cerevisiae.
bIncluding 99 families (607 genes) absent from S. cerevisiae.
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shows that the distributions of protein family sizes for the five

protoploid species are globally similar. With 300–350 families of

two paralogous genes per species, 95–115 families of three paralogs,

and a few larger families, a total of 30%–34% of protein-coding

genes are members of multigene families in the protoploid ge-

nomes (compared to 44% for S. cerevisiae). Thus, ancestral du-

plications of various sorts (see below)

contribute to a third of the genomes of

Saccharomycetaceae, while the whole-ge-

nome duplication in the ancestry of S.

cerevisiae contributes to only an addi-

tional 10% of paralogs. We also compared

the global genome redundancy of all nine

yeast species (Fig. 2B) (note that re-

dundancy only refers here to sequence

similarity, not to function). The five pro-

toploid yeasts are similar in this regard

(slightly lower for A. gossypii) and differ-

ent from other yeasts. The higher genome

redundancy of S. cerevisiae and C. glabrata

reflects their ancestral whole-genome du-

plication. In contrast, the higher genome

redundancy of D. hansenii and Y. lipolytica

results from the expansion of specific

gene families (if the 104 multigene fami-

lies specific to Y. lipolytica were ignored,

then its net redundancy would drop to

the same figure as D. hansenii). In both cases, the total gene num-

ber increases without a corresponding increase in the protein

repertoire.

Ignoring TGAs (see below), paralogs appear randomly dis-

persed in the genomes of protoploid yeasts (Supplemental Table 8).

This dispersion is compatible with interchromosomal as well as

intrachromosomal duplication events that reshuffled the genomes

over a long time. Global distributions of sequence identities be-

tween paralogous proteins are remarkably similar for the species

studied (Fig. 3A). A major mode is observed at ;27% amino acid

identity, which corresponds to highly diverged proteins (probably

very ancient gene duplications). Higher identity (;35%–75%),

representing more recent duplications or stronger functional

constraints, is observed with slowly decreasing frequency. Note the

relative excess of highly similar paralogs (>90% amino acid iden-

tity), representing even more recent gene duplications or stringent

functional constraints (slightly more important in K. lactis and

K. thermotolerans than for the three other species).

Tandem gene arrays (TGAs)

The total number of TGAs, with either no (most cases) or a few

intervening genes between the successive paralogous copies,

ranges from 31 for A. gossypii to 51 for S. kluyveri, most of which

consist of only two or three gene copies (Supplemental Table 9).

The few TGAs of four and five genes may correspond to functional

adaptations. Some TGAs consist of a gene and a pseudogene, in-

dicating functional inactivation of a gene copy after the duplica-

tion. Interestingly, paralogs in TGAs are generally less diverged in

sequence than dispersed paralogs (Fig. 3A), in agreement with the

idea that they represent more recent gene duplication events,

possibly of adaptive type. Accordingly, several TGAs appear as

species-specific, as if the tandem duplications occurred in-

dependently in the various phylogenetic branches (Supplemental

Table 10). They encompass a large variety of functions and, for the

most part, protein families of limited sizes (one to three members

per species). Other TGAs are conserved within the protoploid

yeasts. Many consist of large multigene families (with more than

10 members per species). Using synteny conservation as an in-

dication of common ancestry, a minimum of 18 TGAs were formed

prior to species divergence and conserved (despite copy number

variation; Supplemental Table 10). For example, genes encoding

Figure 2. Genome redundancy. (A) Shown for each yeast species is the
total number of protein families distributed according to their size (nb of
paralogs per family; families of one member are not shown). The pro-
portion (in percent) of the number of CDS belonging to multigene families
to the total number of CDS is indicated in brackets next to the species
abbreviation. (B) Compared genome redundancies for all nine yeast
genomes. (SACE) S. cerevisiae; (CAGL) C. glabrata; (ZYRO) Z. rouxii; (KLTH)
K. thermotolerans; (SAKL) S. kluyveri; (KLLA) K. lactis; (ERGO) A. gossypii;
(DEHA) D. hansenii; (YALI) Y. lipolytica. Global genome redundancy is cal-
culated as the ratio of total number of protein-coding genes in a genome
vs. the total number of protein families in the same species. Raw re-
dundancy counts all gene copies within tandem gene arrays (TGA); net
redundancy considers only one gene-equivalent per TGA.

