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Abstract

A minimally disruptive fluorescent dC analog provides a rapid and non-destructive method for in
vitro detection of G, 8-oxoG and T, the downstream transverse mutation product.

One of the most thoroughly examined DNA base modifications is 7,8-dihydro-8-oxoguanine
(8-oxoG), a mutagenic product of oxidative damage by reactive oxygen species.1 The presence
of 8-oxoG is frequently viewed as a marker for cellular oxidative stress, a condition that has
been linked to carcinogenesis.2 The significance of this seemingly minor base damage results
from 8-oxoG’s ability to deceive DNA polymerases and form a stable (syn)8-oxoG•A base
pair by presenting its Hoogsteen face thereby mimicking T (Figure 1).3 Unless repaired, this
might cause G to T transversion mutations during DNA synthesis (Figure 1).4 Not surprisingly,
base-excision repair mechanisms have evolved to correct such deleterious base modification
products, and the bacterial and human enzymes have been thoroughly studied.5

A non-destructive and real-time fluorescence-based detection of 8-oxoG, its repair and induced
mutation processes in oligonucleotides, could significantly advance the in vitro biochemical
evaluation of this important DNA lesion.6 It would complement existing methods that rely on
chromatographic, electrophoretic and immunological methods.7,8 Toward this end, we
hypothesized that one could take advantage of the distinct redox properties of 8-oxoG.9
Electrochemical measurements show that 8-oxoG is more easily oxidized compared to G
(E1/2 ≈ 0.75 and 1.3 vs. NHE, respectively).9a,10 Consequently, chemical approaches relying
on 8-oxoG’s susceptibility to oxidation and covalent trapping of the oxidized products in
duplex DNA have been reported.11 Since fluorescence quenching frequently occurs via
photoinduced electron transfer (PET) mechanisms,12 we suspected that 8-oxoG is likely to be
a more effective quencher of certain fluorophores compared to G, its precursor.13 Here we
describe the design, synthesis, photophysical evaluation, incorporation and implementation of
a simple isomorphic fluorescent dC analog 5 that, upon incorporation into an oligonucleotide,
photophysically distinguishes between 8-oxoG and G on the complementary strand. Not only
is the damaged 8-oxoG-containing duplex highly quenched and the “repaired” G-containing
duplex more emissive, the transverse mutated duplex containing T instead of G displays the
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most intense emission. This furan-containing emissive nucleobase therefore provides signature
emission profiles for all key nucleobases involved in this DNA damage pathway (Figure 1).14

We have been developing simple and minimally perturbing emissive nucleobases for the
detection of nucleic acids lesions.15,16 The primary design principle dictates maintaining the
highest possible structural similarity to the natural nucleobases, while significantly improving
their photophysical properties. Specifically, an isolated absorption band for selective
excitation, enhanced quantum yield over the native nucleobases and sensitivity to changes in
the microenvironment are desired. Useful uridine-based nucleosides, fulfilling these criteria,
were obtained by conjugating five-membered aromatic heterocycles such as furan at the 5
position (e.g., 2).15,16,17,18 Among the various heterocycles conjugated to dU (i.e., furan,
thiophene, oxazole, thiazole) the furan moiety was found to yield the most favorable
photophysical characteristics.15,17a We therefore anticipated the analogous furan modified
cytosine nucleobase to be emissive and responsive.

The 5-modified nucleosides are easily obtained using a coupling reaction between the 5-iodo
substituted dU (1) and the corresponding stannylated heterocycles (Scheme 1). Conversion of
the acetate protected furan-modified dU analog 3 to the desired dC analog 5 is accomplished
by activation of the 4 position as an aryl sulfonate ester followed by a displacement reaction
with ammonia,19 providing the fully deprotected furan-modified dC analog 5 (Scheme 1).
17a,20 Silyl protection of the furan-modified dU 4 facilitated the conversion to the dC analog
6 with retention of hydroxyl protection thus allowing for standard benzamide protection of the
exocyclic amine to give 7. Desilylation and protection of the 5′-hydroxyl as the 4,4′-
dimethoxytrityl derivative (9) followed by phosphitylation of the unprotected 3′-hydroxyl
afforded 10, the building block necessary for automated DNA synthesis (Scheme 1).20

The absorption spectrum of an aqueous solution of 5 shows, in addition to the typical high
energy band seen in the parent nucleoside, a clear shoulder at ~310 nm (Figure 2). Excitation
at this wavelength yields an emission profile with a maximum at 443 nm, which tails deeply
into the visible range, with a relative quantum yield of 0.02 (Table 1).20,21 Lowering solvent
polarity results in a better defined long wavelength absorption band (λmax = 309 nm) and a
hypsochromic shift in emission maxima (λem = 421 nm), which is associated with a
hypochromic effect (IWater/Dioxane = 3) (Figure 2, Table 1).

