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Impact of OATP transporters on pharmacokinetics
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Membrane transporters are now recognized as important determinants of the transmembrane passage of drugs. Organic anion
transporting polypeptides (OATP) form a family of influx transporters expressed in various tissues important for pharmacoki-
netics. Of the 11 human OATP transporters, OATP1B1, OATP1B3 and OATP2B1 are expressed on the sinusoidal membrane of
hepatocytes and can facilitate the liver uptake of their substrate drugs. OATP1A2 is expressed on the luminal membrane of small
intestinal enterocytes and at the blood-brain barrier, potentially mediating drug transport at these sites. Several clinically used
drugs have been identified as substrates of OATP transporters (e.g. many statins are substrates of OATP1B1). Some drugs may
inhibit OATP transporters (e.g. cyclosporine) causing pharmacokinetic drug–drug interactions. Moreover, genetic variability in
genes encoding OATP transporters can result in marked inter-individual differences in pharmacokinetics. For example, a single
nucleotide polymorphism (c.521T > C, p.Val174Ala) in the SLCO1B1 gene encoding OATP1B1 decreases the ability of OATP1B1
to transport active simvastatin acid from portal circulation into the liver, resulting in markedly increased plasma concentrations
of simvastatin acid and an enhanced risk of simvastatin-induced myopathy. SLCO1B1 polymorphism also affects the pharma-
cokinetics of many other, but not all (fluvastatin), statins and that of the antidiabetic drug repaglinide, the antihistamine
fexofenadine and the endothelin A receptor antagonist atrasentan. This review compiles the current knowledge about the
expression and function of human OATP transporters, their substrate and inhibitor specificities, as well as pharmacogenetics.
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Role of transporters in pharmacokinetics

After an orally administered drug is dissolved, it crosses the
intestinal wall, reaches the liver via portal blood flow and
subsequently enters the systemic circulation, which distrib-
utes the drug to the various tissues of the body (Tozer and
Rowland, 2006). The drug is eliminated from the body by
metabolism, which occurs mainly in the liver, and by excre-
tion into bile or into urine. During these pharmacokinetic
processes, a drug molecule passes through several biological
membranes. The extent of drug movement through these
membranes is generally affected by the physicochemical
properties of a drug, namely size, lipophilicity and charge (or

degree of ionization). In addition, membrane transporters
have a significant role in facilitating or preventing drug move-
ment (Ho and Kim, 2005).

Transporters may be classified as influx (uptake into cell)
and efflux (out of cell) transporters, which are typically
located either at the basolateral or apical membrane in polar-
ized cells. Interplay of influx and efflux transporters together
with phase I and II metabolism may be required for the
sequential traverse of the basolateral and apical membranes
(Giacomini and Sugiyama, 2006). For example, in the liver,
an uptake transporter such as organic anion transporting
polypeptide 1B1 (OATP1B1) may extract its drug substrates
from the portal blood into hepatocytes. After metabolism,
other drug transporters, such as multidrug resistance protein
1 (MDR1, also known as P-glycoprotein) may be important in
efflux of the metabolite from the hepatocyte (Ho and Kim,
2005) (Figure 1). Drug transporters can therefore be regarded
as completing the phase I and II enzyme-based detoxification
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system; drug uptake delivers the drug to the detoxification
system to facilitate metabolism, whereas drug efflux decreases
the load on detoxification enzymes (Nies et al., 2008).

Organic anion transporting polypeptides (OATPs)

OATPs are membrane influx transporters that regulate cellular
uptake of a number of endogenous compounds and clinically
important drugs (Niemi, 2007). The first discovered human
member of the OATP/Oatp family was OATP1A2, which was
cloned as an ortholog of rat Oatp1a1 (Kullak-Ublick et al.,
1995). OATPs/Oatps within the same family share �40%
amino acid sequence identity and are designated by Arabic
numbering (e.g. OATP1) (Hagenbuch and Meier, 2004). Indi-
vidual subfamilies include OATPs/Oatps with amino acid
sequence identities �60% and are designated by letters (e.g.
OATP1B). Individual gene products (proteins) within the
same subfamily are designated by additional Arabic number-
ing (e.g. OATP1B1).

The human OATP family consists of 11 members:
OATP1A2, 1B1, 1B3, 1C1, 2A1, 2B1, 3A1, 4A1, 4C1, 5A1 and
6A1 (Hagenbuch and Meier, 2003; Mikkaichi et al., 2004a;
König et al., 2006) (Table 1). Of these, the roles of OATP1B1,
1A2, 1B3 and 2B1 in drug pharmacokinetics are best charac-
terized. OATP1A2 may facilitate the entry of its substrates
through the duodenal wall into circulation (Glaeser et al.,
2007). OATP1B1, 1B3 and 2B1 are mainly located at the sinu-
soidal membranes of human hepatocytes and mediate the
influx of their substrates from blood into the hepatocytes, and
may thus represent an important step preceding elimination
of drugs by metabolism or biliary excretion (Niemi, 2007).

According to computer-based hydropathy analysis, all
OATPs share a very similar transmembrane domain organiza-
tion, with 12 predicted transmembrane domains and a large
fifth extracellular loop (Hagenbuch and Meier, 2003)
(Figure 2; OATP1B1). Based on a comparative analysis of
OATPs from multiple species, the transport of all OATPs/
Oatps has been suggested to occur through a central, posi-

tively charged pore in a so-called rocker-switch type of
mechanism (Meier-Abt et al., 2005). However, the exact trans-
port mechanism of OATPs/Oatps has not been established
(Mahagita et al., 2007).