Figure 3. Distribution of amino acid sequence identities between pairs of homologous proteins. Pairs
of orthologous (as defined from SONS) or paralogous proteins (defined from protein families) were
used to compute the distributions. (A) Paralogs; (B) orthologs. Amino acid identities were calculated
from BLAST alignments with low complexity filter. Each distribution was computed from all pairwise
alignments between two species for orthologs, and from pairwise alignments within families of two and
three members for paralogs. (Solid lines) Dispersed paralogs; (dashed lines) TGAs; species abbreviations
as in Figure 2.
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the TAF14 subunit of the polymerase II transcriptional machinery,

protein kinases involved in mitotic exit network, and B-type

cyclins comprise two-copy TGAs conserved in all five protoploid

yeasts (the last one is duplicated in S. cerevisiae and C. glabrata).

TGA expansion and conservation among all hemiascomycetous

yeasts will be published elsewhere (L Despons, P Baret, L Frangeul,

V Leh-Louis, P Durrens, and JL Souciet, in prep.).

Conservation of dispersed paralogous gene copies

We also examined the conservation of dispersed paralogs to pin-

point events of gene duplication or loss during the evolution of

the five protoploid yeasts and to try to evaluate their functional

consequences. Many families of two members (204) or three

members (52) are conserved among the five species studied. Con-

sidering, as a conservative underestimate, only pairs of paralogs for

which orthology of both members is clearly demonstrated for all

five species by synteny conservation, a total of 114 cases could be

retrieved (Supplemental Table 11). They are involved in a variety of

functions, as deduced from their S. cerevisiae homologs, and have

diverse degrees of sequence conservation. In addition to the genes

encoding histones H4 and H2B, and mitochondrial, cytoplasmic,

or peroxysomal protein isoforms that were expected, we found

genes encoding a variety of protein kinases, translational elonga-

tion factors, thioredoxins, a nuclear pore component, an ATPase of

the AAA family, the 1,3-beta-D-glucan synthase, factors involved

in fatty acid metabolism, and specific components of the protea-

some and ubiquitination pathway. Some conserved duplicated

genes are of unknown function. Among the conserved paralogous

proteins having undergone the greatest sequence variation (;20%

of amino acid identity) are a component of the SSU processosome

containing the U3 snoRNA, a ubiquitin-specific protease, and

a protein involved in structural maintenance of chromosomes.

Variation of dispersed paralogous gene copies

At the other extreme, events of gene duplication or loss that oc-

curred during the evolution of protoploid yeasts are illustrated by

several species-specific families of paralogs. Given the diversity of

the resulting situations, we have examined three simple cases. If

one considers (Supplemental Table 12) genes present in one copy

in four species but in families of two or more paralogs in the fifth,

the largest amplification is represented by five paralogs (including

one tandem) in S. kluyveri that encode proteins with weak simi-

larity to the Amn1 proteins of S. cerevisiae involved in daughter cell

separation and chromosome stability. Other series of two or three

paralogs are involved in a variety of functions. If one considers

(Supplemental Table 13) genes present in families of two or more

paralogs in one species but absent from all others, the most spec-

tacular cases are two families of, respectively, 20 and 10 members

observed in Z. rouxii, the first one related to the COS/DUP family

of mostly subtelomeric genes in S. cerevisiae. Similarly, there are two

families of seven members in K. lactis, two families of five mem-

bers, and one family of four members in K. thermotolerans. Among

this species-specific category, families of two or three paralogs are

also found in all species, but, unfortunately, almost no functional

inference is possible owing to lack of homologs. Finally, there are

a variety of gene family expansions in some species that are

probably related to functional adaptation (Supplemental Table 14).

