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Abstract
Indoor and ambient concentrations of 21 Volatile Organic Compounds (including 14 Hazardous Air
Pollutants) were measured in the homes of nearly 80 western Montana (Missoula) high school
students as part of the ‘Air Toxics Under the Big Sky’ program during the 2004/2005 and 2005/2006
school years. Target analytes were measured using low flow air sampling pumps and sorbent tubes,
with analysis of the exposed samples by Thermal Desorption/Gas Chromatography/Mass
Spectrometry (TD/GC/MS). The results reported here present the findings of the first indoor/ambient
air toxics monitoring program conducted in a semi-rural valley location located in the Northern Rocky
Mountain/western Montana region.

Of all of the air toxics quantified in this study, toluene was found to be the most abundant compound
in both the indoor and ambient environments during each of the two school years. Indoor log-
transformed mean concentrations were found to be higher when compared with ambient log-
transformed mean concentrations at P < 0.001 for the majority of the compounds, supporting the
results of previous studies conducted in urban areas. For the air toxics consistently measured
throughout this program, concentrations were approximately six times higher inside the student’s
homes compared to those simultaneously measured directly outside their homes. For the majority of
the compounds, there were no significant correlations between indoor and ambient concentrations.
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1. Introduction
Under Title III, Section 112.b.1 of the 1990 Clean Air Act, the United States Environmental
Protection Agency (EPA) identified 189 hazardous air pollutants (HAPs), of which 97 are
volatile organic compounds (VOCs). These include many toxic air pollutants that are known
or suspected to cause adverse health effects. People exposed to toxic air pollutants at sufficient
concentrations and durations may have an increased chance of getting cancer or experiencing
other serious health effects, such as damage to the respiratory, neurological, developmental,
immune, reproductive, and other systems.
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Today, air toxics are routinely measured in urban ambient environments not only in the United
States, but in other urban areas throughout the world. Sampling programs measuring indoor
air toxics concentrations in nonoccupational environments (residences) are much less common.
This is important, as most people spend the majority of their time indoors (Fishbein and Henry,
1991; Jenkins et al., 1992; Robinson and Nelson, 1995), as much as 95% in some areas. Several
studies have been conducted that have simultaneously measured air toxics concentrations in
the indoor, ambient, and personal breathing zone environments. Many of these studies report
that a consistent pattern of Personal>Indoor>Ambient air toxics concentrations exists(Kim et
al., 2002; Kinney et al., 2002; Weisel et al., 2002; Adgate et al., 2004; Payne-Sturges et al.,
2004; Sexton et al., 2004b). Some of these studies also indicate that ambient air toxics
measurements at central monitoring sites can seriously underestimate actual exposures for
urban residents, suggesting that people typically encounter substantially higher air toxics
concentrations during their normal daily activities compared to ambient air toxics levels
recorded at central monitoring sites.

Since air toxics are perceived to be an urban airshed pollution issue, much less research has
been conducted on measuring the concentrations and health effects of these compounds in
rural, less populated areas. This is especially true of residential indoor environments within
these rural areas. A currently under-studied area of the country includes communities in valley
locations throughout the northern Rocky Mountains. These communities and airsheds are
impacted by temperature inversions formed during the winter months which trap pollutants in
the valley for extended periods of times. Ambient concentrations of VOCs (including air toxics)
have been shown to dramatically increase during periods of inversions formed in these
mountainous communities throughout the winter months compared to the warmer summer
months (Ward et al., 2005). Little is known about indoor concentrations of air toxics in these
valley locations during these colder seasonal periods.

This research paper presents the results of a two-year air toxics monitoring program conducted
in a semi-rural valley community in western Montana. More significantly, this paper presents
the concentrations of air toxics measured simultaneously inside and outside the homes of nearly
80 high school students, providing the first information on indoor/ambient concentrations of
air toxics in this region.

2. Experimental
In this research project, air samples were collected using high school students as part of a
program in western Montana called ‘Air Toxics Under the Big Sky’ (Adams et al., 2008). The
existing program, which began in 2003 as a collaboration between researchers at The
University of Montana (UM) and a chemistry teacher at Big Sky High School (Missoula, MT),
involves junior and senior level (primarily upper-level chemistry) high school students that
collect air samples inside and outside (simultaneously) their homes. This program not only
incorporates real-world science into the high school chemistry course curriculum, but allows
UM researchers to measure and evaluate concentrations of air toxics in the indoor and ambient
environments of high school students throughout western Montana. This program is also
unique in that it enables the collection of an expanded amount of samples at multiple locations
throughout an airshed, compared to a single fixed central location.

The primary study area for this program was Missoula, Montana. Missoula (population
~70,000) is located in western Montana in a high mountain valley. During the 2004/2005 and
2005/2006 school years, over 80 students participated in the ‘Air Toxics Under the Big Sky’
program at Big Sky High School (HS). The goal was for each student to sample at least two
times at their homes throughout the school year. During 2004/2005, 35 successful paired
ambient and indoor samples were collected, while during the 2005/2006 school year, 51
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successful paired ambient and indoor samples were taken. Samples were collected from
October through February during both the 2004/2005 and 2005/2006 school years. For the
2004/2005 school year, the number of successful paired (indoor/ambient) sampling events per
month was as follows: Oct (2), Nov (11), Dec (11), Jan (0), and Feb (11). For the 2005/2006
school year, the amount of successful paired samples was: Oct (11), Nov (21), Dec (0), Jan
(5), and Feb (14). The majority of the samples were collected in a 10-mile radius surrounding
the high school, at elevations of approximately 3200 feet above sea level.