OATPs are encoded by genes of the SLCO family (previously
SLC21) (Hagenbuch and Meier, 2004). The genes encoding
human OATP1 family members are located in the short arm of
chromosome 12, whereas genes encoding other OATPs are
located in chromosomes 3, 5, 8, 11, 15 and 20. Numerous
sequence variations, such as single nucleotide polymorphisms
(SNPs), have been identified in SLCO genes (Tirona et al.,
2001; Niemi et al., 2004; Lee et al., 2005; Niemi, 2007). These
polymorphisms may lead to significant consequences on drug
pharmacokinetics, for example by decreasing uptake activity
of the corresponding OATP (König et al., 2006; Seithel et al.,
2008).

Many studies investigating drug–drug interactions have
focused on inhibition or induction of drug-metabolizing
enzymes, most notably those of the cytochrome P450 (CYP)
families. However, it has become evident that significant
drug–drug interactions may result from inhibition and prob-
ably also from induction of transporter function (Ho and Kim,
2005). The estimation of the role of a single transporter in
drug–drug interaction may be challenging, since, for example,
many OATP1B1 substrates are also substrates of other drug
transporters and often subject to metabolism by CYP enzymes
(Smith et al., 2005a; Kivistö and Niemi, 2007).

OATP1B1

OATP1B1 (previously known as OATP2, OATP-C and LST-1) is
mainly expressed on the sinusoidal membrane of human
hepatocytes (Abe et al., 1999; Hsiang et al., 1999; König et al.
2000a). SLCO1B1 mRNA has been detected also in other
tissues, including small intestinal enterocytes (Glaeser et al.,
2007). In vitro, OATP1B1 has been shown to transport both
unconjugated and conjugated bilirubin (Cui et al., 2001; Briz
et al., 2003, 2006), although in one study, no differences in
bilirubin transport existed between OATP1B1-transfected and
non-transfected cells (Wang et al., 2003). Other endogenous
OATP1B1 substrates include bile acids (cholate and taurocho-
late), conjugated steroids (estradiol-17b-glucuronide,
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Figure 1 Role of transporters affecting hepatic uptake and excretion
of drugs and the interplay of hepatic transporters with phase I and
phase II metabolism in the hepatic elimination of drugs. BCRP, breast
cancer resistance protein; BSEP, bile salt export pump; MDR, multi-
drug resistance protein; MRP, multidrug resistance-associated
protein; NTCP, sodium taurocholate co-transporting polypeptide;
OAT, organic anion transporter; OATP, organic anion transporting
polypeptide; OCT, organic cation transporter.

Table 1 Human OATP transporters, their gene names, chromo-
somal localization and tissue distribution. Modified from Niemi, 2007

OATP Gene name Gene locus Tissue distribution

OATP1A2 SLCO1A2 12p12 Brain, kidney, liver, intestine
OATP1B1 SLCO1B1 12p12 Liver
OATP1B3 SLCO1B3 12p12 Liver
OATP1C1 SLCO1C1 12p12 Brain, testis, ciliary body
OATP2A1 SLCO2A1 3q21 Ubiquitous
OATP2B1 SLCO2B1 11q13 Liver, placenta, intestine, heart, skin
OATP3A1 SLCO3A1 15q26 Ubiquitous
OATP4A1 SLCO4A1 20q13.1 Ubiquitous
OATP4C1 SLCO4C1 5q21 Kidney
OATP5A1 SLCO5A1 8q13.1 Unknown
OATP6A1 SLCO6A1 5q21 Testis

OATP, organic anion transporting polypeptide.
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estrone-3-sulfate and dehydroepiandrosterone-3-sulfate),
eicosanoids (leukotrienes C4 and E4, prostaglandin E2 and
thromboxane B2) and thyroid hormones (thyroxine and tri-
iodothyronine) (Abe et al., 1999; Hsiang et al., 1999; König
et al., 2000a; Tamai et al., 2000; Cui et al., 2001). Examples of
in vitro OATP1B1 drug substrates include several HMG-CoA
reductase inhibitors, or statins, angiotensin-converting
enzyme (ACE) inhibitors, and angiotensin II receptor antago-
nists (Table 2).

SLCO1B1 (OATP1B1) pharmacogenetics

The OATP1B1 protein consisting of 691 amino acids is
encoded by the SLCO1B1 gene (Abe et al., 1999; Hsiang et al.,
1999) (Figure 2). A large number of SNPs and other sequence
variations have been described in the SLCO1B1 gene, and
their allele frequencies vary markedly between different popu-
lations (Tirona et al., 2001; Niemi, 2007; Pasanen et al., 2008).
For example, the c.388A > G (p.Asn130Asp) SNP is quite
common in all populations, with an allele frequency ranging
from ~40% in Europeans to ~80% in Sub-Saharan Africans
and East Asians, whereas the c.521T > C (p.Val174Ala) SNP,
relatively common in Europeans and Asians (allele frequency
~10–20%), is less frequent in Sub-Saharan Africans (~2%)
(Pasanen et al., 2008).