For example, K. lactis has 12 copies (compared to zero to four for

other species) of a gene similar to the Mch2 protein of S. cerevisiae

that may be involved in importing monocarboxylic acids. Simi-

larly, S. kluyveri has 12 copies (compared to three to six for other

species) of a gene encoding proteins weakly similar to cell surface

proteins, and Z. rouxii has 10 copies (compared to zero to four

for other species) of genes potentially encoding oxydoreductases

involved in the formation of chiral alcohols.

Orthologous genes and synteny conservation

Definition of orthologs

The proper identification of orthologous genes is a major challenge

(Kuzniar et al. 2008) because accumulation of gene-loss and du-

plication events tends to blur the recognition of true orthologs

among the set of remaining homologs. Reciprocal best hits are

often used to assign orthologs among a set of homologs (Rivera

et al. 1998), but true orthologs are not necessarily those with the

most similar sequences among all homologs (Lynch and Conery

2000). The present set of yeast species offered us a chance to define

orthologous genes based on conservation of their genetic location.

We started from a series of homologous genes identified from the

corresponding protein families (see above), and examined their

flanking chromosomal regions for the presence of other homologs

(see Methods). In this way, we defined subsets of orthologous genes

from each inspected family of homologs. The procedure was re-

iterated exhaustively until all protein-coding genes of all yeast

species had been examined, defining SONS (Subset of Orthologs by

Neighborhood and Similarity). In total, we identified 3896 SONS

out of 3493 families (80% of families present in more than one

species). A total of 27,926 genes (64% of the genes) are assigned to

SONS, that is, belong to groups of orthologs confirmed by a shared

neighborhood. Most of the remaining genes belong to Y. lipolytica

and D. hansenii as expected from the very low conservation of

synteny between those species and other yeasts. The complete list

of genes in SONS can be found at http://www.genolevures.org/.

Conservation of orthologs

A total of 1609 SONS (41%) are common to all yeasts (i.e., they

comprise a series of 1:1:1:1:1 orthologs confirmed by synteny). For

the rest, some genes are missing in some species owing to gene loss

during evolution. Using all alignments of orthologous proteins (as

defined from cognate SONS), we computed the distributions of

sequence identities for all pairwise comparisons of our five yeasts

(Fig. 3B). Strikingly, their mean or median values (all distributions

are monomodal, as expected for orthologs) underline the large

evolutionary distances between protoploid species of Saccha-

romycetaceae. Even species belonging to the same clade, such as

S. kluyveri and K. thermotolerans, show an average amino acid identity

as low as 58.2%. Other pairwise comparisons show even lower

similarity (48%–53%), consistent with their proposed phylogeny

(see Fig. 1). Thus, even a homogeneous phylogenetic group such as

the Saccharomycetaceae spans a very broad evolutionary range.

Synteny conservation

Using gene orthologs (as defined from SONS), we computed the

maximal synteny conservation between the five protoploid yeast

genomes as described in Methods. Pairwise comparisons between

the five species (Supplemental Fig. 4) show the significant amount

of map reshuffling that occurred during the evolution of this group

of species, leaving numerous and relatively short synteny blocks

scattered throughout these genomes. However, recognizable syn-

teny blocks cover significant proportions of each genome (;80%–

90% of all protein-coding genes). The distributions of block size

(14–26 genes) and number (180–291) vary only slightly between

pairs of species, except for the S. kluyveri vs. K. thermotolerans
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comparison that shows larger (mean size 59 genes) and fewer (84)

synteny blocks. An example of synteny block conservation is il-

lustrated by Supplemental Figure 5. Note that, despite extensive

map reshuffling, the five protoploid species clearly form a homo-

geneous group: When a more distantly related yeast such as

D. hansenii is compared to any of them, the size of synteny blocks

and their coverage of the genome diminish considerably (Supple-

mental Fig. 6). Distributions of size of synteny blocks in all pairwise

species comparisons (Fig. 4) are consistent with the phylogenetic

relationships between species. Interestingly, the frequency distri-

bution of synteny blocks according to their size fits a power law

rather than the expected exponential law implied by the random

breakage model of Nadeau and Taylor (1984).