At the beginning of the 2004/2005 and 2005/2006 school years, respectively, students were
initially trained within the classroom by UM researchers on how to collect air samples both
within and outside of their homes. Prior to sampling, students were provided with two sampling
kits (consisting of pump and sorbent tube) to take home, with one kit used to collect ambient
samples and the other used for indoor sampling. VOCs were measured using low flow (Model
Number 222-3) air sampling pumps (SKC, Eighty Four, PA) and Carbotrap 300 sorbent tubes
(Sigma-Aldrich, St. Louis, MO). Before sampling, each sorbent tube was conditioned at UM
for initial use by flushing the tube with approximately 200 ml/min of purified nitrogen gas and
heating for 20 minutes at 350 °C to remove oxygen, moisture and organic contaminants. These
pre-cleaned tubes were then delivered to the schools prior to sampling.

In an effort to minimize the variability in error associated with different students conducting
flow measurements, the personal pumps were calibrated using a BIOS DryCal primary flow
meter (Bios, Butler, NJ) within the classroom prior to each sampling event by a single point
student in each class. During sampling, ambient air was drawn through sorbent tubes at a flow
rate of 100 ml/min ± 5 ml/min for 12 hours (7 AM to 7 PM) to collect a total volume of ~72
L. The optimum flow rate was chosen based on a series of preliminary field experiments
(Woolfenden, 1997; Wrobel, 2000; Ward, 2001). This flow rate was high enough to meet the
minimum detection limits of the target analytes while low enough to not have breakthrough
(when more than 5% of one or more of the target analytes is observed) through the sorbent
tube. Separated by small plugs of silanized glass wool, each sorbent sample tube was composed
of three different carbon sorbents: 20/40 mesh Carbotrap C, 20/40 Carbotrap B, and 60/80
Carbosieve S-III. For low level, low polarity, volatile contaminants, this combination of
adsorbents/absorbents has been found to be extremely effective (Helmig and Greenburg,
1994).

Before sampling, the students were instructed to collect indoor samples in a common area of
their home (living room), while samplers for the ambient location were to be placed in a secure
location at least 10 feet away from their house. All samplers were to be placed three to five
feet off the ground, and away from any obvious sources of air toxics that might bias the sample
results.

Final flow rates were measured and recorded in the classroom by the point student after the
students returned the pumps back to the classroom. The exposed sample tubes were kept
refrigerated at Big Sky HS until they were returned to UM where they were analyzed using a
Hewlett Packard 6890 series Gas Chromatograph (GC) with a 5973 Mass Spectrum Detector
(MSD). A Dynatherm MTDU Model 910 thermal desorption unit and Model 900 ACEM
sample concentrator were used in conjunction with the GC/MS during the VOC analyses, with
analyte separations on a Restek RTX502.2 capillary column (60 m, 0.32 mm ID).

A standard suite of 10 VOCs were originally quantified during the 2004/2005 school year, with
the list expanded to 21 compounds for the 2005/2006 school year. Before analysis, 1 μl of a
100 ng/μl internal standard solution (fluorobenzene, 1,2-dichlorobenzene-D4, and 4-
bromofluorobenzene) was injected onto the sorbent tubes. Using a deactivated quartz “tee”,
both the internal standard and standards solution (consisting of target analytes) were flash
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volatized at 125 °C within the quartz tee (Wrobel, 2000). The compounds were then swept
onto a sorbent tube at room temperature with purified nitrogen gas at a flow rate of 55 to 60
ml/min for 5 minutes.

Several measures were built into the sampling/analytical program to ensure that the data
collected were of high quality. To address artifact contamination, field blanks were used
throughout the VOC sampling program. System blanks (glass sorbent tubes without carbon
sorbent) were also used to monitor for instrument artifact contamination during the VOC
analyses. Quality control measures for the GC/MS included the analysis of
bromofluorobenzene (25 ng/μl BFB) each day prior to sample analyses as a system check. Mid
range standards (200 ng/μl spiked onto the sorbent tubes using the deactivated quartz “tee”)
were periodically analyzed throughout the analysis to verify initial calibrations.

Minimum detection limits (MDL) were calculated for all of the reported parameters by the
following formula: blank mean + (blank standard deviation x critical value of t), with these
values presented in Tables 1 and 2. The critical value of t was the one-tailed probability at 0.01
with (n − 1) degrees of freedom. Any value in the data set that was below MDL was replaced
with the 1/2 MDL value for that variable.