The two common SLCO1B1 SNPs, c.521T > C (p.Val174Ala)
and c.388A > G (p.Asn130Asp), together form four function-
ally distinct haplotypes: SLCO1B1*1A (c.388A-c.521T, refer-
ence haplotype), *1B (c.388G-c.521T), *5 (c.388A-c.521C) and
*15 (c.388G-c.521C) (Tirona et al., 2001; Nozawa et al., 2002;
Nishizato et al., 2003; Niemi et al., 2004). The SLCO1B1*15
haplotype can be further subclassified on the basis of two
promoter SNPs, g.-11187G > A and g.-10499A > C, forming
the *15 (GAGC), *16 (GCGC), and *17 (AAGC) haplotypes
(Niemi et al., 2004). The haplotype frequencies for the
SLCO1B1*1A, *1B, *5, *15, *16 and *17 were 52, 27, 2.7, 2.4,
7.9 and 6.9%, respectively, in a population of 468 healthy
Finns genotyped for 11 SLCO1B1 SNPs (Pasanen et al., 2006b).

SLCO1B1*5 and SLCO1B1*15 haplotypes have been associ-
ated with reduced transport activity of OATP1B1 in vitro in

studies performed with several OATP1B1 substrates in differ-
ent cell lines (Kameyama et al., 2005; Nozawa et al., 2005).
The SLCO1B1*1B haplotype has, however, been associated
with increased OATP1B1 transport activity in vitro in studies
performed with bromosulfophthalein and estrone-3-sulfate
(Michalski et al., 2002; Kameyama et al., 2005), whereas no
change or reduced transport activity has been seen in other
studies with different substrates (Tirona et al., 2003; Nozawa
et al., 2005). The effect of the c.521T > C SNP appears to
dominate over that of the c.388A > G SNP, as the SLCO1B1*15
haplotype (including both SNPs) has been consistently asso-
ciated with reduced transport activity of OATP1B1 (Kam-
eyama et al., 2005). In addition to the SLCO1B1 c.521T > C
and c.388A > G SNPs, some of the other non-synonymous
SLCO1B1 SNPs have been associated with altered (decreased)
transport function of OATP1B1 in vitro (Tirona et al., 2001;
Michalski et al., 2002), but their clinical significance is either
negligible or unestablished, partly because most of them have
low allele frequencies (Niemi, 2007; Pasanen et al., 2008).

Of the endogenous substrates of OATP1B1, only bilirubin
transport has been reported to be altered (decreased) in vivo in
subjects with the SLCO1B1 c.521T > C variant allele, but the
findings have been controversial (Huang et al., 2004, 2005;
Ieiri et al., 2004; Ho et al., 2007). More conclusive data are
available on the effect of SLCO1B1 polymorphism on the
pharmacokinetics of several drugs, notably the meglitinide
analog oral antidiabetic drug repaglinide and HMG-CoA
reductase inhibitors.

In one study in healthy volunteers, the AUC of 0.25 mg
repaglinide was 188% larger in participants with the SLCO1B1
c.521CC than in those with the c.521TT genotype (Niemi
et al., 2005b). In subsequent prospective genotype panel
studies in healthy volunteers, the AUC of 0.5 mg repaglinide
was ~70% larger in SLCO1B1 c.521CC participants and ~30%
lower in SLCO1B1*1B/*1B (c.388GG-c.521TT) participants
than in SLCO1B1*1A/*1A (c.388AA-c.521TT) participants
(Kalliokoski et al., 2008a,c) (Figure 3A). In each study, after
repaglinide administration, there was a tendency towards
lower blood glucose concentrations in c.521CC participants
than in SLCO1B1*1A/*1A participants and higher blood
glucose concentrations in SLCO1B1*1B/*1B participants than
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Figure 2 Schematic representation of the secondary structure of human organic anion transporting polypeptide 1B1, depicting the positions
of known amino acid exchanges. Reprinted from Kalliokoski, 2008 with permission of the copyright holder.
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in SLCO1B1*1A/*1A participants (Figure 2B), although these
differences were not statistically significant. After ingestion of
single repaglinide doses ranging from 0.25 to 2 mg, the AUC
of repaglinide was 60–110% larger in participants with the

c.521CC genotype than in those with the SLCO1B1*1A/*1A
genotype (Kalliokoski et al., 2008b). Furthermore, the phar-
macokinetics of repaglinide proved to be linear as a function
of repaglinide dose in both SLCO1B1 genotype groups.

Table 2 Drug substrates for OATP1B1, OATP1A2, OATP1B3 and OATP2B1

OATP Substrate Km (mM) Reference

OATP1B1 Atorvastatin 12.4 Kameyama et al., 2005
Atrasentan – Katz et al., 2006
Benzylpenicillin – Tamai et al., 2000
Bosentan 44 Treiber et al., 2007
Caspofungin – Sandhu et al., 2005
Cerivastatin – Shitara et al., 2003
Enalapril 262 Liu et al., 2006
Ezetimibe glucuronide – Oswald et al., 2008
Fexofenadine – Matsushima et al., 2008
Fluvastatin 1.4–3.5 Kopplow et al., 2005; Noe et al., 2007
Methotrexate – Abe et al., 2001
Olmesartan 12.8–42.6 Nakagomi-Hagihara et al., 2006; Yamada et al., 2007
Pitavastatin 3.0–6.7 Hirano et al., 2004; Deng et al., 2008
Pravastatin 13.7–35 Hsiang et al., 1999; Nakai et al., 2001
Rifampicin 1.5–13 Vavricka et al., 2002; Tirona et al., 2003
Rosuvastatin 4.0–7.3 Simonson et al., 2004; Ho et al., 2006b
SN-38 – Nozawa et al., 2005
Temocapril – Maeda et al., 2006
Troglitazone sulfate – Nozawa et al., 2004b
Valsartan 1.39 Maeda et al., 2006; Yamashiro et al., 2006