Emission spectra of 5 in dioxane-water mixtures provide a more detailed view of the
hypsochromic shift that arises upon decreasing the polarity of the chromophore’s
microenvironment (Figure S2.1).20 Plotting the corrected emission energy maximum of 5 vs.
the microenvironment polarity described by ET(30) values,22 results in a linear correlation
(Figure 3).23 Stern-Volmer titrations were conducted to determine the differences between G
and 8-oxoG’s quenching abilities (Figure 4). Rewardingly, while G minimally impacted the
emission of 5 (Ksv = 0.004 mM−1), 8-oxoG was found to be a very effective quencher, even at
low concentrations (Ksv = 16.5 mM−1).20

To investigate the potential of the emissive nucleoside to photophysically discriminate between
G, 8-oxoG and T, an oligonucleotide that contains 5 at a central position was synthesized using
10 and standard solid-phase synthesis protocols (Figure 5).20 All modified oligonucleotides
were characterized using MALDI TOF MS.20 Since modified C residues can, in principle,
deaminate to yield the corresponding U derivatives, special care was taken to unequivocally
verify the presence of 5 and absence of 2 in the modified oligonucleotide 11. Enzymatic
digestion reactions, followed by HPLC analysis against all authentic nucleosides verified the
presence of intact 5 and absence of 2 in the modified oligonucleotide 11 (Figure S6.1, Table
S6.1).20
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Oligonucleotide 11, containing the furan functionalized dC 5 was hybridized to three
complementary oligonucleotides that contain either G (oligo 12), 8-oxoG (oligo 13) or T (oligo
14) opposite the emissive nucleotide (Figure 5). Thermal denaturation (Table 2) and CD studies
show no appreciable difference between the modified (11•12, 11•13 and 11•14) and unmodified
duplexes (15•12, 15•13 and 15•14, respectively) suggesting the small furan modification does
not disrupt duplex formation, stability or structure (Figure S8.1 and S9.1).20

The emission spectra of the furan dC containing duplexes, in both low (100 mM) and elevated
(500 mM) ionic strength are shown in Figure 6.23 While the perfect duplex 11•12, where G is
placed opposite 5, is significantly emissive, placing 5 opposite 8-oxoG (11•13) leads to
considerable emission quenching (ca. two-fold), as hypothesized. Nucleoside 5 therefore
clearly distinguishes between G and 8-oxoG, its oxidized product. In contrast, duplex 11•14,
where 5 is placed opposite T, a substantial emission enhancement (ca. four-fold compared to
11•13) is observed (Figure 6, Table 3). Nucleoside 5 thus reports the presence of T, the ultimate
transversion mutation product resulting from G oxidation to 8-oxoG, via enhanced emission.
These observations, illustrating signature emission profiles for duplexes containing G, 8-oxoG
and T, suggest that the furan-modified dC nucleoside 5 could be utilized to follow, in vitro,
DNA damage and its repair via this pathway using such emissive oligonucleotides.

The observed fluorescence quenching of 5 by 8-oxoG can be understood by the lower redox
potential of 8-oxoG and concomitant higher potency as an excited state quencher compared to
G (Figure 4). Several observations collectively suggest that the substantial fluorescence
enhancement observed for the 5•T mismatch in 11•14 is due to exposure of the emissive
nucleoside to a more polar environment, likely extrahelical. Thermal denaturation data
illustrates that the dC/T containing duplex 15•14 (as well as the analogous modified duplex
11•14) are the least stable (Table 2). This is consistent with previous observations illustrating
this particular dual pyrimidine mismatch to be rather unfavorable,24 therefore suggesting a
local structural perturbation. Fluorescence experiments carried out at elevated ionic strengths
(500 mM) for all duplexes resulted in similar observations (Figure 6), rendering the potential
higher abundance of the more emissive single strand due to poor hybridization unlikely.20