3. Results and Discussions
The statistical analysis conducted in this study compared the concentrations of indoor vs.
ambient air toxics. Analysis of variance (ANOVA) was conducted on all of the measured
compounds to determine differences in source. All of the raw data were lognormal in
distribution, and therefore log-transformed prior to analysis for distribution normalization and
equalization of variances. The indoor/ambient data were paired based on location and sampling
time, resulting in a two-level random factor. The fixed factor in the model was the sample year,
which also had two levels. A mixed model two-way ANOVA, with one within-subjects factor
(indoor/ambient), and one between-subjects factor (year), was run for all compounds
independently. Statistical significance was determined at a probability of less than 5% for type
I error (P < 0.001 if adjusted for all multiple testing). Sample size was 35 paired observations
for 2004/2005, and 51 paired observations for 2005/2006, establishing adequate statistical
power on the log transformed data for all compounds analyzed. As stated earlier, the goal was
for each student to sample at least two times at their homes throughout the school year.
Although nearly 80 students participated during the 2-year program, we were not successful
in collecting 160 complete indoor/ambient sample data sets. Most of the students were only
able to collect one set of samples within their homes due to time constraints within the school
semesters. Other samples were invalidated due to incomplete paired data sets (either a missing
indoor or ambient sample), low final flow readings (below 90 ml/min), pump failure, breaking
the sample tube during transport, less than a 12-hour sample collection period, or TD/GC/MS
malfunctions.

Tables 1 (2004/2005) and 2 (2005/2006) present the air toxics raw data median concentrations,
maximum/minimum concentrations per analyte, and minimum detection limits for the two-
year sampling program. These values are not blank corrected. Of all of the air toxics quantified
in this study, toluene was found to be the most abundant compound in both the indoor and
ambient environments throughout each of the two school years. Other EPA HAPs (air toxics)
consistently measured include benzene, chloroform, ethylbenzene, naphthalene,
trichloroethylene, 1,1,2,2-tetrachloroethane, and 1,2,4-trichlorobenzene. Several other of the
target HAPs were not detected in this sampling program.

Median concentrations of ambient air toxics measured in this program were two – eight times
lower than those concentrations measured in urban areas such as Minneapolis-St. Paul (Pratt
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et al., 2004; Adgate et al., 2004) and Baltimore (Payne-Sturges, et al., 2004), 10–20 times lower
than those measured in other urban areas such as Chicago, St. Louis (Sweet and Vermette,
1992), and New Jersey (Wallace, 1987), and ~20–50 times lower compared to ambient air
toxics measured in Los Angeles (Wallace, 1987). Ambient concentrations of the BTEX
compounds (benzene, toluene, ethylbenzene, and xylenes) measured in this study were
comparable or slightly more elevated when compared to median concentrations reported in a
four Oklahoma city study (Phillips et al., 2005), and in Greensboro, NC (Wallace, 1987).
Ambient concentrations measured in this program (Missoula, MT) were higher than those
measured in rural Devils Lake, ND during the Total Exposure Assessment Methodology
(TEAM) Study conducted between 1979 and 1985 (Wallace, 1987). For the indoor
measurements made in this study, concentrations for many of the compounds were comparable
to the previous studies conducted in Baltimore (Payne-Sturges, et al., 2004), Minneapolis
(Sexton et al., 2004b), and in Arizona (Gordon et al., 1999).

From the ANOVA results presented in the “Indoor vs. Ambient” column of Tables 1 and 2,
indoor log-transformed mean concentrations were found to be higher when compared with
ambient log-transformed mean concentrations at P < 0.001 for the majority of the compounds.
For the air toxics consistently measured throughout this program, concentrations were
approximately six times higher inside the student’s homes compared to measurements made
directly outside their homes. The findings in this program are consistent with those in other
studies, where there is a common pattern of indoor air toxics concentrations > ambient
concentrations (Wallace, 1987;Sexton et al., 1995;Kim et al., 2002;Kinney et al., 2002;Weisel
et al., 2002;Adgate et al., 2004;Payne-Sturges et al., 2004;Sexton et al., 2004b;Phillips et al.,
2005).

Table 3 presents the results of the ANOVA on the log-transformed data for all compounds
measured during the 2004/2005 and 2005/2006 school years, respectively, including the
indoor/ambient Pearson correlations, the coefficients of determination (r2), and level of
statistical significance for all compounds. For the majority of the compounds, there were no
significant correlations between indoor and ambient concentrations. The exceptions to this
include benzene (P < 0.05), toluene (P < 0.001), and carbon tetrachloride (P < 0.001) for
2004/2005, and 1,2,4-trichlorobenzene (P < 0.05) for 2005/2006. This lack of correlation is
not surprising, as indoor exposures are typically dominated by indoor sources, a result of mostly
localized, short-term emissions (Phillips et al., 2005). Because of the proximity of the source
to the receptor (people), these sources of air toxics within homes can greatly contribute to
exposure even though they are small when compared with ambient emissions (Weisel, 2002).

Table 4 presents the results of the quality assurance/quality control (QA/QC) component
conducted throughout the two-year sampling and analytical program. Blank concentrations (in
μg/m3) were calculated by dividing analyte concentrations measured from field blanks by the
average measured flow rate (0.074 m3) for the actual sample episodes. Results from the air
toxics field blank analyses showed that some of the measured analytes had low but consistent
background levels in the blanks. Continuing calibration (spike) results were generally well
within the desired range of ±30%, indicating acceptable recovery of the desired analytes.