OATP1A2 Erythromycin – Franke et al., 2008
Fexofenadine 6.4 Cvetkovic et al., 1999
Imatinib – Hu et al., 2008
Levofloxacin 136 Maeda et al., 2007
Methotrexate 457 Badagnani et al., 2006
Ouabain 5.5 Bossuyt et al., 1996
Pitavastatin 3.4 Fujino et al., 2005
Rocuronium – van Montfoort et al., 1999
Rosuvastatin 2.6 Ho et al., 2006b
Saquinavir 36.4 Su et al., 2004
Thyroxine 8.0 Fujiwara et al., 2001
Unaprostone – Gao et al., 2005

OATP1B3 Atrasentan – Katz et al., 2006
Bosentan 141 Treiber et al., 2007
Digoxin – Kullak-Ublick et al., 2001
Docetaxel – Smith et al., 2005b
Enalapril – Liu et al., 2006
Erythromycin – Franke et al., 2008
Fexofenadine 108 Shimizu et al., 2005
Fluvastatin 7.0 Kopplow et al., 2005
Imatinib – Hu et al., 2008
Methotrexate 24.7 Abe et al., 2001
Olmesartan 71.8 Nakagomi-Hagihara et al., 2006
Ouabain – Kullak-Ublick et al., 2001
Paclitaxel 6.8 Smith et al., 2005b, 2007
Pitavastatin 3.3 Hirano et al., 2006
Pravastatin – Seithel et al., 2007
Rifampicin 2.3 Vavricka et al., 2002
Rosuvastatin 9.8 Ho et al., 2006b
Telmisartan 0.8 Ishiguro et al., 2006
SN-38 – Yamaguchi et al., 2008
Thyroxine – Kullak-Ublick et al., 2001
Valsartan 18.2 Yamashiro et al., 2006

OATP2B1 Atorvastatin 0.2 Grube et al., 2006
Benzylpenicillin – Tamai et al., 2000
Bosentan 202 Treiber et al., 2007
Fexofenadine – Nozawa et al., 2004a
Fluvastatin 0.7 Kopplow et al., 2005
Glibenclamide 6.3 Satoh et al., 2005
Pravastatin 2.3 Nozawa et al., 2004a
Rosuvastatin 2.4 Ho et al., 2006b
Unaprostone – Gao et al., 2005

–, not provided; Km, Michaelis-Menten kinetic constant; OATP, organic anion transporting polypeptide.
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Therefore, the effect of SLCO1B1 polymorphism persists over
a wide dose range and patients with the c.521CC genotype
may be more susceptible, than patients with the c.521TT or
c.521TC genotype, for the blood glucose-lowering effect of
repaglinide.

Although repaglinide appears to be transported via
OATP1B1 in vivo, direct in vitro evidence of this is lacking.
In vitro data on the role of OATP1B1 in hepatic uptake are also
lacking for nateglinide, the concentrations of which were
increased in individuals with the SLCO1B1 c.521TC and
c.521CC genotypes when investigated in a small group of
healthy Chinese subjects (Zhang et al., 2006). These results
could, however, not be reproduced in a larger group of
healthy Caucasian volunteers (Kalliokoski et al., 2008c).
Moreover, the SLCO1B1*1B/1B genotype did not significantly
affect pharmacokinetics of nateglinide (Kalliokoski et al.,
2008a). The pharmacokinetics of rosiglitazone and pioglita-
zone also remained unaffected by the SLCO1B1 c.521T > C
SNP in healthy Caucasian subjects (Kalliokoski et al., 2008d),
although these drugs are potential OATP1B1 substrates
(Nozawa et al., 2004b; Chang et al., 2005).

One of the most studied drugs with respect to the SLCO1B1
polymorphism in vivo in humans is pravastatin, the plasma
concentrations of which have been markedly increased in
individuals of different ethnic backgrounds carrying one or
especially two SLCO1B1 c.521C allelles (Mwinyi et al., 2004;
Niemi et al., 2004; Igel et al., 2006; Ho et al., 2007; Deng et al.,
2008). In one study, SLCO1B1 c.521CC participants had a 91
and 74% larger pravastatin AUC than those with the c.521TT
or c.521TC genotype respectively (Niemi et al., 2006a). Fur-
thermore, the plasma concentrations of active simvastatin
acid, pitavastatin, atorvastatin and rosuvastatin have been
221, 162, 144 and 65% higher in c.521CC homozygotes than
in c.521TT homozygotes (Pasanen et al., 2006a, 2007; Deng
et al., 2008). However, the SLCO1B1 genotype had no signifi-
cant effect on the pharmacokinetics of fluvastatin (Niemi
et al., 2006a).

In addition, the AUCs of atrasentan and fexofenadine have
been higher and the non-renal clearance of torsemide has
been lower in healthy volunteers with the SLCO1B1 c.521CC

genotype than in those with the c.521TT genotype (Niemi
et al., 2005a; Katz et al., 2006; Vormfelde et al., 2008).
SLCO1B1 genotype may also affect the pharmacokinetics of
ezetimibe glucuronide (Oswald et al., 2008).

