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Abstract

Improved yields for the syntheses of a variety of spiroisoxazolines were achieved through
intramolecular cyclization/methylation reactions of functionalized 5,5-disubstituted isoxazolines in
one reaction vessel. Aromatic ring containing nitrile oxides and disubstituted geminal alkenes reacted
in a 1,3-dipolar fashion to afford the corresponding 5,5-isoxazoline. A comparison of the relative
location of the nucleophile and electrophile on the isoxazoline and two different ester functional
groups was performed in order to determine the best isoxazoline system for the intramolecular
cyclization/methylation reaction.
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Introduction

Many synthesized and naturally occurring spiroisoxazolines exhibit biological activity against
a variety of disease states, microorganisms, and enzymes. The spiroisoxazolines 11-
deoxyfistularin-3 and purealidin Q2 have been shown to be cytotoxic against cancer.
Furthermore, other spiroisoxazolines such as aerothionin,3 aplysinamisines I-111,% and
agelorin® display antifungal, antibiotic, or antimycobacterial activity (Figure 1). Since these
and other spiroisoxazoline containing natural products express such a wide array of
bioactiv(isties, the synthesis and derivatization of this family of compounds continue to be of
interest.

A number of methods exists for the synthesis of functionalized carbocyclic spiroisoxazolines.
Some of these methods include the oxidation of an aromatic ring followed by the intramolecular
cyclization of a pendant oxime,”:8 the 1,3-dipolar cycloaddition of an exocyclic alkene,? or
other methods.6b,d,e Some oxidative methods for spiroisoxazoline synthesis appear to be
limited to aromatic systems, and often require the use of toxic oxidants.”@ Furthermore,
spiroisoxazoline synthesis via 1,3-dipolar cycloaddition is usually restricted to the use of
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saturated ring systems with an exocyclic double bond as the dipolarophile.9a,b Herein, we
report a facile synthetic methodology for the construction of functionalized unsaturated
spiroisoxazolines that involves the intramolecular cyclization/methylation of a 5,5-
disubstituted isoxazolinel® in one reaction vessel.

Results and Discussion

A previous report for the syntheses of spiroisoxazolines through an intramolecular cyclization/
methylation methodology used an isoxazoline where the ester functionality was adjacent to the
isoxazoline, and the attacking enolate was further away from the isoxazolinel! (Scheme 1).
The isolated yield for the intramolecular cyclization was good when the aromatic ring was
unsubstituted. However, when other aromatic rings were incorporated onto the isoxazoline,
the isolated yields dramatically decreased. Our first attempt to improve the intramolecular
cyclization yields was to modify the ester from an ethyl to a methyl ester. Even though ethyl
esters are not very bulky, a decrease in ester size could potentially be beneficial. Unfortunately,
low yields were also obtained with methyl esters. Other leaving groups were considered, but
we decided to relocate the relative positions of the nucleophile and the electrophile for the
intramolecular cyclization/methylation reaction as shown in Scheme 2. When the ester was
moved away from a position adjacent to the isoxazoline to a more remote location, we believed
that the ester carbonyl would be more available for electrophilic attack by the enolate. In order
to test this hypothesis, the appropriate isoxazoline was synthesized.

The syntheses of a variety of isoxazolines was achieved through the 1,3-dipolar cycloaddition
of disubstituted geminal alkenes, 1 and 2,12 with the requisite nitrile oxide. Compounds 3 a-
d and 4 a-d were isolated as a single regioisomer after the respective 1,3-dipolar cycloaddition
of 1 and 2 with the corresponding in situ generated nitrile oxide'3 (Scheme 3). Even though an
assortment of substituted aromatic rings was incorporated into the isoxazoline, two different
ester functionalities were investigated in order to compare the relative efficacy of these two
esters during the spiroisoxazoline ring construction through the intramolecular cyclization/
methylation strategy.

When isoxazolines 3 a-d, which have a methyl ester, were reacted with sodium hydride,
intramolecular cyclization insued,1# and the corresponding enolates were methylated with
dimethyl sulfate to afford the desired regioisomeric spiroisoxazolines 5 a-d and 6 a-d11
(Scheme 4). The isolation of two spiroisoxazoline regioisomers results from the O-methylation
of both spiroisoxazoline intermediate enolates as shown in Scheme 5:11 and the reported ratios
between regioisomers 5 and 6 were based upon their respective isolated yields. The
spiroisoxazolines arising from the isoxazoline methyl ester were isolated in moderate to good
yields, but the ethyl ester containing isoxazoline was examined in order to determine if
increased yields of 5 a-d and 6 a-d could be realized. Upon subjecting isoxazolines 4 a-d to
the intramolecular cyclization/methylation reaction conditions, the isolated yields of 5 a-d and
6 a-d were examined. In three cases, spiroisoxazolines 5 a-d and 6 a-d were isolated in higher
yields when the ethyl ester containing isoxazolines 4 a-d were used as the intramolecular
cyclization/methylation substrate. Only spiroisoxazolines 5¢ and 6¢ were isolated in higher
yields from the methyl ester isoxazoline precursor (Scheme 4). Structural confirmation of the
spiroisoxazolines was obtained through NMR studies, and the structures of 5¢ and 6¢c were
further confirmed through single X-ray crystallographic analysis'’ (Figure 2).

In summary, starting from a disubstituted geminal alkene, spiroisoxazolines were synthesized
in two steps. After the regioselective synthesis of the desired 5,5-disubstituted isoxazoline
through nitrile oxide mediated 1,3-dipolar cycloaddition with a disubstituted geminal alkene,
regioisomeric spiroisoxazoline were constructed through an intramolecular cyclization/
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methylation synthetic sequence. Structural confirmation of some of the spiroisoxazolines was
realized through X-ray crystallographic analysis.
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Figure 1.
Biologically active spiroisoxazoline natural products.
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Figure 2.
Thermal ellipsoid plots for the structures of 5¢ and 6c.
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Scheme 1.

Spiroisoxazoline syntheses from an ethyl ester that is adjacent to the isoxazoline.
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Scheme 2.
Spiroisoxazoline syntheses from a methyl ketone that is adjacent to the isoxazoline.
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Scheme 3.
Syntheses of 5,5-disubstituted isoxazolines 3 and 4.
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Entry lIsoxazoline R' R? % Yield
1 3a H H 83
2 3b H OCH; 68
3 3c Cl H 66
4 3d H Cl 79
5 4a H H 84
6 4b H OCH; 88
7 4c Cl H 85
8 4d H Cl 87
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5a-d, from R = CH,
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6a-d, from R=CH;
6a-d, from R =CH,CH,

Entry Isoxazoline Spiroisoxazoline R' R? % Yield Ratio 5/6
1 3a 5al6a H H 66 46/54
2 3b 5b/6b H OCH; 52 41/59
3 3c 5cléc Cl H 86 46/54
4 3d 5d/6d H Cl 65 53/47
5 4a 5al6a H H 78 47/53
6 4b 5b/6b H OCH; 72 57/43
7 4c 5cléc Cl H 62 55/45
8 4d 5d/éd H Cl 75 45/55

Scheme 4.

Syntheses of spiroisoxazolines 5 and 6.
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R’ 8 I 0O
3: R=CH, (CH,),S0, (CH3),80,
4 R= CH20H3
5a-d, from R = CH; 6a-d, from R = CH;
5a-d, from R = CH,CH,4 6a-d, from R = CH,CH;,
Scheme 5.

Intramolecular cyclization of 3 and 4 to afford regioisomeric enolates 7 and 8.
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