4. Conclusion
This research paper presents the results of a two-year air toxics monitoring program conducted
in a valley location in western Montana. More significantly, this paper presents the results of
air toxics measured simultaneously inside and outside the homes of nearly 80 high school
students, providing the first information on indoor/ambient concentrations of air toxics in the
rural/semi-rural western Montana/northern US Rocky Mountain region.
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Results of this study were consistent with those found in other studies, specifically in studies
conducted within urban airsheds. Of all of the air toxics quantified in this study, toluene was
found to be the most abundant compound in both the indoor and ambient environments during
each of the two school years. Indoor log-transformed mean concentrations were found to be
higher when compared with ambient log-transformed mean concentrations at P < 0.001 for the
majority of the compounds. For the air toxics consistently measured throughout this program,
concentrations were approximately six times higher inside the student’s homes compared to
those simultaneously measured directly outside their homes. Results from this study also
showed that although ambient concentrations measured in this study were lower compared to
many of the studies conducted in more urban areas, indoor concentrations of the air toxics
measured in this study were comparable to the indoor urban measurements in the previous
studies.

For the majority of the compounds, there were no significant correlations between indoor and
ambient concentrations, suggesting that there were independent sources for both indoor and
ambient air toxics. Future source apportionment activities using a receptor-oriented model
(such as chemical mass balance, positive matrix factorization, or principal component analysis/
absolute principal component scores, among others) could be utilized in this research program
to determine the sources in the indoor and ambient environments, respectively. No significant
interactions were found between source and year, indicating no change in indoor/ambient
patterns between years.

It is essential to characterize the composition, magnitude, and the distribution of air toxics
through air monitoring to assess the impact of these components on human health. Although
personal exposure is the most relevant for human health impacts, indoor concentrations provide
a substantially better estimate of measured personal concentrations when compared to an
ambient measurement(Sexton et al., 2004). In the future, these measured data on HAPs (air
toxics) in a northern Rocky Mountain airshed may provide information in establishing air
quality standards for the indoor environment. In addition, these data can be used to improve
the quality of health risk assessments, and to evaluate the efficacy of risk management
decisions.

Acknowledgments
The authors thank the teachers and students at Big Sky HS for participating in the program. Primary funding for this
project was provided by Grant Number R25 RR020432 from the National Center for Research Resources (NCRR), a
component of the National Institutes of Health (NIH). Additional support came from NIH COBRE grant P20
RR017670 from NCRR. The contents of this manuscript are solely the responsibility of the authors and do not
necessarily represent the official views of NCRR or NIH.

References
Adams E, Ward TJ, Vanek D, Marra N, Smith G, Jones D, Henthorn M, Striebel J. Air toxics under the

Big Sky a high school science teaching tool. Journal of Chemical Education 2008;85(2):221–224.
Adgate JL, Church TR, Ryan AD, Ramachandran G, Fredrickson AL, Stock TH, Morandi MT, Sexton

K. Outdoor, indoor, and personal exposure to VOCs in children. Environmental Health Perspectives
2004;112(14):1386–1392. [PubMed: 15471730]

Adgate JL, Ramachandran G, Pratt GC, Waller LA, Sexton K. Spatial and temporal variability in outdoor,
indoor, and personal PM2.5 exposure. Atmospheric Environment 2002;36:3255–3265.

Akland GA, Schwab M, Zenick H, Pahl D. An interagency partnership applied to the study of
environmental health in the low Rio Grande Valley of Texas. Environment International 1997;23:595–
609.

Ward et al. Page 6

Environ Monit Assess. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Buckley TJ, Liddle J, Ashley DL, Paschal DC, Burse VW, Needham LL, et al. Environmental and
biomarker measurements in nine homes in the Lower Rio Grande Valley: multimedia results for
pesticides, metals, PAHs, and VOCs. Environment International 1997;23(5):705–732.

Clayton CA, Pellizzari ED, Whitmore RW, Perritt RL, Quackenboss JJ. National Human Exposure
Assessment Survey (NHEXAS): distributions and associations of lead, arsenic, and volatile organic
compounds in EPA Region 5. Journal of Exposure Analysis and Environmental Epidemiology 1999;9
(5):381–392. [PubMed: 10554141]

Cohen M, Ryan B, Ozkaynak H, Epstein P. Indoor/outdoor measurements of volatile organic compounds
in the Kanawha Valley of West Virginia. Journal of the Air Pollution Control Association
1989;39:1086–1093.

Fishbein L, Henry CJ. Introduction: workshop on the methodology for assessing health risks from
complex mixtures in indoor air. Environmental Health Perspectives 1991;95:3–5.

Gordon SM, Callahan PJ, Nishioka MG, Brinkman MC, O’Rourke MK, Lebowitz MD, Moschandreas
DJ. Residential environmental measurements in the National Human Exposure Assessment Survey
(NHEXAS) pilot study in Arizona: preliminary results for pesticides and VOCs. Journal of Exposure
Analysis and Environmental Epidemiology 1999;9(5):456–470. [PubMed: 10554148]

Helmig D, Greenburg JP. Automated in situ gas chromatographic-mass spectrometric analysis of ppt
level volatile organic trace gases using multistage solid-adsorbent trapping. Journal of
Chromatography A 1994;677:123–132.