Data on the relevance of SLCO1B1 polymorphism in the
pharmacokinetics of different drugs in patients are emerging.
For example, in Asian patients, the SLCO1B1*15 haplotype
has been associated with increased concentrations of SN-38,
an active metabolite of anticancer drug irinotecan, which
may be reflected in a higher risk of toxicity (Xiang et al., 2006;
Takane et al., 2007, 2009; Han et al., 2008). The most convinc-
ing data on the clinical significance of the SLCO1B1 polymor-
phism comes from a recent genome-wide association study
investigating simvastatin-induced myopathy (Link et al.,
2008). More than 300 000 genetic markers were determined
in 85 patients who had developed myopathy while receiving
80 mg simvastatin daily and in 90 control patients without
myopathy. A non-coding SLCO1B1 SNP, which is in nearly
complete linkage disequilibrium with the SLCO1B1 c.521T >
C SNP, was the only strong marker associated with myopathy.
More than 60% of the myopathy cases could be attributed to
the c.521C variant, and the odds ratio for myopathy was 4.5
per copy of the c.521C allele. This association was replicated
in a study of 20 000 patients receiving 40 mg simvastatin
daily. Furthermore, the c.521C allele was associated with a
slightly reduced and the c.388G allele with a slightly
increased cholesterol-lowering effect of simvastatin. There-
fore, knowledge on the patient’s SLCO1B1 genotype might be
useful in tailoring of drug therapy.

Role of OATP1B1 in drug–drug interactions

Many drugs have been identified in vitro as OATP1B1 inhibi-
tors (Table 3). There are some in vivo interactions where
OATP1B1 inhibition can be regarded as an important mecha-
nism (Table 4). Cyclosporine has increased the plasma con-
centrations of atorvastatin and several other statins, probably
partly due to OATP1B1 inhibition (Neuvonen et al., 2006).
Other mechanisms are likely also involved in these
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Figure 3 Mean plasma concentrations (A) and mean % decrease (�s.d.) in blood glucose 0–3 h (B) after ingestion of a single oral 0.5 mg
dose of repaglinide in healthy participants with the SLCO1B1 c.521CC (n = 4, solid triangles), c.521TC (n = 12, solid circles), *1A/*1A
(c.388AA-c521TT; n = 16, open circles) and *1B/*1B (c.388GG-c.521TT; n = 8, solid squares) genotypes. Modified from Kalliokoski et al.,
2008a,c.
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Table 3 Selected OATP1B1, OATP1A2, OATP1B3 and OATP2B1 inhibitors

OATP Inhibitor IC50 (mM) Reference

OATP1B1 Atorvastatin acid 0.87 Hsiang et al., 1999; Chen et al., 2005
Atorvastatin lactone 2.6 Chen et al., 2005
Carbamazepine 188 Gui et al., 2008
Caspofungin – Sandhu et al., 2005
Clarithromycin 8.26a–96 Hirano et al., 2006; Seithel et al., 2007
Clotrimazole 9.0 Gui et al., 2008
Cyclosporine 0.2a–2.2 Shitara et al., 2003; Tirona et al., 2003; Campbell et al., 2004; Simonson et al., 2004;

Hirano et al., 2006; Ho et al., 2006b; Treiber et al., 2007
Digoxin 31.7a Hirano et al., 2006
Erythromycin 11.4a–217 Hirano et al., 2006; Seithel et al., 2007
Gemfibrozil 4.0–72 Schneck et al., 2004; Shitara et al., 2004; Hirano et al., 2006; Ho et al., 2006b;

Noe et al., 2007
Gemfibrozil-1-O-glucuronide 22.6a–24 Shitara et al., 2004; Hirano et al., 2006
Glibenclamide 0.746a Hirano et al., 2006
Hyperforin 0.82 Tirona et al., 2003
Indinavir 5.84–18.4a Tirona et al., 2003; Campbell et al., 2004; Hirano et al., 2006
Irinotecan – Nozawa et al., 2005
Ketoconazole 19.2a Hirano et al., 2006
Lovastatin 6.1 Hsiang et al., 1999; Sandhu et al., 2005; Gui et al., 2008
Lovastatin acid 4.0 Chen et al., 2005
Lovastatin lactone 28 Chen et al., 2005
Metyrapone – Gui et al., 2008
Mifepristone 3.3 Gui et al., 2008
Nelfinavir 0.93 Tirona et al., 2003
Paclitaxel 0.03 Gui et al., 2008
Pioglitazone – Nozawa et al., 2004b
Pravastatin – Hsiang et al., 1999
Repaglinide 2.2 Bachmakov et al., 2008
Rifampicin 0.477a–17a Vavricka et al., 2002; Tirona et al., 2003; Hirano et al., 2006; Lau et al., 2007;

Treiber et al., 2007; Gui et al., 2008
Rifamycin SV 0.171a–2a Vavricka et al., 2002; Campbell et al., 2004; Chen et al., 2005; Hirano et al., 2006;