Further support for the proposed extrahelical residency of the fluorescent nucleobase is
obtained by interpolating the emission energy of modified duplexes containing 5 and
environmental polarity using the linear correlation shown above (Figure 3, Table 3). The
emission spectra of the furanyl modified duplexes 11•12 and 11•13, where furanyl dC 5 can
pair in a Watson–Crick fashion, display emission maximum that correlate to relatively apolar
environments (Figures 3 and 6, Table 3), while duplex 11•14, where furanyl dC 5 is unable to
pair in a W-C fashion with T, shows a red shifted emission maximum that correlates to a polar
environment, in agreement with an extrahelical disposition.

In summary, we have shown that an isomorphic fluorescent nucleoside 5, which upon
incorporation results in no observable perturbation of the duplex shape and stability, is a
valuable probe for the detection of G, 8-oxoG and its transverse mutation product T by eliciting
markedly different emission intensities in conjunction with changes in emission maxima. The
effective synthesis and incorporation of 5 could facilitate rapid and non-destructive real-time
fluorescence-based methods for the in vitro monitoring of this DNA damage pathway.25
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Figure 1.
Base pairing along the DNA damage pathway from G•C to T•A, (its transverse mutation
product) via 8-oxoG.
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Figure 2.
Absorption (dashed) and emission (solid) spectra of 5 in water (blue), methanol (green),
dichloromethane (orange) and dioxane (red) at 2.4 × 10−5 M.
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Figure 3.
Correlating emission wavelengths with microscopic polarity ET(30)22 for nucleoside 5 (filled
circles and green line)20 and interpolation of corrected emission maxima23 of duplexes
containing 5 (arrows).
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Figure 4.
Steady-state Stern-Volmer plot for the titration of 5 with 8-oxo-2′-deoxyguanosine (stars, black
dashed line), dGMP (X) and TMP (open circles). Error bars (dGMP and TMP) and data (dAMP
and dCMP) have been omitted for clarity (Figure S3.1, Table S3.1).20
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Figure 5.
Oligonucleotide sequences where Y = 8-oxoG.
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Figure 6.
Steady state emission spectra of oligonucleotides 11•12 (5•G - blue), 11•13 (5•8-oxoG - red)
and 11•14 (5•T - orange) at 5.0 × 10−6 M in 1.0 × 10−2 M phosphate aqueous buffer pH = 7.0
containing 1.0 × 10−1 M NaCl (solid) and at 4.6 × 10−6 M in 1.0 × 10−2 M phosphate aqueous
buffer pH = 7.0 containing 5.0 × 10−1 M NaCl (dashed).20
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Scheme 1.
Synthesis of furan dC analog 5 and its corresponding amidite.
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Table 1
Photophysical properties of nucleoside 5 in various solvents.20

Solvent λabs (nm) λem (nm) Φ I normalized

Water 310 443 0.020 1.00
Methanol 305 439 0.011 0.70
Dichloromethane 309 439 0.009 0.54
Dioxane 309 421 0.006 0.33
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Table 2
Thermal denaturation of control and modified oligonucleotides.

Duplexa Tm(ΔTm
b) (°C) 100 mM NaCl Tm(ΔTm

b) (°C) 500 mM NaCl

15•12 51.8 59.2
15•13 47.7 55.2
15•14 34.5 41.2
11•12 51.5 (−0.3) 59.0 (−0.2)
11•13 47.1 (−0.6) 54.5 (−0.7)
11•14 34.7 (+0.2) 42.0 (+0.8)

a
1.0 × 10−6 M duplex DNA aqueous buffer pH = 7.0.

b
ΔTm = modified = unmodified.
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Table 3
Emission maxima of modified duplexes in phosphate buffers at different NaCl concentrations.

Duplex λem/nm (cm−1) 100 mM NaCl Intensity at λem/au λem/nm (cm−1) 500 mM NaCl Intensity at λem/au

11•12 439 (22,779) 1.00 440 (22,727) 1.00
11•13 435 (22,989) 0.52 437 (22,883) 0.55
11•14 446 (22,422) 2.05 447 (22,371) 2.15
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