Jenkins PL, Phillips TJ, Mulberg JM, Hui SP. Activity patterns of Californians: use of and proximity to
indoor pollutant sources. Atmospheric Research 1992;26A:2141–2148.

Kim YM, Harrad S, Harrison RM. Levels and sources of personal inhalation exposure to volatile organic
compounds. Environmental Science & Technology 2002;36:5405–5410. [PubMed: 12521168]

Kinney PL, Chillrud SN, Ramstrom S, Ross J, Spengler JD. Exposures to multiple air toxics in New York
City. Environmental Health Perspectives 2002;110(suppl 4):539–546. [PubMed: 12194883]

Leung PL, Harrison RM. Evaluation of personal exposure to monoaromatic hydrocarbons. Occupational
& Environmental Medicine 1998;55(4):249–257. [PubMed: 9624279]

Lioy P. Assessing total human exposure to contaminants. Environmental Science & Technology 1990;24
(7):938–945.

Otson R, Fellin P, Tran Q. VOCs in representative Canadian residences. Atmospheric Environment
1994;28(22):3563–3569.

Ott W. Total human exposure: basic concepts, EPA field studies and future research needs. Journal of
the Air & Waste Management Association 1990;40(7):966–975.

Payne-Sturges DC, Burke TA, Breysse P, Diener-West M, Buckley TJ. Personal exposure meets risk
assessment: a comparison of measured and modeled exposures and risks in an urban community.
Environmental Health Perspectives 2004;112(5):589–598. [PubMed: 15064166]

Pellizzari E, Perritt R, Clayton C. National human exposure assessment survey: exploratory survey of
exposure among population subgroups in EPA Region V. Journal of Exposure Analysis and
Environmental Epidemiology 1999;9(1):49–55. [PubMed: 10189626]

Phillips ML, Esmen NA, Hall TA, Lynch R. Determinants of exposure to volatile organic compounds in
four Oklahoma cities. Journal of Exposure Analysis and Environmental Epidemiology 2005;15:35–
46. [PubMed: 15026778]

Pratt GC, Wu CY, Bock D, Adgate JL, Ramachandran G, Stock TH, Morandi M, Sexton K. Comparing
air dispersion model predictions with measured concentrations of VOCs in urban communities.
Environmental Science & Technology 2004;38:1949–1959. [PubMed: 15112793]

Robinson, J.; Nelson, WC. National human activity pattern survey data base. US Environmental
Protection Agency; Research Triangle Park, NC: 1995.

Seifert B, Mailahn W, Schulz C, Ullrich D. Seasonal variation of concentrations of volatile organic
compounds in selected German homes. Environment International 1989;15:397–408.

Sexton K, Kleffman DE, Callahan MA. An introduction to the National Human Exposure Assessment
Survey (NHEXAS) and related Phase I field studies. Journal of Exposure Analysis and Environmental
Epidemiology 1995;5(3):229–232. [PubMed: 8814770]

Sexton K, Adgate JL, Mongin SJ, Pratt GC, Ramachandran G, Stock TH, Morandi MT. Evaluating
differences between measured personal exposures to volatile organic compounds and concentrations

Ward et al. Page 7

Environ Monit Assess. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in outdoor and indoor air. Environmental Science & Technology 2004a;38:2593–2602. [PubMed:
15180055]

Sexton K, Adgate JL, Ramachandran G, Pratt GC, Mongin SJ, Stock TH, Morandi MT. Comparison of
personal, indoor, and outdoor exposures to hazardous air pollutants in three urban communities.
Environmental Science & Technology 2004b;38:423–430. [PubMed: 14750716]

Skoog, DA.; Holler, JF.; Nieman, TA. Principles of instrumental analysis. Orlando: Harcourt Brace and
Company; 1998.

Sweet CW, Vermette SJ. Toxic volatile organic compounds in urban air in Illinois. Environmental Science
& Technology 1992;26:165–173.

Wallace LA, Pellizzari ED, Hartwell T, Sparacino C, Sheldon L, Zelon H. Personal exposures, indoor-
outdoor relationships and breath levels of toxic air pollutants measured for 355 persons in New Jersey.
Atmospheric Environment 1985;19:1651–1661.

Wallace, L. The Total Exposure Assessment methodology (TEAM) study: summary and analysis. Vol.
1. Washington, DC: U.S. Environmental Protection Agency; 1987.

Ward, TJ. PhD Thesis. The University of Montana; 2001. Chemical mass balance (CMB) source
apportionment and organic speciation of PM2.5 in Missoula, Montana including the 2000 wildfire
season.

Ward TJ, Hamilton RF, Smith GC. The Missoula Valley semivolatile and volatile organic compound
study seasonal average concentrations. Journal of the Air & Waste Management Association
2005;55:1007–1013. [PubMed: 16111141]

Weisel CP. Assessing exposure to air toxics relative to asthma. Environmental Health Perspectives
2002;110(suppl 4):527–537. [PubMed: 12194882]

Woolfenden E. Monitoring VOCs in air using sorbent tubes followed by thermal desorption-capillary
GC analysis: summary of data and practical guidelines. Journal of the Air & Waste Management
Association 1997;47:20–36.