Our definition of synteny blocks allows for the presence of

‘‘intervening’’ genes in them (see Methods). The number of such

genes is roughly proportional to block sizes (Supplemental Fig. 6).

Figures are similar for Z. rouxii, K. lactis, and A. gossypii (approxi-

mately seven intervening genes for 100 orthologs in syntenic

blocks), but are significantly higher for S. kluyveri (approximately

12). An intermediate figure is observed for K. thermotolerans (ap-

proximately nine).

Relationship between sequence divergence and synteny conservation

We examined the relationship between the rates of sequence di-

vergence and chromosomal rearrangements during the evolution

of hemiascomycetes (Fig. 5). There is a nonlinear relationship be-

tween average amino acid identity of orthologous proteins and the

proportion of genes remaining in synteny. The five protoploid

species are grouped in a sector of the curve in which sequence

identity decreases rapidly while synteny conservation decreases

slowly. Pairwise comparisons of the same species with those of the

outgroup (D. hansenii or Y. lipolytica) extrapolate well with results

of the most distant species among protoploids (Z. rouxii vs. K. lactis

or A. gossypii). The nonlinear form of this relationship indicates

that significant sequence divergence occurs before chromosomal

maps become extensively rearranged. At larger evolutionary dis-

tances, chromosome reshuffling catches up to protein-sequence

divergence, which becomes limited by saturation and functional

constraints (see Discussion).

Genome rearrangements from inferred ancestors

The slow pace of genome rearrangements enabled us to infer an-

cestral events from contemporary genomes based on conservation

of synteny blocks. Such an inference is possible because, in pro-

toploid yeasts, the probability of independent formation of such

blocks in different lineages is likely to remain negligible compared

to their inheritage from a common ancestor. Each genome was

factored into a sequence of ordered synteny blocks common to all

genomes, and super-blocks were computed using the method de-

veloped by G Jean, DJ Sherman, and M Nikolski (in prep.). From

this, we computed median genomes for the five protoploid

genomes, as well as rearrangement trees containing intermediate

Figure 4. Size of synteny blocks. (A) Distribution of sizes of synteny blocks (log scale abscissae) between all pairs of protoploid Saccharomycetaceae. The
same distribution for synteny blocks between K. thermotolerans and an outgroup species (D. hansenii) is shown for comparison. Species abbreviations as in
Figure 2. (B) Frequency distribution of synteny blocks (log scale ordinate) between all pairs of protoploid Saccharomycetaceae according to size (log scale
abscissa).

Figure 5. Relationship between protein sequence divergence and
synteny conservation. Average sequence identities between orthologous
proteins (ordinate) in all pairwise species comparisons were calculated
from Figure 3. The percent of orthologs remaining in synteny (abscissa) for
the same pairs of yeast species is the ratio of the total number of orthologs
within syntenic blocks over the total number of orthologs between the
two species considered.
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ancestral candidates for different branches (Goëffon et al. 2008).

Figure 6 shows pairwise rearrangement distances and a rearrange-

ment tree. The rearrangement tree separates Z. rouxii from the

other four species, in agreement with the phylogenetic tree based

on sequence alignments (see Fig. 1). Again, in agreement with

phylogeny, S. kluyveri and K. thermotolerans are the closest in terms

of rearrangements. However, in the rearrangement tree, A. gossypii

and K. lactis are as diverged from each other as Z. rouxii is from the

ancestor of all five species. This underlines the highly dynamic

nature of yeast genomes, even within a related group like the

Saccharomycetaceae. (The difference in rearrangement distance

between the binary rearrangement tree and a simple star topology

rooted at the median is only 10 events [3.5%].)