Seithel et al., 2007
Ritonavir 0.71–0.781a Tirona et al., 2003; Hirano et al., 2006
Rosiglitazone 6.0 Nozawa et al., 2004b; Bachmakov et al., 2008
Roxithromycin 153 Seithel et al., 2007
Saquinavir 1.2a–1.56a Tirona et al., 2003; Campbell et al., 2004; Hirano et al., 2006
Sildenafil 1.5 Treiber et al., 2007
Simvastatin – Hsiang et al., 1999
Simvastatin acid 3.6 Nakai et al., 2001; Chen et al., 2005
Simvastatin lactone 9.7 Chen et al., 2005
SN-38 – Nozawa et al., 2005
Tacrolimus 0.611a Hirano et al., 2006
Telithromycin 121 Seithel et al., 2007
Telmisartan 0.436a Hirano et al., 2006
Troglitazone 1.2 Gui et al., 2008
Troglitazone sulfate – Nozawa et al., 2004b
Valsartan 8.96a Hirano et al., 2006

OATP1A2 Apple juice – Dresser et al., 2002
Grapefruit juice – Dresser et al., 2002
Hesperidin 2.7 Bailey et al., 2007
Naringin 3.6 Bailey et al., 2007
Orange juice – Dresser et al., 2002
Rifampicin 51 Vavricka et al., 2002
Rifamycin SV 11a Vavricka et al., 2002
Verapamil 2.6a Bailey et al., 2007

OATP1B3 Clarithromycin 32 Seithel et al., 2007
Cyclosporine 0.06 Ho et al., 2006b
Erythromycin 34 Seithel et al., 2007
Rifampicin 5a Vavricka et al., 2002
Rifamycin SV 3a Vavricka et al., 2002
Roxithromycin 37 Seithel et al., 2007
Telithromycin 11 Seithel et al., 2007

OATP2B1 Cyclosporine 0.07 Ho et al., 2006b
Gemfibrozil 8 Ho et al., 2006b

aKi provided instead of IC50.
–, not provided; IC50, inhibitor concentration producing 50% inhibition of transporter activity; OATP, organic anion transporting polypeptide; SN-38, an active
metabolite of irinotecan.
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interactions since cyclosporine inhibits several influx and
efflux transporters, such as OATP1B3, OATP2B1, MDR1 and
MRP2, and CYP3A4. However, fluvastatin, pitavastatin, prav-
astatin and rosuvastatin are not significantly metabolized by
CYP3A4, and cyclosporine has increased their mean AUC
~4–20-fold in organ transplant patients (Regazzi et al., 1993;
Park et al., 2001; Hasunuma et al., 2003; Simonson et al.,
2004). In addition to statins, cyclosporine has increased the
mean AUC of repaglinide ~2.5-fold in healthy subjects
(Kajosaari et al., 2005b). Interestingly, the increase was 42%
lower in subjects with the SLCO1B1 c.521TC genotype than in
those with the c.521TT genotype. This finding may be
explained by the reduced activity of OATP1B1 in carriers of
the variant SLCO1B1 c.521C allele. Cyclosporine has also
modestly (up to twofold) increased the AUCs of other
OATP1B1 substrates, including bosentan, caspofungin and
methotrexate (Binet et al., 2000; Fox et al., 2003; Niemi,
2007).

Gemfibrozil has also increased the plasma concentrations of
several OATP1B1 substrates (Niemi, 2007). Although gemfi-
brozil and its 1-O-b-glucuronide metabolite both inhibit
OATP1B1 in vitro (Shitara et al., 2004), the glucuronide
metabolite is a very potent mechanism-based inhibitor of
CYP2C8 in vitro and in vivo (Backman et al., 2002; Wang et al.,
2002; Ogilvie et al. 2006; Tornio et al. 2008). Gemfibrozil has
increased the AUC of repaglinide, which is metabolized by
CYP2C8 and CYP3A4, up to eightfold in healthy subjects
(Niemi et al., 2003a), and this interaction has been observed

even when the last dose of gemfibrozil was ingested 12 h
before repaglinide (Tornio et al., 2008). In a prospective geno-
type panel study, the mean increase in the repaglinide AUC
by gemfibrozil has been ~50% larger in SLCO1B1 c.521CC
participants than in c.521TT participants, but the relative
(seven- to eightfold) increases in the repaglinide AUC did not
differ significantly between the genotype groups (Kalliokoski
et al., 2008e). Gemfibrozil has also increased the AUC of drugs
that are not at all or only partly metabolized by CYP2C8,
including pravastatin, rosuvastatin and simvastatin, ~2–3-
fold in healthy subjects (Backman et al., 2000; Kyrklund et al.,
2003; Schneck et al., 2004).

Rifampicin is a potent inducer of drug-metabolizing
enzymes (Niemi et al., 2003b). Rifampicin 600 mg daily
administered orally for 5 days has decreased the AUC of
repaglinide by ~60% (Niemi et al., 2000). At high concentra-
tions, rifampicin also inhibits the elimination of repaglinide
in vitro and in vivo (Bidstrup et al., 2004; Kajosaari et al.,
2005a). In addition to inhibiting CYP enzymes, rifampicin is
an inhibitor of OATP1B1 and OATP1B3 in vitro (Vavricka et al.,
2002) and also in vivo, if administered intravenously immedi-
ately before the ‘victim’ drug. Intravenous rifampicin has
increased the AUC of atorvastatin ~7-fold (Lau et al., 2007),
whereas oral treatment with rifampicin over 5 days has
decreased the AUC of atorvastatin by ~80%, probably due to
induction of CYP3A4 (Backman et al., 2005). Although
rifampicin is a substrate of OATP1B1 (Tirona et al., 2003), the
SLCO1B1 genotype has had no effect on the induction of