Wrobel, CL. PhD Thesis. The University of Montana; 2000. Investigating volatile organic compounds
in an urban inter-mountain valley using a TD/GC/MS methodology and intrinsic tracer molecules.

Ward et al. Page 8

Environ Monit Assess. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ward et al. Page 9
Ta

bl
e 

1
20

04
/2

00
5 

B
ig

 S
ky

 H
S 

ai
r t

ox
ic

s r
es

ul
ts

 (μ
g/

m
3 )

.

C
om

po
un

d
In

do
or

 M
ed

ia
n

In
do

or
 M

ax
 M

in
A

m
bi

en
t M

ed
ia

n
A

m
bi

en
t M

ax
 M

in
In

do
or

 v
s. 

A
m

bi
en

t
M

D
L

B
en

ze
ne

a
1.

8
34

.3
<0

.1
0.

5
6.

2
<0

.1
P 

< 
0.

00
1

0.
2

1,
4-

di
m

et
hy

lb
en

ze
ne

 (p
 x

yl
en

e)
2.

6
34

.0
0.

4
0.

5
3.

8
<0

.0
2

P 
< 

0.
00

1
0.

04
1,

2-
di

m
et

hy
lb

en
ze

ne
 (o

 x
yl

en
e)

2.
0

22
.0

0.
4

0.
5

2.
7

0.
1

P 
< 

0.
00

1
0.

05

Et
hy

lb
en

ze
ne

a
2.

0
20

.6
0.

3
0.

4
3.

3
0.

01
P 

< 
0.

00
1

0.
00

3
Is

op
ro

py
lb

en
ze

ne
0.

1
1.

7
<0

.0
4

<0
.0

4
0.

1
<0

.0
4

P 
< 

0.
00

1
0.

1
Pr

op
yl

be
nz

en
e

0.
2

10
.7

<0
.1

<0
.1

0.
7

<0
.1

P 
< 

0.
00

1
0.

2

C
ar

bo
n 

te
tra

ch
lo

rid
ea

0.
8

1.
6

N
.D

.
0.

6
1.

4
N

.D
.

P 
< 

0.
01

0.
1b

To
lu

en
ea

7.
9

57
.6

1.
7

0.
9

4.
3

0.
3

P 
< 

0.
00

1
0.

04
1,

3,
5-

tri
m

et
hy

lb
en

ze
ne

0.
5

15
.3

<0
.1

<0
.1

1.
0

<0
.1

P 
< 

0.
00

1
0.

2
1,

2,
4-

tri
m

et
hy

lb
en

ze
ne

1.
6

23
.9

0.
6

0.
6

4.
6

<0
.1

P 
< 

0.
00

1
0.

2

a C
le

an
 A

ir 
A

ct
 H

az
ar

do
us

 A
ir 

Po
llu

ta
nt

.

b N
o m

ea
su

ra
bl

e b
la

nk
s f

or
 th

es
e c

om
po

un
ds

, v
al

ue
s e

st
im

at
ed

 us
in

g m
et

ho
d f

ro
m

 P
rin

ci
pl

es
 of

 In
st

ru
m

en
ta

l A
na

ly
si

s(
Sk

oo
g,

 19
98

). 
Fo

r t
he

 20
04

/2
00

5 p
ro

gr
am

, s
am

pl
e s

iz
e (

n)
 w

as
 35

 pa
ire

d o
bs

er
va

tio
ns

.

Environ Monit Assess. Author manuscript; available in PMC 2010 June 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ward et al. Page 10
Ta

bl
e 

2
20

05
/2

00
6 

B
ig

 S
ky

 H
S 

ai
r t

ox
ic

s r
es

ul
ts

 (n
g/

m
3 )

.

C
om

po
un

d
In

do
or

 M
ed

ia
n

In
do

or
 M

ax
 M

in
A

m
bi

en
t M

ed
ia

n
A

m
bi

en
t M

ax
/M

in
In

do
or

 v
s. 

A
m

bi
en

t
M

D
L

B
en

ze
ne

a
1.

2
21

.6
<0

.1
0.

3
8.

7
<0

.1
P 

< 
0.

00
1

0.
2

B
ro

m
of

or
m

a
b

0.
3

N
.D

.
b

0.
3

N
.D

.
N

/A
0.

1c

C
hl

or
ob

en
ze

ne
a

b
0.

04
N

.D
.

b
<0

.0
04

N
.D

.
P 

< 
0.

00
1

0.
01

c

C
hl

or
of

or
m

a
0.

1
3.

1
<0

.0
03

<0
.0

03
1.

0
<0

.0
03

P 
< 

0.
00

1
0.

01
C

is
-1

,3
-d

ic
hl

or
op

ro
pe

ne
b

0.
4

N
.D

.
b

N
.D

.
N

.D
.

N
/A

0.
00

1c

1,
2-

di
br

om
o-

3-
ch

lo
ro

pr
op

an
ea

b
N

.D
.

N
.D

.
b

0.
05

N
.D

.
N

/A
0.

02
c

1,
4-

di
ch

lo
ro

be
nz

en
ea

b
0.

2
N

.D
.

b
<0

.0
1

N
.D

.
N

/A
0.

02
c

1,
4-

di
m

et
hy

lb
en

ze
ne

 (p
 x

yl
en

e)
1.