Discussion
With the complete genome sequencing and analysis of three novel

yeast species, Z. rouxii, K. thermotolerans, and S. kluyveri, we have

been able to perform the first comparative genomic study in-

volving four distinct clades (and five species) of Saccharomy-

cetaceae, that all separated from S. cerevisiae before its ancestral ge-

nome duplication. In two previous studies, yeasts of these clades,

namely, A. gossypii (Dietrich et al. 2004) and K. waltii (Kellis et al.

2004), were individually compared to S. cerevisiae but not between

themselves. In another study (Dujon et al. 2004), K. lactis was in-

volved in multispecies comparative genomics with four other

hemiascomycetes, but none was a protoploid Saccharomycetaceae.

The present study was facilitated by the development of new

methods that may be of general interest for other comparative

genomic studies between species having sufficient conservation of

synteny (see Methods). Among them is the method we used to

define gene orthology (ML Seret and PV Baret, in prep.). Compared

to YGOB, which implies manual curation of data (Byrne and Wolfe

2005), and to SYNERGY, which requires a priori definition of

parameters (Wapinski et al. 2007), our method (IONS) simply

subdivides precomputed sets of homologs (based on sequence

similarity) using gene neighborhood evidence in a reiterative

process with gradually decreasing neighborhood sizes until series

of homologs with only one gene per species are obtained.

Genomes of the five species we examined reveal common

signatures that confirm the monophyletic origin of Saccharomy-

cetaceae and distinguish them from representatives of other sub-

divisions of hemiascomycetes, used here as outgoups for compari-

son. Among those signatures are short centromeres (Meraldi et al.

2006), triplication of mating cassettes (except for S. kluyveri) (Butler

et al. 2004), a very limited number of spliceosomal introns (Bon

et al. 2003), usage of the universal genetic code (Miranda et al.

2006), and a single rDNA locus containing the genes for the 5S

RNA molecule (Acker et al. 2008). Additional discriminatory sig-

natures are also found in their mitochondrial genomes: The genes

encoding subunits of complex I of the respiratory chain are miss-

ing, while a gene for a variable ribosomal subunit and another one

for an abnormal tRNA-Thr (UAG) altering the mitochondrial ge-

netic code are present (http://www.ncbi.nlm.nih.gov/genomes/

OrganelleResource.cgi?opt=organelle&taxid=4751).

The five protoploid genomes show only limited variation in

the total number of protein-coding genes (<7% relative to the

mean) and almost no variation for some noncoding RNA genes.

But their chromosome number varies from six to eight, the num-

ber of tRNA genes varies from 163 to 272, and the average genome

composition from ;39% to 52% GC, indicating important line-

age-specific evolution that may be correlated with the different

lifestyles and properties of these five species. Such diversity is not

surprising given the large evolutionary distances separating the

five species, as revealed by the significant sequence divergence

among orthologous proteins. This was not known before. Even the

two species classified within the same Lachancea clade, S. kluyveri

and K. thermotolerans, show average amino acid identity of only

;58%. This is much less than between the two most distant species

of the Saccharomyces sensu stricto clade (Bon et al. 2000a; Cliften

et al. 2003; Kellis et al. 2003), which has nevertheless been more

extensively studied, illustrating again previous emphasis on yeasts

involved in biotechnological fermentation.

Evolutionary distances among protoploid yeasts are such that

our sequence-based phylogeny (Fig. 1), which is in agreement with

that of Fitzpatrick et al. (2006), is not entirely congruent with the

phylogeny of Saccharomycetaceae published by Kurtzman (2003),

where clade 12 (Eremothecium) is separated from clade 11 (Kluy-

veromyces). In both cases, however, Z. rouxii branches separately

from the four other yeasts and shares a common origin with the

duplicated yeasts of the Saccharomyces and Nakaseomyces clades.