Table 4 Examples of the possible involvement of OATP1B1 inhibition in clinical drug-drug interactions

Inhibitor Substrate Fold AUC increase Reference

Atorvastatin Repaglinide 1.2 Kalliokoski, et al., 2008e
Cyclosporine Bosentan 2 Binet et al., 2000

Caspofungin 1.4 Cancidas prescribing information
Atorvastatin 7.4a Åsberg, et al., 2001

8.7 Hermann et al., 2004
15.3 Lemahieu et al., 2005

Cerivastatin 3.8a Mück et al., 1999
Fluvastatin 3–4 Park et al., 2001
Lovastatin 20a Olbricht et al., 1997
Methotrexate 1.2 Fox et al., 2003
Pitavastatin 5 Hasunuma et al., 2003
Pravastatin 10 Regazzi et al., 1993

5–7 Olbricht et al., 1997
9.9 Hedman et al., 2004

Repaglinide 2.4a Kajosaari et al., 2005b
Rosuvastatin 7.1 Simonson et al., 2004
Simvastatin 2.6a Arnadottir et al., 1993

8a Ichimaru et al., 2001
Gemfibrozil Atorvastatin 1.2 Backman et al., 2005

Cerivastatin 4.4b Backman et al., 2002
Fluvastatin no change Spence et al., 1995
Lovastatin 2.8 Kyrklund et al., 2001
Pitavastatin 1.5 Mathew et al., 2004
Pravastatin 2 Kyrklund et al., 2003
Repaglinide 8.1b Niemi et al., 2003a
Rosuvastatin 1.9 Schneck et al., 2004
Simvastatin 2.9 Backman et al., 2000

Rifampicinc Atorvastatin 7.3 Lau et al., 2007

aCYP3A4 inhibition also involved.
bCYP2C8 inhibition is considered the main mechanism of interaction.
c600 mg rifampicin administered as a 30-min iv infusion immediately before atorvastatin administration.
AUC, area under the plasma concentration-time curve; CYP, cytochrome P450; OATP, organic anion transporting polypeptide.
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CYP3A4 by rifampicin, as measured by the plasma concentra-
tions of 4b-hydroxycholesterol, an endogenous marker of
CYP3A4 activity (Niemi et al., 2006b). These data suggest that
OATP1B3 or other uptake transporters can compensate for
reduced uptake of rifampicin by OATP1B1. Rifampicin also
appears to have a modest inductive effect on OATP1B1 in vitro
(Jigorel et al., 2006; Sahi et al., 2006).

In healthy subjects, atorvastatin has slightly increased the
AUC of repaglinide in SLCO1B1*1A/*1A participants (by
~20%) and the Cmax of repaglinide in SLCO1B1*1A/*1A (~40%)
and SLCO1B1 c.521TC (by ~30%) participants (Kalliokoski
et al., 2008e). Atorvastatin had no statistically significant
effect on the blood glucose-lowering response to repaglinide,
although some subjects experienced low blood glucose con-
centrations when repaglinide was administered together with
atorvastatin. Based on the repaglinide metabolite findings of
the study, atorvastatin is not a potent inhibitor of CYP3A4 or
CYP2C8 in vivo and the most likely explanation for the effect
of atorvastatin on repaglinide pharmacokinetics is inhibition
of the OATP1B1-mediated hepatic uptake of repaglinide.

OATP1A2

OATP1A2 (previously known as OATP-A) is expressed in
various tissues, including the brain, liver, kidneys and intes-
tine (Kullak-Ublick et al., 1995; Glaeser et al., 2007), although
one study found no detectable levels of SLCO1A2 mRNA in
the duodenum (Meier et al., 2007). Endogenous substrates of
OATP1A2 include bile acids, thyroid hormones, and steroid
hormones and their conjugates (Kullak-Ublick et al., 1995,
1998; Bossuyt et al., 1996; Fujiwara et al., 2001). Moreover,
OATP1A2 also transports several drugs (Table 2). Some
SLCO1A2 (encoding OATP1A2) SNPs have shown decreased in
vitro transport activity towards the OATP1A2 substrate
estrone-3-sulfate (Lee et al., 2005), but the significance of
these findings in vivo in humans is unknown. Several drugs,
such as saquinavir, lovastatin, verapamil, dexamethasone and
naloxone, have inhibited OATP1A2-mediated substrate
uptake in vitro (Kullak-Ublick et al., 1998; Cvetkovic et al.,
1999; Gao et al., 2000). Interestingly, also the flavonoids nar-
ingin, found in grapefruit juice, and hesperidin, found in
orange juice, as well as these juices (at 5% soft drink strength)
have inhibited OATP1A2-mediated fexofenadine uptake in
vitro (Dresser et al., 2002; Bailey et al., 2007). Moreover, in
studies in healthy subjects, the AUC of fexofenadine has been
decreased by 25% by ingestion of naringin, and by 40–70%
due to ingestion of grapefruit or orange juice (Dresser et al.,
2002, 2005; Bailey et al., 2007), consistent with inhibition of
OATP1A2 at the apical membrane of enterocytes.