8
26

.5
<0

.0
2

0.
3

6.
3

<0
.0

2
P 

< 
0.

00
1

0.
04

1,
2-

di
m

et
hy

lb
en

ze
ne

 (o
 x

yl
en

e)
1.

3
18

.7
<0

.0
2

0.
2

4.
2

<0
.0

2
P 

< 
0.

00
1

0.
1

1,
3-

di
ch

lo
ro

pr
op

en
ea

b
0.

05
N

.D
.

b
0.

03
N

.D
.

N
/A

0.
02

c

Et
hy

lb
en

ze
ne

a
1.

1
19

.2
0.

03
0.

2
3.

8
<0

.0
01

P 
< 

0.
00

1
0.

00
3

Is
op

ro
py

lb
en

ze
ne

<0
.0

4
2.

4
<0

.0
4

<0
.0

4
0.

3
<0

.0
4

P 
< 

0.
00

1
0.

1

N
ap

ht
ha

le
ne

a
0.

3
1.

4
<0

.0
1

0.
1

0.
4

<0
.0

1
P 

< 
0.

00
1

0.
03

n-
pr

op
yl

be
nz

en
e

0.
2

3.
0

<0
.1

<0
.1

0.
6

<0
.1

P 
< 

0.
00

1
0.

2

Tr
ic

hl
or

oe
th

yl
en

ea
0.

02
4.

6
N

.D
.

<0
.0

1
1.

7
N

.D
.

P 
< 

0.
00

1
0.

02
c

1,
1,

2,
2-

te
tra

ch
lo

ro
et

ha
ne

a
<0

.0
6

2.
0

N
.D

.
<0

.0
6

0.
3

N
.D

.
P 

< 
0.

00
1

0.
1c

C
ar

bo
n 

te
tra

ch
lo

rid
ea

0.
3

0.
8

0.
1

0.
2

0.
4

0.
1

P 
< 

0.
01

0.
1c

To
lu

en
ea

12
.6

13
2.

5
0.

2
1.

1
25

.4
0.

1
P 

< 
0.

00
1

0.
04

1,
2,

4-
tri

ch
lo

ro
be

nz
en

ea
<0

.0
2

0.
2

N
.D

.
<0

.0
2

<0
.0

2
N

.D
.

P 
< 

0.
00

1
0.

04
c

1,
3,

5-
tri

m
et

hy
lb

en
ze

ne
0.

3
5.

5
<0

.1
<0

.1
0.

7
<0

.1
P 

< 
0.

00
1

0.
2

1,
2,

4-
tri

m
et

hy
lb

en
ze

ne
1.

2
12

.7
<0

.1
0.

3
2.

4
<0

.1
P 

< 
0.

00
1

0.
2

a C
le

an
 A

ir 
A

ct
 H

az
ar

do
us

 A
ir 

Po
llu

ta
nt

.

b In
di

ca
te

s n
o 

st
at

is
tic

al
 a

na
ly

se
s p

os
si

bl
e 

be
ca

us
e 

le
ss

 th
an

 3
 n

on
ze

ro
 v

al
ue

s m
ea

su
re

d.

c N
o 

m
ea

su
ra

bl
e 

bl
an

ks
 fo

r t
he

se
 c

om
po

un
ds

, v
al

ue
s e

st
im

at
ed

 u
si

ng
 m

et
ho

d 
fr

om
 P

rin
ci

pl
es

 o
f I

ns
tru

m
en

ta
l A

na
ly

si
s(

Sk
oo

g,
 1

99
8)

. N
.D

. =
 n

ot
 d

et
ec

te
d.

 F
or

 th
e 

20
05

/2
00

6 
pr

og
ra

m
, s

am
pl

e 
si

ze
 (n

)
w

as
 5

1 
pa

ire
d 

ob
se

rv
at

io
ns

.

Environ Monit Assess. Author manuscript; available in PMC 2010 June 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ward et al. Page 11
Ta

bl
e 

3
20

04
/2

00
5 

an
d 

20
05

/2
00

6 
in

do
or

 v
s. 

am
bi

en
t c

om
pa

ris
on

.

C
om

po
un

d
20

04
/2

00
5 

I/
O

 c
or

re
la

tio
n

20
04

/2
00

5 
Pr

op
or

tio
n

of
 v

ar
ia

nc
e 

ex
pl

ai
ne

d
(r

2 ) i
nd

oo
r v

s. 
am

bi
en

t

20
04

/2
00

5
C

or
re

la
tio

n
si

gn
ifi

ca
nc

e 
in

do
or

vs
. a

m
bi

en
t

20
05

/2
00

6 
I/

O
 c

or
re

la
tio

n

20
05

/2
00

6 
Pr

op
or

tio
n

of
 v

ar
ia

nc
e 

ex
pl

ai
ne

d
(r

2 ) i
nd

oo
r v

s. 
am

bi
en

t

20
05

/2
00

6
C

or
re

la
tio

n
si

gn
ifi

ca
nc

e 
in

do
or

vs
. a

m
bi

en
t

B
en

ze
ne

a
0.

37
0.

13
7

P 
< 

0.
05

−0
.1

5
0.

02
3

n.
s.