Results presented here definitely demonstrate that Z. rouxii sepa-

rated from them before the whole-genome duplication. Given the

tree topology of Kurtzman (2003) and the fact that the Vander-

waltozyma clade was recently demonstrated to have emerged after

the duplication (Scannell et al. 2007b), Zygosaccharomyces repre-

sents the last clade having diverged from its relatives prior to the

whole-genome duplication. Of all protoploid yeasts studied here,

Z. rouxii is, therefore, the most closely related to the putative an-

cestral genome of S. cerevisiae.

Despite their long evolutionary branches, the five protoploid

species we analyzed show a high degree of synteny conservation.

Figure 6. Genome rearrangements. (A) Minimum rearrangement tree
computed using the FAUCILS stochastic local search method (Goëffon
et al. 2008); (•) contemporary genomes; (m)inferred ancestral genomes;
bold figures show the number of rearrangements in this minimum tree. (B)
Contrast between rearrangement distances summing the branches in the
tree (in bold, upper row), and pairwise distances (in italics, lower row)
computed using the GRIMM method (Tesler 2002). Note that the re-
quirement of going through a common ancestor usually increases tree-
wise distances compared to pairwise distances owing to the triangle
inequality, but decreases the sum of distances for the entire tree when all
genomes are taken into account. This is illustrated in A for the pair ERGO
and KLLA, S = 121 > 109, while the overall sum for the tree is 267. The
rearrangement tree independantly corroborates the phylogenetic tree
calculated using sequence similarity (see Discussion).
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Even if chromosome rearrangement breakages are relatively nu-

merous (a few hundred, except between S. kluyveri and K. thermo-

tolerans), they leave relatively long synteny blocks of one or two

dozen genes on average, and large proportions of genomes (>80%)

are present in still recognizable synteny blocks in all pairwise

comparisons. Such a range of synteny conservation was not

available for yeasts before. The Saccharomyces sensu stricto yeasts

share almost completely conserved synteny with few breakpoints

(Fischer et al. 2000, 2001), and other yeasts are too distantly sep-

arated to retain much synteny (Fischer et al. 2006). The nonlinear

relationship between sequence divergence and synteny conserva-

tion is compatible with the idea that genetic maps are more robust

than DNA sequences over evolutionary periods corresponding to

entire families or even orders of the Linnean taxonomical hierar-

chy. The effects of genome rearrangements become significant

over longer evolutionary times when sequence changes saturate.

Similar ideas based on much more limited sets of data were already

discussed (Langkjaer et al. 2000; Llorente et al. 2000b; Malpertuy

et al. 2000b). The frequency distribution of synteny blocks

according to their size is similar to results obtained from the 12

Drosophila genomes and other insects (Zdobnov and Bork 2007),

suggesting that chromosome rearrangements are not random in

either of these two groups of eukaryotes despite very distinct ge-

nome organizations. Accordingly, genome rearrangement trees

built from inferred ancestors are not entirely coincident with

phylogenetic trees built on sequence conservation of gene prod-

ucts. Differences in the rate of genome rearrangements between

yeast lineages have been reported (Fischer et al. 2006). Note that

conserved synteny blocks often contain short internal gene dele-

tions and/or single gene insertions (‘‘intervening’’ genes). Many

‘‘intervening’’ genes have homologs at ectopic locations in either

the same or other genomes and may have arisen by single gene

transfer (possibly by retroposition) or by dispersed short segmental

duplications similar to the few that were recognized. A few ‘‘in-

tervening’’ genes correspond to horizontally transferred genes, as

previously illustrated by the presence of a bacterial transposase-

type of sequence in A. gossypii (Hall et al. 2005). Gene transfer from

bacteria to yeasts is also documented in S. kluyveri by the presence

of six copies of a bacterial IS element (family IS607) on chromo-

somes B, G, and H (Rolland et al. 2009).