OATP1B3

OATP1B3 (previously known as OATP8 and LST-2) was cloned
based on sequence homology to the OATP1B1 (80% amino
acid homology), and, similar to OATP1B1, it is mainly
expressed on the sinusoidal membrane of human hepatocytes
(König et al., 2000b; Abe et al., 2001). Endogenous substrates
of OATP1B3 are similar to those of OATP1B1: bilirubin, bile

acids, conjugated steroids, eicosanoids and thyroid hormones
(König et al., 2000b; Abe et al., 2001; Cui et al., 2001; Kullak-
Ublick et al., 2001), but the gastrointestinal peptide cholecys-
tokinin is exclusively transported by OATP1B3 (Ismair et al.,
2001). Moreover, the drug substrates of OATP1B3 overlap
those of OATP1B1, but OATP1B3 seems to be the only hepatic
OATP transporting digoxin, docetaxel and paclitaxel
(Table 2). OATP1B3, in contrast to OATP1B1 and OATP2B1,
has also been identified in vitro as capable of transporting
amanitin, a toxin present in Amanita mushrooms (Letschert
et al., 2006). The SLCO1B3 gene (encoding OATP1B3) is poly-
morphic (Iida et al., 2001), and some sequence variations
have been associated with decreased transport activity of
OATP1B3 in vitro (Letschert et al., 2004; Schwarz et al., 2006;
Smith et al., 2007). In addition to inhibiting OATP1B1,
cyclosporine is also an inhibitor of OATP1B3 in vitro (Ho et al.,
2006b) and might thus interact with OATP1B3 substrates.

OATP2B1

OATP2B1 (previously OATP-B) is expressed at the sinusoidal
membrane of hepatocytes in the liver, but also in other
tissues, for example intestine and heart (Tamai et al., 2000;
Kullak-Ublick et al., 2001; Kobayashi et al., 2003; Grube
et al., 2006). Endogenous substrates of OATP2B1 include
dehydroepiandrosterone-3-sulfate, estrone-3-sulfate and pros-
taglandin E2 (Tamai et al., 2000; Kullak-Ublick et al., 2001).
Several drugs are substrates of OATP2B1 (Table 2). There is
currently no data on the clinical relevance of SLCO2B1 poly-
morphism, although some SLCO2B1 sequence variations have
been associated with altered transport activity of the protein
in vitro (Nozawa et al., 2002; Ho et al., 2006a). Cyclosporine
and gemfibrozil inhibit OATP2B1 in vitro (Ho et al., 2006b). In
a study where glibenclamide was identified in vitro as a sub-
strate for OATP2B1, grapefruit juice (at a concentration of 5%)
significantly inhibited the OATP2B1-mediated uptake of
estrone-3-sulfate by 80% (Satoh et al., 2005). However, grape-
fruit juice has had no effect on the pharmacokinetics of
glibenclamide in healthy subjects (Lilja et al., 2007).

Other OATPs

OATP1C1 (previously OATP-F) is expressed in the human
brain, testis and ciliary body, and shows a high affinity for
thyroid hormones (Pizzagalli et al., 2002; Gao et al., 2005).
OATP2A1 (hPGT) is broadly expressed in different tissues and
acts as a prostaglandin transporter (Lu et al., 1996), but cur-
rently no drugs have been identified as its substrates.
OATP3A1 (OATP-D) is expressed in two splice variants, and
the shorter variant lacking 18 amino acids in the carboxyl
terminus appears to be expressed only in the testis and brain,
whereas the longer variant is ubiquitously expressed (Adachi
et al., 2003; Huber et al., 2007). OATP3A1 transports estrone-
3-sulfate, prostaglandin E2, thyroxine, vasopressin and
benzylpenicillin (Tamai et al., 2000; Huber et al., 2007).

OATP4A1 (OATP-E) is ubiquitously expressed and it trans-
ports oestrogens, prostaglandins, thyroid hormones, tauro-
cholate, benzylpenicillin and unaprostone (Tamai et al., 2000;
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Fujiwara et al., 2001; Gao et al., 2005). OATP4C1 (OATP-H) is
localized at the basolateral membrane of human proximal
tubule cells, and therefore it may mediate the uptake of its
substrates from the blood into the kidney (Mikkaichi et al.,
2004b). OATP4C1 transports thyroid hormones, digoxin,
methotrexate and the antidiabetic drug sitagliptin (Mikkaichi
et al., 2004b; Chu et al., 2007). OATP5A1 (OATP-J) is known
only at the cDNA level (Hagenbuch and Meier, 2004), and
mRNA of SLCO6A1 (OATP-I) has been detected in the testis
(Lee et al., 2004).

Conclusion

OATP transporters, especially OATP1B1, 1A2, 1B3 and 2B1,
may play important roles in the pharmacokinetics of several
drugs. Therefore, genetic variation in OATP-encoding genes
and inhibition of OATP function may have clinically signifi-
cant consequences on drug therapy. The SLCO1B1 c.521T > C
(p.Va.174Ala; *5 or *15 haplotype) variant allele is associated
with reduced hepatic uptake and increased plasma concentra-
tions of several OATP1B1 substrates, including repaglinide
and several statins. The SLCO1B1*1B haplotype appears to be
associated with enhanced hepatic uptake and reduced plasma
concentrations of OATP1B1 substrates. SLCO1B1 c.521T > C
SNP is strongly associated with simvastatin-induced myopa-
thy. Inhibition of OATP1B1 is involved in the drug–drug
interactions of cyclosporine, gemfibrozil and rifampicin with
OATP1B1 substrates. OATP1A2 may facilitate the intestinal
absorption of drugs, such as fexofenadine, and OATP1B3 and
2B1 may be important for hepatic uptake of their substrates
drugs.
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