B
ro

m
of

or
m

a
N

/A
N

/A
N

/A
b

b
N

/A
C

hl
or

ob
en

ze
ne

a
N

/A
N

/A
N

/A
0.

04
0.

00
2

n.
s.

C
hl

or
of

or
m

a
N

/A
N

/A
N

/A
0.

15
1

0.
02

2
n.

s
C

is
-1

,3
-d

ic
hl

or
op

ro
pe

ne
N

/A
N

/A
N

/A
b

b
N

/A
1,

2-
di

br
om

o-
3-

ch
lo

ro
pr

op
an

ea
N

/A
N

/A
N

/A
b

b
N

/A
1,

4-
di

ch
lo

ro
be

nz
en

ea
N

/A
N

/A
N

/A
b

b
N

/A
1,

4-
di

m
et

hy
lb

en
ze

ne
 (p

 x
yl

en
e)

0.
21

0.
04

4
n.

s.
−0

.0
7

0.
00

5
n.

s
1,

2-
di

m
et

hy
lb

en
ze

ne
 (o

 x
yl

en
e)

0.
27

0.
07

3
n.

s.
−0

.0
7

0.
00

5
n.

s.
1,

3-
di

ch
lo

ro
pr

op
en

ea
N

/A
N

/A
N

/A
b

b
N

/A
Et

hy
lb

en
ze

ne
a

0.
23

0.
05

3
n.

s
−0

.1
0

0.
01

0
n.

s.
Is

op
ro

py
lb

en
ze

ne
0.

12
0.

01
4

n.
s.

−0
.1

3
0.

01
7

n.
s.

N
ap

ht
ha

le
ne

a
N

/A
N

/A
N

/A
0.

03
2

0.
00

1
n.

s.
n-

pr
op

yl
be

nz
en

e
0.

17
0.

02
9

n.
s.

−0
.0

3
0.

00
9

n.
s.

Tr
ic

hl
or

oe
th

yl
en

ea
N

/A
N

/A
N

/A
−0

.0
5

0.
00

3
n.

s.
1,

1,
2,

2-
te

tra
ch

lo
ro

et
ha

ne
a

N
/A

N
/A

N
/A

0.
03

0.
00

9
n.

s.
C

ar
bo

n 
te

tra
ch

lo
rid

ea
0.

49
0.

24
0

P 
< 

0.
00

1
−0

.0
7

0.
00

5
n.

s.
To

lu
en

ea
0.

64
0.

40
9

P 
< 

0.
00

1
−0

.1
5

0.
02

3
n.

s.
1,

2,
4-

tri
ch

lo
ro

be
nz

en
ea

N
/A

N
/A

N
/A

−.
35

0.
12

3
P 

< 
0.

05
1,

3,
5-

tri
m

et
hy

lb
en

ze
ne

0.
16

0.
02

6
n.

s.
0.

19
0.

03
6

n.
s.

1,
2,

4-
tri

m
et

hy
lb

en
ze

ne
0.

15
0.

02
3

n.
s.

0.
12

0.
01

4
n.

s.

a N
ot

e:
 C

le
an

 A
ir 

A
ct

 H
az

ar
do

us
 A

ir 
Po

llu
ta

nt
.

b In
di

ca
te

s n
o 

st
at

is
tic

al
 a

na
ly

se
s p

os
si

bl
e 

be
ca

us
e 

le
ss

 th
an

 3
 n

on
ze

ro
 v

al
ue

s m
ea

su
re

d.
 n

.s.
: n

ot
 si

gn
ifi

ca
nt

.

Environ Monit Assess. Author manuscript; available in PMC 2010 June 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ward et al. Page 12

Table 4
QA/QC data - blanks (μg/m3) and spikes (% recovery).

Compound Blanks Spikes

Benzenea 0.1b 87 ± 28%
Bromoforma N.D. 97 ± 14%
Chlorobenzenea N.D. 107 ± 12%
Chloroforma 0.003b 95 ± 32 %
Cis-1,3-dichloropropene N.D. 125 ± 42%
1,2-dibromo-3-chloropropanea N.D. 106 ± 18%
1,4-dichlorobenzenea N.D. 105 ± 22%
1,4-dimethylbenzene (p xylene) 0.02b 109 ± 14%
1,2-dimethylbenzene (o xylene) 0.03b 109 ± 11%
1,3-dichloropropenea N.D. 103 ± 18%
Ethylbenzenea 0.002b 109 ± 9%
Isopropylbenzene 0.04b 111 ± 12%
Naphthalenea 0.01 ± 0.001 91 ± 49%
n-propylbenzene 0.04 ± 0.1 109 ± 27%
Trichloroethylenea N.D. 125 ± 40%
1,1,2,2-tetrachloroethanea N.D. 106 ± 20%
Carbon tetrachloridea N.D. 80 ± 20%
Toluenea 0.02 ± 0.01 117 ± 11%
1,2,4-trichlorobenzenea N.D. 94 ± 46%
1,3,5-trimethylbenzene 0.1b 103 ± 25%
1,2,4-trimethylbenzene 0.1 ± 0.1 104 ± 32%
N 4 7

a
Note: Clean Air Act Hazardous Air Pollutant.

b
Only detected in one blank, so not able to calculate standard deviation.
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