The genomes of protoploid yeasts contain remarkably

few segmental duplications (except in subtelomeric locations),

in contrast to genomes of higher eukaryotes, where they are a major

source of genome rearrangements ( Johnson et al. 2001; Samonte

and Eichler 2002), and to the high frequency of their spontaneous

formation in S. cerevisiae (Payen et al. 2008). The limited role of

segmental duplications in the evolution of yeast genomes may be

related to the important instability of duplicated copies of identical

sequences. Compared to their paucity in recent duplications of

nearly identical sequences, genomes of protoploid yeasts contain

a surprisingly high number of paralogous genes: about a third of

their gene content. Thus, we can say that there is no such thing as

‘‘nonduplicated’’ yeasts. Families of paralogs issue from ancient

duplication events that leave diverged gene copies at dispersed ge-

nomic locations and from TGAs, in which gene copies are globally

less diverged. Although some of the dispersed duplications appear

ancestral and conserved in all protoploid species (some are also

conserved in outgroup yeasts, suggesting they may be ancestral

to all hemiascomycetes), we recognized a significant number of

lineage-specific events of gene duplication and loss, some of which

resulted in significant gene family expansions that may be corre-

lated with specific biological properties of each yeast. But the

remarkable point is that, despite such dynamics, the diverse pro-

toploid species have similar levels of global genome redundancy

(the figure for A. gossypii is slightly smaller, in agreement with

a reductive and adaptive evolution [Dietrich et al. 2004]). The net

redundancy, ;1.25 on average, reflects an equilibrium between

gene duplication and loss over long evolutionary periods, when this

equilibrium is not affected by accidental events such as whole-

genome duplication or adaptive events such as gene family

expansions.

The genome sequences of the Saccharomycetaceae we de-

scribed, which offer a more balanced representation of the dif-

ferent clades, provide the framework to understand the origin

of the common properties and individual variations of these

yeasts. Their core genetic repertoire (core proteome) consists of

approximately 3300 protein families, within a pan-proteome of

approximately 5000 families for all Saccharomycetaceae. The fact

that the pan repertoire dramatically increases when outgroup

species are considered underlines the major evolutionary gaps

between the different subdivisions of hemiascomycetes and the

need for additional genomic studies of this interesting fungal

group.

Methods

Genome sequencing

Complete genome sequences of K. thermotolerans (CBS6340) and Z.

rouxii (CBS732; determined at Genoscope) and of S. kluyveri

(CBS3082; determined at the Washington University Genome Se-

quencing Center) were automatically assembled from shotgun

Sanger sequencing reads using ARACHNE (Jaffe et al. 2003) and

finished by dedicated sequencing for gaps and low-quality regions.

Genome annotation

CDS

Gene models for protein-coding genes were constructed using

GeneMark (Borodovsky and McIninch 1993) trained with a con-

servative set of coding and noncoding sequences for each of

the four genomes: Z. rouxii, K. thermotolerans, S. kluyveri, and K.

lactis. All open reading frames (ORFs) greater than 80 codons were

examined. Overlapping conflicts were solved by best GeneMark

prediction and/or existence of BLASTP alignments with the Uni-

ProtKB database. Gene models were manually examined and si-

multaneously annotated for the four species after automated

identification of homologs (DJ Sherman, T Martin, and P Durrens,

in prep.).

Spliceosomal introns

Consensus splice sites and branch point sequences were defined

for each yeast species from introns of ribosomal protein-coding

genes (Bon et al. 2003). All combinations of the three motifs sep-

arated by appropriate distances (also defined for each yeast species)

were examined for the possible formation of CDS greater than 80

codons after splicing. Note that introns in 59-UTRs were, therefore,

not systematically predicted. Overlapping intron predictions were

manually curated.

Genes for noncoding RNAs

Genes for tRNAs were identified as described in Marck et al.

(2006). Ribosomal DNA repeats were identified by comparison to
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other yeast genomes (Chindamporn et al. 1993; Rustchenko and

Sherman 1994) and mapped to chromosomes using previous kar-

yotype data (Sor and Fukuhara 1989; Neuvéglise et al. 2000;

Sychrova et al. 2000). Genes for C/D snoRNAs and snRNAs were

annotated by a combination of sequence similarity search with S.

cerevisiae, secondary structure, and synteny conservation. H/ACA

snoRNAs were not systematically identified.

Mobile genetic elements

Transposable elements were detected by TBLASTN on chromo-

some sequences using known fungal transposable elements as

queries, and manually curated. Identified elements were then used

to detect partial or degenerate elements and solo LTRs.

Protein families

Four complementary distance matrices were computed between

the predicted translation products for the 47,874 protein-coding

genes of the seven yeasts annotated by Génolevures (C. glabrata,

Z. rouxii, K. thermotolerans, S. kluyveri, K. lactis, D. hansenii, and

Y. lipolytica) (http://www.genolevures.org/), plus S. cerevisiae (http://

www.yeastgenome.org/) and A. gossypii (http://agd.vital-it.ch/),

combining BLAST and Smith-Waterman alignments with and

without filtering for homeomorphy (Wu et al. 2004). Symmetric

matrices derived from amino acid identities were constructed and

submitted to MCL clustering (Enright et al. 2002) with a range of

inflation parameters. These competing partitions were reconciled

using the consensus method of Nikolski and Sherman (2007) and

manually curated using literature search and systematic compar-

isons with COG (Tatusov et al. 2003) and PIRSF (Wu et al. 2004)

classifications.

Orthologous genes

SONS were defined by the combination of two dimensions: se-

quence similarity of gene products (defined from families; see

above), and conservation of gene neighborhood along chromo-

somes (Supplemental Fig. 7). Two genes of different yeast species

whose translation products belong to the same family (homologs

by similarity) will be members of the same SONS if they share at

least one pair of neighbors that are also homologous to each other

by similarity. The process is reiterated for all possible hetero-

specific pairwise comparisons of homologs. At an initial step,

neighboring is examined for 15 genes on each side of the two

homologs considered, giving rise to (2 3 14)2/2 pairwise compar-

isons. Homologs that do not share a pair of homologous neighbors

are separated in two distinct SONS. The process is reiterated (re-

ducing the neighborhood size in order to decrease the probability

of spurious connections) until each SONS contains #1 gene for

each yeast species. Homologs in such a case are considered as

orthologs confirmed by synteny. Details of the method and com-

parisons with other methods to infer orthology will be published

separately (ML Seret and PV Baret, in prep.).

Syntenic block construction

Synteny blocks between two yeast genomes were constructed from

the physical adjacency of orthologous genes (defined by SONS,

above) along chromosomes (deduced from sequence-based map),

using two parameters: A, the minimum number of ortholog pairs

forming anchor points; and I, the maximum number of non-

orthologous genes (‘‘intervening’’) between two successive an-

chor points. (A and I were set, respectively, to 5 and 10, following

Fischer et al. [2006].) Note that TGAs (see text) were considered

as equivalent to a single gene.
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13Université de Lyon 1, CNRS, UMR5240 Microbiologie, Adaptation et
Pathogénie, INSA de Lyon, Villeurbanne, F-69621 Villeurbanne, France.
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Bon E, Neuvéglise C, Casarégola S, Artiguenave F, Wincker P, Aigle M,
Durrens P. 2000a. Genomic exploration of the hemiascomycetous
yeasts: 5. Saccharomyces bayanus var. uvarum. FEBS Lett 487: 37–41.
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Montigny J, Marck C, Neuvéglise C, Talla E, et al. 2004. Genome
evolution in yeasts. Nature 430: 35–44.

Enright AJ, Van Dongen S, Ouzounis CA. 2002. An efficient algorithm for
large-scale detection of protein families. Nucleic Acids Res 30:
1575–1584.

Fairhead C, Dujon B. 2006. Structure of Kluyveromyces lactis subtelomeres:
Duplications and gene content. FEMS Yeast Res. 6: 428–441.

Fischer G, James SA, Roberts IN, Oliver SG, Louis EJ. 2000. Chromosomal
evolution in Saccharomyces. Nature 405: 415–454.
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